に投稿 コメントを残す

S・W・ホーキング
3/19改訂【筋萎縮性側索硬化症(ALS)を患いながらも星の進化を研究】

オックスフォード大学(OXFORD)

こんにちはコウジです!
「ホーキング」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ホーキングが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 – 1827年3月26日)

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

 

宇宙を語る
【スポンサーリンク】
【1942年1月8日生まれ ~ 2018年3月14日没】

ホーキング博士の研究領域

ホーキング博士は相対論を含めて宇宙の理論を研究しました。
特にブラックホール、量子的効果、その生成から消滅に
至るまでを突き詰めていった博士です。

博士の御両親は共にオックスフォードに学んていた
こともあり、ホーキング博士もオックスフォードで
物理学を学びます。各国の王族や次期指導者と共に
勉学を修めたわけです。大学時代はボート部に所属して
大学院進学時は成績も芳しくなかったようです。
そして、ホーキング博士はケンブリッジに進みます。

何より博士は若くして筋萎縮性側索硬化症(ALS)を患い、
大きな困難に立ち向かいます。当時は命を落とす病である
といわれ、意思伝達・行動範囲拡大の為に独自の技術使い、
デバイスを使いこなしていきます。

ホーキング博士の研究態度

研究の面ではブラックホールに関する研究を進めて
星の進化を考え、中心部に存在するであろう
特異点を考え「特異点と時空の幾何学」の論文
をまとめ上げます。その特異点の考え方にには
幾つかの段階がありますが、端的に
「光的捕捉面 (trapped null surface)」
なるものを考えてみます。エネルギー密度を考えると
「測地線」というものが考えられるか考えられないか、
という議論を繰り広げたのです。その議論は
相対論的に古典力学を考える範疇の話であって、
量子論的な相対論の考えを最新の科学では進めています。

またホーキング博士は、タイムマシーンの実現の為には
無限のエネルギーが必要であるとの考えを持っていて、
タイムマシーンの実現可能性を否定しています。
タイムマシーンは夢のある話ですが当然困難もある
と言ってみたかったのですね。

ホーキング博士の最後

また私に印象深かったのは安楽死に対する意見です。
権利を認めていながらも、ホーキング博士の立場
として出来る事をしたいという前向きな立場
をとっていて共感出来る部分がありました。
ホーキング博士は不自由な体でブラックホールや
人口知能技術に思いを巡らせていたのです。
晩年にはニュートンが務めていたルーカス職
をホーキングは引き継いでいます。

そして、最後の時が来たのです。
偉人の人生も終わりを迎える時が来ました。
ホーキングはケンブリッジ大学近くの自宅で
最期を迎えました。そして今、ホーキングは
ニュートンの墓の近くで眠っています。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/09_初稿投稿
2024/03/19_改定投稿

(旧)サイトTOPへ
纏めサイトTOPへ
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
オックスフォード関連

熱統計関連のご紹介
力学関係のご紹介
量子力学関係
AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Dr. Hawking’s research area

Dr. Hawking studied the theory of the universe, including relativity. He is a doctor who has scrutinized black holes, quantum effects, and their creation and extinction.

Dr. Hawking also studied physics in Oxford, as both his parents had studied in Oxford. He studied with the royal family and the next leaders of each country. He belonged to the rowing club when he was in college, and when he entered graduate school, his grades were not good. Then Dr. Hawking goes to Cambridge.

Above all, he suffers from amyotrophic lateral sclerosis (ALS) at a young age and faces great difficulties. At that time, it was said to be a life-threatening illness, and he will master his unique technology and devices in order to communicate and expand his range of activities.

Dr. Hawking’s research attitude

In terms of his research, he will proceed with research on black holes, consider evolution, consider singularities that may exist in the center, and compile a paper on “Singularity and Space-Time Geometry”. There are several stages in the idea of ​​the singularity, but in short, let us consider what is called a “trapped null surface”. He argued whether or not a “geodesic” could be considered when considering the energy density. The argument is a category of relativistic classical mechanics, and the latest science is advancing the idea of ​​quantum relativity. Dr. Hawking also denies the feasibility of a time machine because he believes that infinite energy is required to realize a time machine. Time machine is a dream story, but of course there are also difficulties.

The end of Dr. Hawking

Also impressed with me was his opinion on euthanasia. Although I acknowledged my rights, there was a part that I could sympathize with because I took a positive position that I wanted to do what Dr. Hawking could do. Dr. Hawking was crippled and pondered about black holes and artificial intelligence technology.

And the last time has come.
It’s time to end the life of a great man.
Hawking at his home near Cambridge University
He has reached the end. And now Hawking
He is sleeping near Newton’s tomb.

 

に投稿 コメントを残す

益川敏英
3/18改訂【C-P対称性に関する理論で小林誠と素粒子を整理】

こんにちはコウジです!
「益川敏英」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
益川敏英が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 – 1827年3月26日)

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

現代素粒子
【スポンサーリンク】
【1940年2月7日生まれ~2021年7月23日】

益川敏英の生い立ち

益川敏英は1940年に名古屋に生まれました。

生まれた年が 先の大戦の終戦に
近いので幼少時代は苦労しています。そして、
5歳の時に名古屋大空襲で自宅が焼夷弾を受け
非常に恐ろしい経験をしています。

そんな体験を経ているので、
(憲法)「9条科学者の会」に名を連ね、
平和運動に情熱を捧げていたそうです。

そんな益川さんは高校時代に科学雑誌で坂田 昌一
「坂田モデル」を作り上げた事を
知り、大いに
興味を抱き名古屋大学理学部に進みます。

当然、坂田研に所属して研究を進め、そこで後の盟友となる
小林誠と出会います。そして
坂田研で博士論文をまとめ上げた後に、
そのコンビは共に京都大学で研究を進めるのです。

益川敏英の感心事

特に、当時の大きな感心事だったC-P対称性に関する理論的
枠組みの構築をテーマとして選び、
自宅で風呂に入っている時に
坂田さんは「
クォークを6種類考えた時に理論が完結する」
というアイディアを得ました。因みに、この時に観測されていた
クォーク
3種類だったので理論が先行していた訳です。

そんな益川氏はノーベル賞受賞の際にはスピーチを英語で行う
慣例を守らずに、日本語でスピーチを行いました。
そんな
益川さんが理路整然とした議論の枠組みを作り、
物静かな小林さんと深い議論をしていった結果として
小林-増川理論は出来上がり、素粒子の理解
が進んだのです。

本稿の画像としては名大の風景を使っています。
二人はノーベル賞を京大時代に
とりましたが、
その師は名大の人で出会いも名大
でした。

いつも気持ちは名大にあった思います。
2021年、その一人益川さんが天に召されました。
享年81歳。謹んでご冥福をお祈りいたします。

 

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
全て返信は出来ていませんが
適時、返信・改定をします。

nowkouji226@gmail.com

2021/07/31_初稿投稿
2024/03/08_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
纏めサイトTOP
電磁気関係
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

History of Toshihide Maskawa

Toshihide Maskawa was born in Nagoya in 1940. He is struggling because he is close to the end of the last war. He had a very scary experience when his home was incendiaryd by the bombing of Nagoya at the age of five. Therefore, he was listed in the (Constitution) “Article 9 Society of Scientists” and was passionate about the peace movement.

Mr. Maskawa learned that Shoichi Sakata created the “Sakata model” in a scientific magazine when he was in high school, and was very interested in it and proceeded to the Faculty of Science at Nagoya University. Naturally, he belongs to Sakata Lab and pursues research, where he meets his later ally, Makoto Kobayashi. After compiling his doctoral dissertation at Sakata Lab, the combination will proceed with research at Kyoto University.

Toshihide Maskawa’s Impressions

In particular, he chose the theme of building a theoretical framework for CP symmetry, which was a big impression at the time, and when he was taking a bath at home, Mr. Sakata got the idea that the theory would be completed when he thought about six types of quarks. ..

By the way, there were three types of quarks observed at this time, so the theory preceded them. When Mr. Maskawa won the Nobel Prize, he gave a speech in Japanese instead of following the convention of giving a speech in English. Mr. Maskawa created a framework for coherent discussions,

As a result of deep discussions with Mr. Kobayashi, who is quiet, the Kobayashi-Masukawa theory was completed, and the understanding of elementary particles was advanced. The image of this article uses the scenery of Nagoya University. The two won the Nobel Prize during the Kyoto University era, but the teacher was a Nagoya University person and met at Nagoya University. I think my feelings were always at Nagoya University.

One of them, Mr. Maskawa, was called to heaven.

He is 81 years old.

He sincerely prays for his soul.

に投稿 コメントを残す

【改訂】東大が量子コンピューターを2023年秋に導入
(IBM社製‗127量子ビット)

東大

こんにちはコウジです!
「東大が量子コンピューター」の原稿を改定します。
今回の主たる改定は新規追記分の補完です。
大分長いこと改定していませんでしたね。

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

(写真は従来の基盤の写真です)

以下投稿の内容は2023/04/22の
日経新聞記載の情報メインです。
現代の情報だと考えて下さい。

新聞記事を離れた所で冷静に考えていくと
税金の使い道の話でもあります。

日本国民の皆様が一緒になって考えて、
出来れば知恵を出し合えたら
より良い展開に
つながる類の話題なのです。しかし、
実のところ、大多数の日本国民は
「量子コンピュータ?言葉は聞くけれども…」
って感じで内容が議論されていません。
議論を喚起しましょう。

本記事では私論を中心に語ります。但し、
記載した量子ビット数は何度も確認しています。

ニュースのアナウンサーも語れる内容が少ない
のでしょう。
そんな中で東大本郷キャンバスでは
記者会見が開かれ、IBM社のフェローが
「有用な量子コンピューターの世界がすぐそこまで来ている」
と語っています。

物理学を専攻していた私でも多分野において下調べが必要です。
当面、「ラビ振動」、「共振器と量子ビットの間の空間」
「ミアンダの線路」、「量子誤り訂正」といった概念を
改めて理解し直さないと最新の性能が評価できません。

特に理化学研究所に導入された機種は
色々な情報が出ていて教育的です。対して
東大が導入するIBM社製の量子コンピューターは
トヨタ自動車やソニーグループなど日本企業12社での
協議会による利用を想定していて、
利益享受を受ける団体が限られています。
今後の課題として利用の解放(促進)が望まれます。 

東京大学が川崎拠点に導入

既に27量子ビットを導入している川崎拠点に2023年の秋に
127量子ビットの新鋭機を導入する予定です。
経済産業省は42億円の支援を通じて計算手法等の
実用面へ向けての課題を解決していく予定です。

一例としてJSR(素材メーカー)が「半導体向け材料の開発」
を想定して活用する方針を打ち出しているようですが
具体的にプロジェクトに参加する事で得られるメリットを
明確にする作業は大変そうです。

現時点での量子コンピューターの国内体制

報道では「量子ビット」の数に着目した表現が多いです。
実際に理化学研究所では2023年の3月に64量子ビットの
装置を導入して研究を進めています。

また、英国のオックスフォード・クァン・サーキッツ
は都内のデータセンターに今年の後半に量子コンピューター
を設置予定で外部企業の利用も想定しています。

対して米国のIBMでは433量子ビットのプロセッサーが開発
されていて、2023年度中には1000量子ビットの実現、
2025年度には4000量子ビット以上の実現を計画しています。 

EV電池開発に革新的貢献ができるか

一例としてIonQ社とHyundai Motor社は共同で
量子コンピューターに対する
バッテリー化学モデル
を開発しています。(2022年2月発表~)

実際に同社は新しい変分量子固有値ソルバー法
(VQE:Variational Quantum Eigensolver)を共同で開発してます。
開発目的はバッテリー化学におけるリチウム化合物や
化学的相互作用の研究への適用です。

 特定の最適化問題を解決するVQEは原理的に
量子コンピューターと親和性が良いです。
変分原理を使用し、ハミルトニアンの基底状態エネルギー、
動的物理システムの状態の時間変化率を考えていくのです。
計算上の限界で、既存システムでは精度に制約がりました。

 具体的に酸化リチウムの構造やエネルギーのシミュレーション
に使用する、量子コンピュータ上で動作可能な
バッテリー化学モデルを共同開発しています

リチウム電池の性能や安全性の向上、コストの低減が進めば
EV開発における最重要課題の解決に向けて効果は大きいです。
【実際、EV価格の半分くらいはバッテリーの価格だと言われています】

ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2023/04/23_初稿投稿
2024/03/17‗改訂投稿

舞台別のご紹介へ
時代別(順)のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

B・D・ジョゼフソン
3/17改訂【量子力学的効果をデバイスで具現化】

こんにちはコウジです!
「ジョゼフソン」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ジョゼフソンが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 – 1827年3月26日)

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

振動・波動
【スポンサーリンク】
【1940年1月4日生まれ 〜 (ご存命中)】

 ジョセフソン接合を生み出したジョセフソン

その名を書き下すと”Brian David Josephson”。

今回、存命中の方を紹介しています。

ジョセフソン博士は今もイギリスでご存命の研究者で
ジョセフソン接合等
発案で広く知られています。
ジョセフソン接合
物理学を理解
し始めた人が量子的な
効果を確認出来るデバイスです。
彼は私が
大学院時代に興味を持った凝縮系の大家です。

ジョセフソン接合等の考えは様々な知見に繋がっています。
もう少し細かく記述すると、そのジョセフソン接合とは
超伝導体の間に常伝導体を挟み、電子の
波動的性質を顕在化させる仕組みです。

 量子力学における二面性

そもそも、量子力学的には電子は

波動的性質と粒子的な性質を併せ持ちます。

例えば、
そこにおける波長から設計したのが
SQUIDと呼ばれるデバイスで
高感度の磁気センサーや
量子コンピュータのデバイス候補
として応用されます。

また、ジョセフソンは常温核融合に対して研究を進めています。更には科学の枠組みを超えて探求を続けています。そのジョセフソンが関心を持つ側面にはシュレディンガーニールス・ボーアパウリなども関心を持ったと言われますが「物理」「生命」「化学」の境界領域で意識に対しての考察に挑んでいるのです。

 ジョセフソンの信条

ジョセフソン曰く、(彼は王立協会創立のモットー nullius in verba(一切の権威を認めない)を信条としており、)「科学者が全体としてある考え方を否定したとしても、その考え方が不合理だという証拠にはならない。むしろ、そのような主張の基盤を慎重に調査し、どれほどの精査に耐えるかを判断すべきだ」【出典・Wikipedia】

個人的にはジョセフソンの方向性を支持します。不可解な現実を
不可解な現象をオカルトネタで終わらせる積りはないです。
今不可解だと考えられている現象には因果関係がある半面で
人間の知見も完全ではないと認めれば、それらに対して
真摯に直面して解明していく事こそ正しい姿だと思います。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。

nowkouji226@gmail.com

2020/08/21_初回投稿
2024/03/17_改訂投稿

纏めサイトTOP
舞台別のご紹介
時代//別(順)のご紹介
イギリス関係

ケンブリッジ関連
熱統計関連のご紹介
量子力学関係
AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

Josephson who created the Josephson junction

The name is written down as “Brian David Josephson”.

This time, we are introducing those who are still alive. Dr. Josephson is still a living researcher in England and is widely known for his ideas such as Josephson junction. I am a condensed landlord who was interested in graduate school. The idea of ​​Josephson joining has led to various findings. This Josephson junction is a mechanism in which a normal conductor is sandwiched between superconductors to reveal the wave-like properties of electrons.

Two-sidedness in quantum mechanics

In the first place, in quantum mechanics, electrons have both wave-like and particle-like properties. For example, a device called SQUID designed from the wavelengths there is applied as a device candidate for high-sensitivity magnetic sensors and quantum computers.

Josephson is also conducting research on cold fusion. He and even he continues his quest beyond the framework of science. It is said that Schrödinger, Niels Bohr, Pauli and others were also interested in Josephson’s quest, but he challenged the consideration of consciousness in the boundary area of ​​”physics”, “life” and “chemistry”. I’m out.

Josephson’s creed

According to Josephson, [(he believes in the Royal Society’s founding motto nullius in verba), “even if scientists deny an idea as a whole, that idea is unreasonable. Rather, we should carefully examine the basis of such claims and determine how much scrutiny they can withstand. “・ Source ・ Wikipedia】 I personally support that direction. There is no way to end a mysterious reality with an occult story. If we admit that the phenomena that are considered incomprehensible now have a causal relationship, but human knowledge is not perfect, I think that it is the correct figure to face them seriously and elucidate them.

に投稿 コメントを残す

村上陽一郎_
3/16改訂【楽器を愛したクリスチャン文化人|思想家|文化論】

「村上陽一郎」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
村上陽一郎が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 – 1827年3月26日)

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

科学史・科学哲学入門
【スポンサーリンク】
【1936年9月9日生まれ-(ご存命中)】

日本での論壇を率いた村上陽一郎

村上洋一郎は日本の論壇を率いた方で、
別途ご紹介している広重 徹

共著で著作を沢山残しています。

 

ペスト大流行
【スポンサーリンク】

 

専門は物理学史 、科学哲学 、安全学と多彩に表現出来ますが、
昨今はコロナで『ペスト大流行』の著書が取りあげられること
があります。科学者として試行錯誤する様子を分析・解説しています。
村上陽一郎をクリスチャンとして理解すると一貫性をもって、
その人生が理解できます。国際基督教大(ICU)で式典
開かれた際には美智子皇后も参列されたそうです。
秋篠宮家からICUに御通学される時代へと繋がっていく話だといえます。
また、物理学者には楽器が好きな人が結構居るのですが、村上洋一郎も高校時代からチェロを好みます。私も研究室のT君が楽器を抱えて研究室を出入りしていたのを思い出してしまいました。ボルツマン_もアインシュタインも音楽をたしなみました。結構あるある話です。 

村上陽一郎と音楽

物理学者は一人での思索の時間を多く持ち、人との話し合いの時間も持ちます。音楽に没頭する時間と、それぞれの時間は少しずつ重なっている気がするのです。音楽のリズムと理論構築のリズム、及びその構築には共通点があります。アインシュタインの言葉に曰く
「 The most beautiful thing we can experience is the mysterious,
it is the source of the all TRUE art and science 」

話し戻して、村上洋一郎の活動は多岐にわたります。河合隼雄と文化論に対して議論を交わし仕事を残したり、高橋義人とグノーシス(キリスト教と教義体系が異なる宗教です)の教えを語り合ったり、ユングやパウリの訳を日本に紹介したりしていました。其々の御人柄・人生を知れば知るほど共鳴している部分が分かってきて面白い筈です。そして、村上洋一郎はラッセルやケプラーを論じて啓蒙活動を進めました。

以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2022/01/03_初稿投稿
2024/03/16_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2022年8月時点での対応英訳)

Yoichiro Murakami, who led the forum in Japan

Yoichiro Murakami is the leader of the Japanese discourse, and has left many books co-authored with Tetsu Hiroshige, which is introduced separately.
His specialty can be expressed in various ways such as history of physics, trial and error, philosophy of science, and safety, but when understood as a Christian, he can understand his life consistently. Empress Michiko was also present when the ceremony was held at International Christian University (ICU). I think this is a story that will lead to an era when the Akishinomiya family goes to school at ICU. Also, some physicists like musical instruments, but Yoichiro Murakami has also liked the cello since high school.

Yoichiro Murakami and music

Under such circumstances, he also has time to think and talk with people. I feel that the time spent in music and the time spent in each time overlap little by little. The rhythm of music, the rhythm of theory construction, and their construction have something in common. According to Einstein’s words
“The most beautiful thing we can experience is the misterious it is the source of the all TRUE aet and science” Returning to the story, Yoichiro Murakami’s activities are diverse. He discussed cultural theory with Hayao Kawai and did his work, talked with Yoshito Takahashi about the teachings of Gnosticism (a religion with a different doctrinal system from Christianity), and introduced the translations of Jung and Pauli to Japan. I was doing it. The more you know each person’s personality and life, the more you will understand the parts that resonate with each other, which should be interesting. Then, Yoichiro Murakami discussed Russell and Kepler and proceeded with his enlightenment activities.

に投稿 コメントを残す

ムツゴロウさん【本名:畑 正憲】
3/15改訂【動物王国の主で九州男児の東大卒】

東大

こんにちはコウジです!
「ムツゴロウさん」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ムツゴロウさんが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 – 1827年3月26日)

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

ムツゴロウの青春記
【スポンサーリンク】
【1935年4月17日生まれ -2023年4月5日没】

 ムツゴロウさんの人生

2023年4月5日に87歳で亡くなられたばかりです。

お悔やみを申し上げると共に、ムツゴロウさんの

一面を紹介したいので投稿します。

私は少年時代に面白い人生だと思いました。

ムツゴロウさんという愛称で知られて

いますが、中身は九州男児です。

大分県でバンカラな青春時代を過ごします。

私はその様子をムツゴロウさんの著書である

「ムツゴロウの青春期」で読みました。

ムツゴロウさんが高校時代に今の奥様に出合い結ばれる様子

生き生きと描かれ、同時に東京大学を目指し

猛勉強する様子が描かれていました。

若き日のムツゴロウさん

ムツゴロウさんが九州で高校生活を送っていた時代に

「君等が知っちょるか知らんか(私は)知らんが」

という口癖の先生が居て、
物理学への魅力を伝えていて、
若き日のムツゴロウさん達が集まって
話を聞いていて、
友達同士で話して共鳴して奮起するストーリー
だったかと思います。そしてムツゴロウさんは猛勉強するのです。
小説の終わりでは東京大学に合格するのです。

後で時間を作りムツゴロウの青春期に続く著作の結婚紀、冒険記等も読んでみたいと思っていますが、ムツゴロウさんは東京大学を卒業後に文筆での人生を選び、当時の学研社で活動を始めます。そこに至るまでに色々と考えたと思います。

東大で在学中には駒場寮で暮し、医学・動物学・等を学びます。そもそも物理学科という呼び方ではなく東大はⅠ類・Ⅱ類・・・と分けていたので(私が知ってた時代。)対象が無機質の剛体であろうがアメーバであろうが研究対象といえば研究対象な訳です。最高学府の頂点として東大は様々な学科を少数精鋭で網羅しています。そもそも微視的な視点に立ち見てみたら其々に性質があり、寿命があるのです。

「意志を持ってるかもしれないアメーバ」

だったり

「デコヒーレンスしていく量子素子」

を研究している訳です。そんな見方も出来ますよね。
話戻ってムツゴロウさんですが、もっと時間をとって調べて書き足していきたいです。彼の人生は喜びと失望に満ちています。徹夜でマージャンをしたり(プロ級の腕前)、事業で破産をしたり、お子さんの性格で思い悩んだりしていました。そんな中でムツゴロウさん突き進んでいました。いつまでも見続けていたい生き様でした。
訃報を聞き非常に残念です。

ムツゴロウさんには
6億円あると言われていた借金がありましたが、
それも全て返済して晩年まで動物に関わっていました。
リンク:有限会社ムツ牧場

2023/9/5に発売される
「ムツゴロウさんの最後の動物回顧録」
の発売に合わせて日経新聞に回顧録が掲載されて
ました。
ライオンに食いちぎられた指で最後の原稿を書いていた
そうです。「学びたい!!」「伝えたい!!」
という情熱が伝わってくる人でした。 



【スポンサーリンク】

以上、間違い・ご意見は
次のアドレスまでお願いします。
問題点には適時、
返信改定を致しします。

nowkouji226@gmail.com

2020/11/14_初稿投稿
2024/03/15_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Mutsugoro’s life

2021/08/21 I am sorry that I am alive as of now, but I would like to introduce one side of Mr. Mutsugoro, so I will post it.
I thought it was an interesting life when I was a boy.

Known by the nickname of Mr. Mutsugoro, the contents are Kyushu boys. He spends his youth in Oita prefecture. I read the situation in Mr. Mutsugoro’s book “Mutsugoro’s Youth”. It was a lively picture of Mr. Mutsugoro meeting his current wife in high school, and at the same time, a picture of studying hard toward the University of Tokyo.

Young mudskipper

There was a teacher who had a habit of saying, “Do you know or don’t know (I) don’t know?”, Telling the charm of physics, and young mudskippers gathered and listened. I think it was a source of excitement by talking with friends and resonating with each other. And study hard.

Later, I would like to make time to read the marriage history and adventures of Mutsugoro’s youth, but Mr. Mutsugoro chose his life as a writer and started his activities at Gakken at that time. I think he thought a lot before he got there.

At the University of Tokyo, I live in Komaba Dormitory and study medicine, zoology, etc. In the first place, the University of Tokyo is not called the Department of Physics, but it is divided into Class I, Class II, etc. (the era I knew). That’s why.

As the pinnacle of the highest school, the University of Tokyo covers various departments with a small number of elites. In the first place, if you look at it from a microscopic point of view, each has its own characteristics and has a limited lifespan. I am studying “amoeba that may have a will” or “nucleus that has a half-life”. You can see that as well.

Returning to the story, Mr. Mutsugoro, I would like to take some time to investigate and add. Because his life was full of joy and disappointment. Under such circumstances, Mr. Mutsugoro was pushing forward. I feels that he is a way of life that he wants to keep watching for a while.

Mr. Mutsugoro had a debt that was said to be 600 million yen, but he repaid all of it and he is still involved in animals.
Link: Mutsu Ranch Co., Ltd.

に投稿 コメントを残す

J・J・サクライ
3/14改訂【ハーバードを首席で卒業し、夭折てしまった天才物理学者】

BERKELEY, CA -

こんにちはコウジです!
「J・J・サクライ」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
J・J・サクライが生まれた頃、ベートーベンはもう居ません。

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

現代の量子力学
【スポンサーリンク】
【1933年1月31日生まれ ~ 1982年11月1日没】

Jサクライとアメリカ

Jサクライの日本語表記は

「桜井純」で日本の東京生まれの人です。

私が使っていていた教科書でカタカナ表記でしたので個人的には
カタカナ表記がしっくりきて、好きです。ミドルネームに由来する
と思われますが、
もう一つ「J」をつけて記載する事が多いです。
何故ミドルネームがJなのかは未だ調べています。

(以下、少し呟いてみます)よく言及されるのですが、英国の物理学者J・J・トムソンを真似て「J」に由来するという一説があります。ただ、科学史の観点から私は納得いきませんでした。

「電子線を考え抜いたトムソン(別途、トムソン卿って人が居ます)」と「相互作用に対して考え抜いていた桜井さん」は物凄く似通った所があるのですが、それを裏付ける一次情報が得られていないのです。探すことに時間を使わない言い訳としては、桜井さんは日本での活躍が少なく、夭折してる(早くに亡くなっている)という事情もあって日本における交流が少ないと予想出来るからです。仮にご家族が追記集をまとめたりしていたら読んでみたいのですが、そういう類の話も聞きません。

そもそも、そういった話が聞かれない時点で仮に、
ご遺族が居たとしてもJJサクライの「J」についての由来は明らかにしたくないと
考えている場合も予想されるからです。
追及点を掘り下げる際の
科学史での難しい所を実感しました。
(そして、文字を小さくして呟いてみました)

いずれにせよJJサクライの響きは良いですね。

JJサクライは新制高校に在学していた16歳の時に留学生選抜試験に合格し、アメリカに渡りました。学問好きの少年だったのでしょう。その後、ニューヨークにある高校を卒業した後に、ハーバードを主席で卒業しています。

JJサクライと弱い力

その後、JJサクライはコーネル大の大学院で研究を進め、在学中に弱い相互作用の考えを提唱しています。彼の研究では弱い相互作用と強い相互作用が出てくるので少し言及します。そもそも自然界には4つの力があると言われていて、ここでの2つは4つの内の2つなのです。


初学者は4つの力を考える時に「力の働く範囲



力の大きさ」を別々に把握しないといけません。

 

具体的に弱い力(相互作用)は、働く範囲が陽子直径より小さいのです。また、素粒子や準粒子がボゾンを交換して相互作用する中で、弱い力は強い力や電磁学に比べて大きさが数桁小さな力として作用します。 

弱い相互作用は標準模型での全てのフェルミ粒子とヒッグスボソンに作用します。フェルミ粒子とボーズ粒子を合わせて「素粒子」と呼びますが、相互作用の議論では素粒子間に働く力が議論されるのです。 

特にニュートリノは重力と弱い相互作用のみを使って相互作用します。弱い相互作用は束縛状態をもたらしません。重力が天文学的スケールで月と地球の間の相互作用に関与していたり、電磁力が原子間レベルで互いに力を与えあったりする束縛状態とは異なります。また、弱い相互作用とは違い強い核力は原子核の内部で非常に強い束縛状態を持ちます。別言すれば、弱い相互作用は結合エネルギーに関与しません。

まとめると、
素粒子間に働く「強い」・「弱い」の二つの力に加えて
重力と電磁相互作用で働く二つの力を考えた時に
「4つの力」がとして表現されるのです。
夫々の力は独自のメカニズムで働きます。

JJサクライの突然の他界 

JJサクライはこうしたメカニズムを

深く研究していきました。

そして49歳で突然、他界してしまいました。

少し調べてみましたが、その死因に対しては

情報が残されていません。何はともあれ、

惜しい人材を失ったこととなり残念です。

4つの力の理解と加速器を初めとした応用研究は未だ
続いています。次々問題が出てきます。
そんな議論に
参加して欲しかったです。
謹んでご冥福をお祈り致します。

合掌。



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2020/11/11_初稿投稿
2024/03/14_改定投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介

日本関連のご紹介
アメリカ関連のご紹介へ

UCBのご紹介
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

J Sakurai and America

The Japanese notation for J Sakurai is “Jun Sakurai”, a person born in Tokyo, Japan. She used katakana notation in the textbook I was using, so I personally like the katakana notation. She seems to be derived from her middle name, but she is often listed with another “J”. I’m still investigating why her middle name is J.

(Hereafter, I will mutter a little) There is a theory that it is derived from “J” by imitating the British physicist JJ Thomson. However, I was not convinced from the perspective of the history of science. “Thomson who thought out the electron beam (I’m Sir Thomson separately)” and “Mr. Sakurai who thought out about the interaction” have very similar points, but I got the primary information to support it. I haven’t.

As an excuse not to spend time searching, Mr. Sakurai is less active in Japan, and she is dying (she died early), so it can be expected that there will be little interaction in Japan. Because. I would like to read it if my family is compiling a collection of additional notes, but I do not hear such stories.

In the first place, it is expected that he does not want to clarify the origin of JJ Sakurai’s “J” even if there is a bereaved family at the time when such a story is not heard. I realized the difficult part in the history of science when digging into the pursuit point. (And she tried to make the letters smaller and muttered)

In any case, the sound of JJ Sakurai is good.

JJ Sakurai passed the international student selection test at the age of 16 when he was in a new high school and went to the United States. He must have been an academic boy. Then, after he graduated from high school in New York, he graduated from Harvard as chief.

JJ Sakurai and weak force

Since then, JJ Sakurai has been conducting research at Cornell University’s graduate school, advocating the idea of ​​weak interactions while still in school. I will mention a little because his research shows weak and strong interactions. It is said that there are four powers in the natural world in the first place, and the two here are two of the four.

When considering the four forces, beginners must grasp the “range of force” and the “magnitude of force” separately.

Specifically, the weak force has a working range smaller than the proton diameter. In addition, while elementary particles and quasiparticles exchange bosons and interact with each other, weak forces act as strong forces or forces that are several orders of magnitude smaller than electromagnetics. Weak interactions affect all fermions and Higgs bosons in the Standard Model.

Fermions and bosons are collectively called “elementary particles”, but in the discussion of interactions, the forces acting between elementary particles are discussed. Neutrinos in particular interact only with gravity and weak interactions. Weak interactions do not result in bound states.

This is different from the bound state where gravity is involved in the interaction between the Moon and the Earth on an astronomical scale, and electromagnetic forces exert forces on each other at the interatomic level.

Also, unlike weak interactions, strong nuclear forces have a very strong bound state inside the nucleus. In other words, weak interactions do not contribute to binding energy. JJ Sakurai has studied these mechanisms in depth. And at the age of 49 he suddenly passed away. He did some research, but no information was left about the cause of death. Anyway, it’s a pity that he lost a regrettable talent.

Sudden Last of JJ 

Understanding of the four forces and applied research including accelerators are still ongoing. Problems come up one after another.

He wanted me to participate in such a discussion. It was

We sincerely pray for your souls.

Gassho.

に投稿 コメントを残す

ロジャー・ペンローズ
3/13改訂【ブラックホールにおける特異性を示しノーベル賞を受賞】

こんにちはコウジです!
「ペンローズ」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ペンローズが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 – 1827年3月26日)

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

皇帝の新しい心
【スポンサーリンク】
【1931年8月8日生まれ ~ (ご存命中)】

 芸術家肌のペンローズ

 

その名はロジャー・ペンローズ
;Sir Roger Penrose OM FRS。
英国の物理学者ですが、

まだご存命の方なので

簡単に取り上げたいと

思います。有名人の

ブライアンとは少し

系統が違う気がするのです。


(芸能系ではない

純理論の学者さんです。

ムツゴロウさんとも

雰囲気が違いますね)

ロジャー・ペンローズは精神科医にして遺伝学者の父を持ち、
父方母方共に沢山の学者、芸術家がいる家庭に生まれました。
ロジャー自身も学者としてケンブリッジに進みます。

1994年にはナイトに叙せられています。また、
ホーキングと共にブラックホールにおける特異点を示し、
後に2020年のノーベル賞を受賞します。授賞理由は
「ブラックホールと相対論の関係」に対しての評価でした。

 ペンローズの研究業績

研究業績で気になってしまうのは認識に関する仮説に関してです。脳内での活動については個人的に昔から気になっている部分ではあるのですが、ロジャー・ベンローズの話の展開に、ほんの少しの違和感を覚えるのです。

ロジャーの主張は著書:皇帝の新しい心_で示されているのそうですが脳内の情報処理には量子力学が関わる。即ちユニタリー発展(U)と波束の収束(R)が含まれている仮定のもとに、片方のRに対する議論が欠けているという立場で話を進めているのです。

無論、脳内の活動は大きさスケールで考えた時に量子力学の対象となると思えます。脳内の伝達物質の一つは情報を与える電子であったりするからです。

その系統の話をきちんと読み通してはじめて分かる話なのか、
考え落としを含んでいる危うい話なのか、失礼ながら
気になってしまうのです。

本稿の中で私が使っている「違和感」が本物の違和感なのか
取り越し苦労の違和感なのか確かめたいと思います。
その意味で非常に興味深いです。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/07/02_初回投稿
2024/03/13_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリスのご紹介へ
ケンブリッジのご紹介へ
力学関係のご紹介
量子力学関係
AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Artist skin pen rose

Its name is Roger Penrose OM FRS.

He’s a British physicist, but he’s still alive, so I’d like to take a quick look. He feels a little different from the celebrity Brian.

(I’m a non-entertainment scholar of pure theory. The atmosphere is different from that of Mr. Mutsugoro.)

Roger Penrose was born into a family with a psychiatrist and geneticist father, and many scholars and artists on both his paternal and maternal sides. Roger himself goes to Cambridge. He, along with Hawking, showed his singularity in black holes and later won the 2020 Nobel Prize. The reason for his award was his appreciation for the relationship between black holes and relativity.

Penrose research achievements

What is worrisome about his research achievements is the cognitive hypothesis. I’ve always been concerned about activities in the brain, but I feel a little uncomfortable with the development of Roger Ben Rhodes’ story. The claim is shown in Roger’s book: The Emperor’s New Heart, but quantum mechanics is involved in information processing in the brain. That is, under the assumption that unitary development (U) and wave packet convergence (R) are included, we are proceeding from the standpoint that there is a lack of discussion on one R. I’m rude and worried whether it’s a story that can only be understood by reading through the story of that system properly, or a dangerous story that includes oversight. I would like to confirm whether the “uncomfortable feeling” I use in this article is a genuine uncomfortable feeling or a discomfort of having a hard time moving. In that sense, it’s very interesting.

に投稿 コメントを残す

ロバート・シュリーファー
3/12改訂【超電導を理論化したBCS理論を提唱】

University of Chicago

こんにちはコウジです!
「シュリーファー」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
シュリーファーが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 – 1827年3月26日)

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

超伝導の理論
【スポンサーリンク】
【1931年5月31日 ~ 2019年7月27日】

 BCS理論を構築したシュリーファー

BCS理論を作った3人の中の一人が

シュリーファーであって、

BCS理論でのSはシュリーファのSです。

BCS理論自体の説明は他のメンバーである
バーディーンクーパーのご紹介の中で
解説していますので繰り返しません。
超伝導を微視的に解説した理論です。

 シュリーファーと超電導の研究

シュリーファは少年時代は手作りロケットを制作したり、アマチュア無線が好きだったりする電子工学好きな少年でした。そんなシュリーファはMIT(マサチューセッツ工科大学)で半導体の研究を当初進めていました。特に半導体表面での電子の振る舞いを研究していたのです。そして後に超伝導現象の研究に移ります。

シュリーファ達がBCS理論をまとめた後、世界での研究は常温での超伝導実現に向けた研究が進んでいます。常温高圧環境下で現象を起こしたりする試みがなされていて、マイナス百数十ケルビンまで転移温度は近づいてきています。

現実には実現が難しい様な高圧をかけた時に、常温で超電導現象が実現した報告もあります。私が研究していた時代には青学の秋光先生や東工大の細野先生が挑んでいました。

それぞれご存命かと思われますので詳細は控えます。

科学史と言うより最前線に近いかと思えますので。

ご本人達にしてみれば

「今でも研究してますよ!」って気持ちも

あるのではないかとと思えるのです。

 シュリーファーの晩年

話し戻って、シュリーファは1957年から米国代表の立場で英国バーミンガム大学とコペンハーゲンのボーア研究所で超電導の研究を続けています。そして残念な事に、晩年に自動車事故を起こし人を殺めてしまい、懲役を課されています。カリフォルニア州サンディエゴにある刑務所で懲役に服しました。

素晴らしい研究のセンスとうっかりミスを犯してしまう性格は共にシュリーファの人生に影響を与えました。出来れば緊張感を持って生活を送って頂きたかったです。こんな話をするのは事故当時シュリーファは免許停止中だったからです。立場のある人間であれば尚更、責任を持った行動が求められます。

それだから、この話を知ってとても残念です。バーディン教授の人を集める性格とシュリーファー教授の人を遠ざけてしまう性格は対象的に思えてしまうのです。

バーディンは仲間とトランジスタを開発して、別途BCS理論をつくりあげて仲間の輪を広げました。その過程で出会った日本人、中嶋貞雄をアメリカに呼んで、もてなしていたりします。朗らかなアメリカ人のイメージです。

反面、シュリーファーは立派な立場をいくつも受けた後に人を殺めてしまいました。朗らかなアメリカ人として単純に語れない人生です。こんな話を我々は大きな教訓として考えるべきだと思います。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2020/09/17_初稿
2024/03/12_改定

舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
イギリス関係のご紹介へ
オランダ関係のご紹介へ
熱統計関連のご紹介
量子力学関係
AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Schrieffer of BCS theory

One of the three who created the BCS theory is Schrieffer, and the S in BCS theory is Schrieffer’s S.

Research on Schrieffer and superconductivity

When he was a boy, Shrifa was a boy who loved electronics, making handmade rockets and ham radio. Such Schrifa was initially conducting research on semiconductors at MIT (Massachusetts Institute of Technology). He was especially studying the behavior of electrons on the surface of semiconductors. And he later moved on to study superconducting phenomena.

After Schrifa et al. Summarized the BCS theory, research in the world is progressing toward the realization of superconductivity at room temperature. Attempts have been made to cause phenomena in a normal temperature and high pressure environment, and the transition temperature is approaching to minus one hundred and several tens of Kelvin.

There is also a report that the superconducting phenomenon was realized at room temperature when a high voltage that was difficult to realize in reality was applied. When I was studying, Professor Akimitsu of Seigaku and Professor Hosono of Tokyo Institute of Technology were challenging. I will refrain from detailing each of them as they may be alive. I think it’s closer to the front line than the history of science. For the people themselves, I think they may have the feeling that they are still researching!

Schrieffer’s later years

Returning to the story, Schrifa has been studying superconductivity at the University of Birmingham in the United Kingdom and the Bohr Institute in Copenhagen since 1957. And unfortunately, in his later years he had a car accident, killed a person and was sentenced to imprisonment. He was sentenced to jail in San Diego, California. Both his great sense of research and his inadvertent mistaken personality have influenced Shrifa’s life. He wanted him to live a life with a sense of tension if possible. I tell this story because Shrifa was out of license at the time of the accident.

If you are a person in a position, you are even more required to act responsibly.
So I’m very sorry to know this story. The character of gathering Professor Bardeen and the character of keeping Professor Schrieffer away seem to be symmetrical. Bardeen developed a transistor with his companions and created a separate BCS theory to expand the circle of his companions. I invite Sadao Nakajima, a Japanese who I met in the process, to the United States for hospitality. It is an image of a cheerful American. On the other hand, Schrieffer killed a person after receiving several good positions. It’s a life I can’t talk about as a cheerful American. I think we should consider this story as a big lesson.

に投稿 コメントを残す

有馬朗人_
3/11改訂【ゆとり教育の推奨|複雑な原子核の状態を簡易に数式化】

東大

こんにちはコウジです! 「有馬朗人」の原稿を改定します。
今回の主たる改定はAI情報の再考です。
また、 有馬朗人が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 – 1827年3月26日)

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。
そして記述に誤解を生む表現がないかを チェックし続けてます。
ご意見・関連投稿は歓迎します。

大学貧乏物語 【スポンサーリンク】 【1930年9月13日 ~ 2020年12月6日】

 有馬氏へお悔やみ

東大学長を務めた有馬朗人氏が

2020/12/8に亡くなりました。享年90歳。

謹んでお悔やみを申し上げます。

有馬朗人は原子核物理学の世界で業績をあげ、
特に 有馬・堀江理論(配位混合の理論)、
相互作用するボゾン模型の提唱、 クラスター模型への貢献、
の3つの業績が大きな業績です。

有馬朗人の業績

特に相互作用するボゾン模型は有馬朗人が
オランダの研究機関に居た
1974年に発表していて、 別名で

「相互作用(する)ボソン近似」の名で

ご存知の方も多いのではないでしょうか。
粒子の入れ替えに対して波動関数の符号が
反転しない対象粒子に対して、
いわゆる
「第二量子化」された時の議論で
有馬朗人の考えた近似は使われます。

以上の説明は一般の人には分かりづらいかもしれませんが 原子核の状態を記述するには古典的な(ニュートン的な)記載 では不十分で、波動関数を使うだけではなくて群論や 電磁気的な側面を考慮して議論を進めていきます。

そして、有馬さんは現象を嚙砕いて数式化して 難しい原子の世界を簡単な数式で表現したのです。 

また、政界においても活躍され、 特にゆとり教育の推奨が知られています。 有馬朗人が勧めたかった当初の教育は 世界史と日本史を共に学ぶ事で 知識をより豊かに身に着けていく様な 試みであって、現場に話が伝わった時点では 全く別の解釈として伝わっていました。 有馬朗人はその解釈を非常に 遺憾に感じて居たようです。

他にも色々と語りたかったでしょう。 ご冥福をお祈りします。

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、 返信・改定をします。

nowkouji226@gmail.com

2020/12/07_初稿投稿
2024/03/11_改定投稿

【スポンサーリンク】

(旧)舞台別のご紹介 纏めサイトTOP舞台別のご紹介時代別(順)のご紹介 日本関連のご紹介 東大関連のご紹介

AIでの考察(参考)

(2021年11月時点での対応英訳)

Condolences to Mr. Arima

Akito Arima, the president of the University of Tokyo, died on December 8, 2020. He is 90 years old. We would like to express our deepest condolences. Akito Arima has made great achievements in the world of nuclear physics, and is particularly famous for his three achievements: Arima-Horie theory (theory of mixed coordination), proposal of interacting boson models, and contribution to cluster models.

Achievements of Akito Arima

In particular, the interacting boson model was announced by Akito Arima in 1974 when he was at a research institute in the Netherlands, and many of you may know it under the alias of “interacting boson approximation”. ..

Akito Arima’s approximation is used in the discussion of so-called “second quantization” for objects whose wavefunction signs do not invert with respect to particle replacement. It was

It is also active in the political world, and is especially known for recommending Yutori education. The initial education that Akito Arima wanted to recommend was an attempt to acquire more knowledge by studying both world history and Japanese history, and when the story was conveyed to the field, it was a completely different interpretation. It was transmitted as. Akito Arima seems to have felt very regretful about his interpretation.

He would have wanted to talk a lot more. He prays for souls.