2025年11月8日2025年11月8日に投稿 投稿者 元)新人監督 — コメントを残すDiracの寡黙とGell-Manのライターズ・ブロック 【2018-08-27投稿分‗Dirac_gell-man】 2018-08-27・これらは天才的な学者であった、二人の家庭環境から来ているらしい。Diracの父親はスイス出身のフランス語教師であり、夕食のときにDiracにフランス語を話すように強制したために、英語でもDiracはほとんど話さないようになったと言われている。誰かがフランス語圏からDiracに会いにやってきたときに、フランス語をDiracが解しないと思って一生懸命に英語で話そうとしたとかいう話があり、そのあとでDiracがランス語が話せることを知っておどろいたとか読んだことがある。またフランス語で書かれたDiracの論文もあったはずだ。同じようにGell-Manも心理的要因から文章が書けなくなるという症状をもっていたらしい。卒業論文は完成するどころか、書き出すこともできなかったというから、Gell-Manのライターズ・ブロックは重症である。そういう病気があるとは私自身は聞いたことがない。Yale大学では大学院には進めなかったので、MITに進んだという。そこで、Weiskopfにつく。 Wesikopfからは実践的な物理学を学んだという。「数学的洗練さよりも、証拠と一致するかどうかを重んじろ。できる限り単純さを追い求め、決まり文句やもったいぶった言い方は避けろ」これはなかなかいいアドバイスである。こういうアドバイスをする人はその当時はほとんどいなかったのではないか。私などが育ってきた研究雰囲気と似通っているが、それは横道にそれる。Gell-Manの優れた点は問題の表面的な細部に惑わされずに、「分析的な目」で、その裏に隠されたパータンを見抜く才能にあったという。ただ、列伝の著者も彼が少し嫌な性格の持ち主であったことをほのめかしているようだ。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近は全てに返事が出来ていませんが 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/11/08_初版投稿サイトTOPへ
2025年11月8日2025年11月8日に投稿 投稿者 元)新人監督 — コメントを残す『物理学天才列伝』下 【2018-08-20投稿分 プリンキピア_ブラックホール】 2018-08-20 ・ブルーバックス(講談社)を図書館から借りてかえって、その一部を拾い読みしている。私がおもしろかったのはチャンドラ・セカールであった。南部さんの『素粒子』(ブルーバックス)だったかに天文台からシカゴ大学まで大学院のセミナーをするために出てきていたとか書いてあって、彼のクラスの全員がノーベル賞をとったと説明があった。これはリーとかヤンとかがその直後にノーベル賞をとったことを意味してもいた。そのうちにチャンドラー自身がノーベル賞をとる。わたしが関心をもったのはチャンドラーの最後の研究である、ニュートンのプリンピアの話であった。彼はプリンキピアをはじめからは読まないで、自分で力学の定理を書いてそれを現代的に証明して、それからその点をニュートンがどう書いているかをプリンキピアを読むことで比較したという。そして、どのようにニュートンがうまく力学のことを書いているかを痛感したという。この研究はいつものチャンドラの流儀で本にした。すなわち、チャンドラーは自分の研究の総括としていつもその分野の専門書を書いて、その分野の研究を終わりにしていた。このチャンドラーの最後の研究書は中村誠太郎さんの訳で講談社から出されている。もっともこの本は一万円を超える定価がついていたと思う。もっともこの説明で私もこの訳本を読んでみたくなった。もう数十年も昔のことだが、日本にチャンドラがやってきて、ブラックホールについて物理学会で講演した。その講演の訳が物理学会誌にでていたのだが、その最初の部分のアイディアを使って、試験問題をつくったという思い出がある。入試の問題になるくらいのやさしい話にしたのである。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近は全てに返事が出来ていませんが 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/11/08_初版投稿サイトTOPへ
2025年11月8日2025年11月8日に投稿 投稿者 元)新人監督 — コメントを残すブログは消耗品である 【2016-12-24投稿分‗広重_共鳴粒子_坂田モデル】 ・新聞が消耗品であるようにブログも消耗品である。だから日々新たな気持ちで書くことが大切で、昔書いたことが大事なわけではない。とはいうものの日々の自分の考えたことを書いているので、ときどきはそれを見直すのがいいと思っている。思想と言えるほどのものが私のブログにあるのかどうかはわからないが、どういう本を読んであんなことを思ったとかそういう風なことは書いていないことが多いけれどもやはり何かを考える動機に読書がなっていることは確かである。最近ではコタツで夜に読んでいるのは図書館で借りて来た「昭和後期の科学技術思想史」である。これに岡本拓司さんが書いている広重徹論は大部なものである。多分日本で書かれた最大の広重徹論であろう。私の不満に思うのは現代科学の発展の歴史をふり返って広重の言ったことが当たっていたのかどうかという視点が欲しいような気がしている。広重徹が亡くなったのは1975年であり、彼が思っていたことがどれほど正しかったかは広重徹論を書く一つの視点ではなかろうか。(2016.12.26付記) 広重は70年代に素粒子で多くの共鳴粒子が見つかったりでして、数百個になったことにいらだっていたと、この岡本拓司さんの広重論にある。そこが私などは不思議に思うところだが、多数の素粒子が見つかったときにすでにそれらを複合粒子として考えるという考えが出ていたのだから、いわゆる本質的な力学としてはまだきっかけもつかまれていないとしても素粒子の研究としてつぎの段階への手がかりは出ていたことになる。それはFermi-Yangの論文に始まり、坂田モデルとつながり、IOO対称性とか1960年代の初頭にはそういうことが出ていた。それがGell-MannとN’eemanの八道説につながり、その後のクォークモデルとなる。そして電弱理論とかQCDにつながっている。Weinberg-Salam理論は1968年には出ているが、くりこみ可能性を’t Hooftが証明したのが1971年というから広重の亡くなる前にはすでに新しい理論の芽はあったのだ。そこらの評価が広重にはできていなかったと思われる。最後の段階への評価はできなかったにしても複合モデルを評価できなかったのは広重としては大きなミスではなかろうか。そういうことは岡本拓司さんの広重論にはもちろん出てこないのだが。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近は全てに返事が出来ていませんが 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/11/08_初版投稿サイトTOPへ
2025年11月8日2025年11月8日に投稿 投稿者 元)新人監督 — コメントを残すエ―レンフェストの定理 【2016-06-21投稿分_期待値_波束_古典力学】 ・というと量子力学でその位置の期待値から波束が古典力学の運動方程式の形をみたすという定理である。この定理が難しいと思ったことはなかった。が、私自身はこの定理の意義を軽視してきたが、このところその意義に目覚めている。もっともこの計算は学生のときにも苦手だったが、どうもいまでも苦手であることを発見した。学部の4年生になって量子力学のセミナーがはじまり、その初めごろにセミナーでこの計算で立ち往生してしまい、S 先生から叱られたことがあった。その後のセミナーではその汚名を挽回するように努めたけれども。その思い出よみがえってきたのだが、何十年もたってこれくらいの計算はなんてことはないはずなのにやはり苦手である。もっともきちんとやればなんてこともないはずだ。だが、どうも逃げ腰なのがいけないのではないかと思う。きちんと落ち着いてやれば、なんてことはないはずだが、ちょろちょろしてしまう。この姿勢がよくない。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近は全てに返事が出来ていませんが 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/11/08_初版投稿サイトTOPへ
2025年11月8日2025年11月8日に投稿 投稿者 元)新人監督 — コメントを残す伏見康治コレクション3 【2016-05-24投稿分‗伏見康治‗数学セミナー】 ・『物理学者の描く世界像』(日本評論社)に中性子の減速の話題が取り上げられている。これは原子炉内での核分裂で発生した中性子を減速させる話である。伏見康治先生もやはり原爆研究か原子炉の理論の一環として中性子の減速の問題を考えられていたらしい。あまりこれは現在では学問的な内容ではないのかもしれないが、それでも原子炉工学を学ぶときには基礎知識であろうか。数年の間 E 大学工学部で原子力の基礎知識を講義したことがあり、そのときに中性子の減速の数学というか物理を自学自習したことがあった。これは講義をするためには当然のことであった。伏見先生は雑誌「数学セミナー」の編集部の要望に応えて「やはり微積分は役に立った」という記事を3か月にわたってかかれた。それが、この本に掲載されている中性子の減速である。私はこれらの章をまだ読んではいないが、それほど難しい数学も用いていないので、読んでみようかと思っている。私が昔テクストを読んでつくったノートも役に立つかもしれないなどと考えている。などと多寡をくくったことを書いたが、さらにちらっとこの記事をながめたところではどうもノートが役に立つのは連載3回の1回目だけらしい。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近は全てに返事が出来ていませんが 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/11/08_初版投稿サイトTOPへ
2025年11月8日2025年11月8日に投稿 投稿者 元)新人監督 — コメントを残す四元数の流行を下火にした人 【2018-04-10投稿分 ‗ハミルトン‗ギッブス_へヴィーサイド】 2018-04-10 ・最近の四元数のブームではかつて四元数の流行を下火にした人がいたなんて、驚きだろうが、いたのである。これはギッブスというアメリカ人の物理学者とヘヴィーサイドというイギリスの電気工学者であったという。要するに実部(またはスカラー部ともいう)のない四元数の積で出てくる、その四元数の実部と虚部が実は現在ベクトルのスカラー積とベクトル積というモノであり、実は有用なのは四元数そのものではなく、ベクトルの現在スカラー積と言われているものとベクトル積と言われているものとが有用なのだとの深い考察を行って、ベクトルを導入したのがギッブスとへヴィーサイドだと言われている。そうすると、ハミルトンは四元数を発見した、創造性に富んだすごい人だったが、それを展開して、ベクトルを導入し、かつそのスカラー積とベクトル積とが有用なのだという洞察をすることができた、ギッブスとへヴィーサイドとの役割も大切なのだとわかる。もちろん、ハミルトンが四元数を発見しなかったら、その後のいわゆるベクトルとその理論は生まれなかったのだが、ギッブスとヘヴィーサイドとはハミルトンとはちがった役割をもっているのだということがわかる。ギッブスは熱力学でも熱力学ポテンシャルといわれるいくつかの関数を導入して、熱力学の様相を大きく変えたという。ヨーロッパの学者からなかなか認めてもらえなかったが、いまでは優れた物理学者であることが知られている。(2018.4.28付記)ボイヤーの『数学の歴史』を読んでいると、ギッブスの先駆者としてグラースマンがいるそうだが、グラースマンの数学を学んだことがない。いつだったか藤川和男さんが松山に来られて講義をされたときにグラスマン数のことを話されたことぐらいしか覚えていない。最近では金谷健一さんの『幾何学と代数系』(森北出版)でグラースマンの数学を学ぶことができるだろう。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近は全てに返事が出来ていませんが 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/11/08_初版投稿サイトTOPへ
2025年11月8日2025年11月8日に投稿 投稿者 元)新人監督 — コメントを残すcomplementary 【2017-12-07投稿分_ボーア_ソリトン_広田良吾】 2017-12-07・complementaryという語を今朝はつぶやいている。相補原理という原理をデンマークの物理学者ボーアが思いついた。これは多分量子力学での粒子性と波動性の理解が難しくて、たとえば、電子は一方で古典的な粒子ともみなされるのにやはりある種の波動性ももっている。古典的な描像では粒子とはある小さな箇所に質量とか電荷がかたまっているというイメージだが、一方の波動は空間に広がっている。見て感じることができる波は水面の波である。海の波などがその典型である。この波は電磁波の波などだと空間に3次元的に分布しているのだが、海の波だとある平均的、近似的な平面のまわりで運動している。すくなくとも一カ所にかたまって存在してはいない。シュレディンガーなどはこの波で電子のような粒子をつくろうと考えたらしいが、波は時間が経つと壊れていく。これは海の波などだと大きな波が崩れて白い泡が生じるのでわかる。ソリトンで有名だった広田良吾先生の講義を聞いたときに彼は波の上部の方が下部よりも速度が速いと図を描いて示していた。それで波の上部が早いから一度塊としてできた波群は上部の方が速度が速いから、砕けるのである。よく映画とか写真で上から波が覆いかぶさっているようなところをサーフィンしているサーファーを見る。これなどは波の上部の速度が下部の部分よりも速いために起こる現象である。有名な葛飾北斎の波間の富士などもこういう知識を持ってみると理解できる。北斎がこのことを理解していたかどうかはわからないけれども。私にしても広田先生の講義を聞くまではそんなことも知らなかった。complementaryに返ると、実はあるえらい先生からあるときにSさんと君とはcomplementaryだろうと言われたのを思い出したのである。この S さんも、私が偉い先生だと思っていた、K 先生ももう亡くなって久しい。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近は全てに返事が出来ていませんが 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/11/08_初版投稿サイトTOPへ
2025年11月8日2025年11月8日に投稿 投稿者 元)新人監督 — コメントを残すcleverな人よりもwiseな人を 【2017-04-28投稿分 ‗湯川秀樹_ボルン】 ・というのは量子力学の行列力学のversionの建設に貢献した、M. Bornの書いた文章が出典であろう。このBornの文章を読んで、湯川秀樹が「cleverな人よりもwiseな人を」という考えを日本の一般に紹介したと思っている。ところが『遠山啓』(太郎次郎社エディタス)の遠山の退官記念講義で「cleverな人よりもwiseな人を」という話が話されている。これは遠山が湯川の話をどこかで読んで、つまみ食いしたというふうに考えるよりは遠山も同じBornの話を独立に読んでいたのであろうと私は考えている。Bornがどういうふうに言っていたのか湯川は詳しく紹介していたはずだが、記憶は確かではない。たぶん、Bornのまわりで学んだ若者はみんな原爆をつくる指揮をしたオッペンハイマーOppenheimerや原爆をつくることには失敗したHeisenbergも含めて優秀な人材であった。だが、Bornは「彼らがcleverであるよりも知恵のあるwiseな人であってほしかった」というような回想をしていたと思う。そのBornの回想を湯川は読んで雑誌「自然」だったかで紹介していた。ちなみにHeisenbergは量子力学の行列力学versionの端緒を与える研究をしたことで有名だが、自分の考案した算法が行列と数学でよばれるものだとは知らなかったらしい。彼の考案した奇妙な算法が実は数学で行列(マトリックス)と呼ばれる算法であることに気がついて行列力学を体系づけた功績はBornとJordanである。量子化条件と呼ばれている、位置座標と運動量の間の交換関係を導いたのもBornとJordanだと言われている。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近は全てに返事が出来ていませんが 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/11/08_初版投稿サイトTOPへ
2025年11月8日2025年11月8日に投稿 投稿者 元)新人監督 — コメントを残す・遠山啓さんの心配 【2017-04-26投稿分‗水道方式_武谷三男】 ・東京工業大学に勤めていた遠山さんは若いときにレッドパージにかかって大学を辞めさせられるのではないかと心配をしていたときがあったと知った。彼は狭い意味での政治的な人ではまったくないが、その算数教育の方針が時の文部省の方針に反していたので、そのための心配を密かにしていたのだろう。それで、もしレッドパージにかかって大学を辞めなければならなくなったとしたら、文筆で生きていく覚悟をしていたとはなかなか悲壮である。そのことは実際には起こらなかったのだが、それでも算数教育では彼と数学教育協議会のメンバーたちが考案した「水道方式」と「量の理論」とは数学教育に一石を投じることとなった。結局のところ、その教育のしかたが文部省の方針よりも合理的で多くの子どもたちの算数教育に有用であったためにときの政府の介入をもはねのけて、いまではどの算数の教科書も数学教育協議会の教えた方を少なくとも部分的には取り入れるというふうになっている。これで想起するのは戦後の一時期だが、やはり武谷三男がある種のジャーナリストとして文筆で生計を立てていたという事実である。武谷は1953年に立教大学に勤めるまで、大学卒業後、およそ19年にわたって、大学とか研究所に勤めることも会社に勤めることもできなかった。そのための後遺症は長く武谷に残っており、武谷に批判的な人にはその事実の重さがわかっていない、大きな事実だと思う。その不幸にもかかわらず、武谷が物理学者として生き残れたのはあるいは奇跡だというべきかもしれない。遠山は武谷ほどその旗幟が鮮明ではなかったから、大学から追われることはなかった。しかし、レッドパージの覚悟をしていたとは、戦後の政治状況の様子の一環が読みとれる。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近は全てに返事が出来ていませんが 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/11/08_初版投稿サイトTOPへ
2025年11月8日2025年11月8日に投稿 投稿者 元)新人監督 — コメントを残す数学・物理通信6-3を発行 【2016-03-19投稿分_周期ポテンシャル_井戸型ポテンシャル】 さっき、ようやく『数学・物理通信』の6巻3号を発行した。インターネットのサイトで見て下さる方は数日したら、谷村先生が掲載して下さるであろうから、数日は待たれる必要があろう。今回は友人の E さんの相対論の話が出ている。彼の講義ノートは数百ページのものらしいが、それを20ページ前後に要約したものとなっている。さすがにこの分野の専門家なのでやはり随所に独自性が現れているが、それでもその長さから数学の部分の詳しい説明はないので、ちょっと説明が欲しい気もしたが、これはこれでそれなりによくできた要約だと思っている。それと S さんの周期ポテンシャルの量子力学のシリーズがはじまった。私も大学院の講義でこの周期的ポテンシャルをあつかったことがあるが、その周期的ポテンシャルとしてはいわゆるKronig-Pennyのモデルしか扱ったことがない。周期的ポテンシャル1次元の問題だが、結構難しいところがある。私は関心があったのは、量子状態で離散的なエネルギー準位から、周期的ポテンシャルになるとそのエネルギーの幅が生じて最後には固体の量子理論としてのエネルギーのバンド構造ができるところのうつりかわりである。素粒子のレプトンの質量準位が二重構造をなしているのではないかというような予想を立てたりして、それを導こうと考えたりしたこともあった。これはうまくいかないことは明らかかもしれないけれど。レプトンのe, \myu, \tauはニュートリノと合わせてdoubletにはなっているが、質量準位は二重構造にはなっていない。二つの井戸をもつポテンシャルとして有名なのはアンモニアの二つの井戸ポテンシャルがあり、スペクトルが二重線になっていたのだったかどうかもう忘れてしまった。そんなことを周期的ポテンシャルから思い出している。 〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近は全てに返事が出来ていませんが 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/11/08_初版投稿サイトTOPへ