2023年9月14日2023年9月3日に投稿 投稿者 元)新人監督 — コメントを残す久保 亮五9/14改訂【線形応答理論を使ったフーリエ変換NMR理論を展開】 こんにちはコウジです! 「久保 亮五」の原稿を改定します。 今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。 初見の人が検索結果を見て記事内容が分かり易いように再推敲します。SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを チェックし続けてます。ご意見・関連投稿は歓迎します。 【スポンサーリンク】 【1920年2月15日生まれ ~ 1995年3月31没】物理学者久保亮五久保亮五と同名(漢字違い)の別人が居ますが、 以下記載は物理学者に関する文章で、ここでの 久保亮五は統計力学で私が使った教科書の著者です。私の指導教官は久保先生の講義を受けていたそうです。 そんな時代の物理学者についての記載です。久保亮五は学者肌の家で育ち、お父様の仕事で 子供時代には台湾で生活しています。高校まで 台湾で過ごし、帰国後に旧制高校へ入学、 東大へ入学、その後に助手、助教授、教授をつとめました。久保亮五の業績 久保亮五の仕事で何より特筆すべきは物性論での成果です。 ゴムの弾性に関する研究と、線形応答理論を使った フーリエ変換NMRへの応用研究があげられます。久保亮五の基礎理論を構築したNMRの概説を 一般の人向けに記してみたい と思います。先ずフーリエ変換理論は端的には 「時系列の波形を周波数を基準に考えた 波形に変換して解析する技術」です。そうした「数学的に確立されているフーリエ変換」 を理論的基礎として電子回路で応用されています。 離散化された電気信号に対して回路上で 実質的にマトリクス変換を加えます。久保亮五とNMR 診察で実際にNMRを使った経験のある人はNMRの中で 測定を受けている時を思い出してみてください。 頭の中を調べる時などに、強磁場を人間の頭部に 二次元的に与えます。その時に大きな音がしますが、 音がしている時に「時系列でインパルス的な情報」 を機械的に処理して「周波数応答に関する情報」を得ます。作業として、吸収スペクトルを測定することで 各スピンの情報を集め、そこから最終的には 断面の画像を処理します。最終的な写真で見える画像は、 これらの処理の結果です。そして今、久保亮五はこの世に居ませんが、 その仕事を応用したNMRは世界中の病院で 患者達の情報を集めています。きっと今、 この瞬間も医療行為の中 NMRの機械が動いています。【参考:東大理学部での退官当時の広報】〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近全て返事が出来ていませんが 全て読んでいます。 適時、改定をします。nowkouji226@gmail.com2020/10/11_初稿投稿 2022/09/14_改定投稿(旧)舞台別のご紹介 纏めサイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 日本関連のご紹介 東大関連のご紹介 力学関係のご紹介へ 熱統計関連のご紹介へ【このサイトはAmazonアソシエイトに参加しています】(2021年11月時点での対応英訳)Physicist Ryogo KuboThere is another person with the same name (different Chinese characters) as Ryogo Kubo, but the following is a sentence about a physicist, and Ryogo Kubo here is the author of the textbook I used in statistical mechanics. My supervisor took a lecture. This is a description of physicists of that era. Ryogo Kubo grew up in a scholarly-skinned house and lived in Taiwan as his childhood for his father’s work. He spent his time in Taiwan until high school, and after returning to Japan he entered a high school, the University of Tokyo, and then an assistant, associate professor, and professor.Achievements of Ryogo KuboThe most notable thing about Ryogo Kubo’s work is the result of condensed matter theory. His research on the elasticity of rubber and his applied research to Fourier transform NMR using linear response theory can be mentioned. I would like to write an overview of NMR that Ryogo Kubo thought about for the general public. First of all, the Fourier transform theory is simply “a technology that converts a time-series waveform into a waveform that is considered based on frequency and analyzes it.” Such “mathematical established Fourier transform” is applied in electronic circuits as a theoretical basis. Substantially matrix transformation is applied on the circuit to the discretized electrical signal.Ryogo Kubo and NMRIf you have actually used NMR in a medical examination, remember when you were taking measurements in it. A strong magnetic field is applied to the human head two-dimensionally when examining the inside of the head. There is a loud noise at that time, but the impulse-like information is mechanically processed in that time series to obtain information on the frequency response. As a result, the information of each spin is collected by measuring the absorption spectrum, and finally the image of the cross section is processed from there. The image you see in the final photo is the result of these processes.And now, Ryogo Kubo is not in the world, but NMR, which applies his work, collects information on patients at hospitals around the world. I’m sure I’m collecting this moment as well.〆
2023年9月13日2023年9月15日に投稿 投稿者 元)新人監督 — コメントを残す大森賢治氏が冷却原子方式に挑む【超電導の実現へ向けて新しい方式を提案】 はじめに本稿は2023年9月13日の日経新聞に掲載された記事を骨子として、 著者であるコウジ独自の関心に従い追記した内容となっています。量子コンピュータの実現へ量子コンピューターの実現に向けて 各国が独自の技術を競い合う中で、 単一原子 に着目した 原子冷却方式と呼ばれる 方式に 日本の技術者が挑戦しています。アメリカの学会で 成果を発表したところ 反響著ししく、 新たな成果が期待されています。米ロードアイランド州のサルベレジーナ大学で 開かれた量子制限に関する研究会で、 日本人の大森賢司さんが議長を務めました。この合同研究かは 90年以上の歴史を持ち 特にジョン・マスティース米カリフォルニア 大学教授 ら 著名な学者が参加していることで有名です。今回160人の規模で会議が開かれています 大森さんらが手がける冷却原子方式の量子コンピューターは 実用化で先行する超電導方式、光方式に続く 第3の量子コンピューターと呼ばれています。マティニス教授も絶賛昨年8月に 大森教授らが開発した 研究成果を マティニス教授は 主に評価しています。 計算速度を上げるためにゲート操作時の 原子間の距離を十分に近づける事が必要なのに対して 超高速のパルスレーザーを照射するという 独自の方式で実現した結果です。操作スピードは従来方式に比べ2桁早くなり Google が超電動方式で2020年に発表した記録を しのいでいます。どこにメリットがあるか第1のメリットとしては現在主流となってる超伝導方式の 量子コンピューターと異なり冷却器が不要という点です。 装置が必要で稼動できるということが大きな特徴です。 新しい方式では大規模化が難しく好ましい量子状態が 長時間維持できるという所が大きな特徴です。また大規模化が容易で量子状態を長時間維持できる 特徴があります。ただし計算する時の冷凍操作に 時間がかかることが大きな問題点でした。卓越したアイディア2010年頃に大森教授が各界で評価を受けた内容は「通常のコンピューターのように電荷で情報を担う」のではなくて波動関数が情報の担い手として活躍する仕組みです!!超高速の分子コンピューターと呼ばれます。分子にアト秒間隔で2つのレーザーパルスを与え反応を見ます。1アト秒とは100京分の1秒、一秒間に地球を7周半の距離を進む光がやっと0.3 nm 進めるくらいの非常に短い時間です。その感覚で情報を与える仕組みが波動関数に影響を与えます。その他の量子コンピュータ前日した光学方式は技術として先行しており研究成果が多数あります。 また理科学研究所で導入しているような量子ビット方式のコンピューターは マイナス百ケルビン以下に冷却する必要があり 計算組織を 適切な状態に維持することはとても難しいです。また計算時間の 十分な 確保も大きな課題です。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2023/09/13‗初稿投稿旧舞台別まとめへ 舞台別のご紹介へ 時代別(順)のご紹介 力学関係へ 電磁気関係へ 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】
2023年9月13日2023年9月2日に投稿 投稿者 元)新人監督 — コメントを残すアイザック・アシモフ9/13改訂【「ロボット3原則」で有名なSF作家】 こんにちはコウジです! 「アシモフ」の原稿を改定します。 今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。 初見の人が検索結果を見て記事内容が分かり易いように再推敲します。SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを チェックし続けてます。ご意見・関連投稿は歓迎します。 【スポンサーリンク】 【1920年1月2日 ~ 1992年4月6日】アシモフの人物像今回、少し物理から離れます。アシモフは「ロボット3原則」で有名なSF作家です。具体的に3原則とは、第1条:ロボットは人間に危害を与えてはならない。 また、その危険を看過することによって人間に危害を及ぼしてはならない.第2条:ロボットは人間に与えられた命令に服従しなければならない。第3条:ロボットは前掲第1条及び第2条に反する恐れがない限り、 自己を守らなければならない。となります。悪い人が善人を攻撃しなさいと命じたらどうなるか? と考えていくと議論のネタになるのですが、 そうした考察を現代の我々は当然していかなければ いけない段階に来ています。 鉄腕アトムも色々と悩んでいましたよね。最近のウクライナ紛争ではドローンが強力な兵器となり、 白兵戦での戦局に影響を与えています。平和利用として地雷探査ロボが活躍していますが、 殺傷能力を持ったロボットが戦う日も想定できます。 ロボットの動きは性格で素早いので殺傷能力が どこまで期待できるのでしょう。怖いことです。何故ならロボットに殺されていく貧しい国の人々が 想像出来るからです。尚更無念な死が現実として 迫ってきているのです。 過去に、人類は核兵器を具現化して 暗黒の歴史を作りました。悲劇は繰返しありません。実際のアシモフの研究分野としては生化学なのですが、 作家としての顔の方が有名ですね。また調べてみるとアシモフはロシア生まれでした。 リニアモーターカーが走る今日の世界を見せてあげたいと、 個人的には考えてしまいます。また、もはやロボットも日常的ですよね。そんな未来をアシモフは20世紀の初めにに予見していました。20世紀の知見で機械化が進む未来を描き、進んだら どうなるだろうと考えますが、好ましい方向性を指摘して 大衆に問いかける。つまり、科学の夢を投げかけていたのです。アシモフの作家デビューアシモフは1938年に初めてのSF作品を雑誌に持ちかけて認められ、 1939年から作家デビューしています。才能を認めるアメリカっぽいですね。 この年にコロンビア大学を卒業して大学院に進みます。所謂、ロボット三原則などを提唱していますが、 時代は第二次大戦に向かう時代でアシモフは学校を休学したりしています。科学が知識を集めるスピードの速さにアシモフは驚愕していて、 社会が叡智を集結する事を求めていました。 相変わらず分断している世界をどう見るのでしょうか。意外な結末そして、意外な最後なのですが、アシモフは1992年にHIV感染が元でこの世を去ってます。心臓バイパス手術の時に使用された 輸血血液が感染源のようです。本当に色々と経験してきた人生だったと思います。〆【スポンサーリンク】〆以上、間違い・ご意見は 次のアドレスまでお願いします。 最近は返信出来ていませんが 全てのメールを読んでいます。 適時返信のうえ改定を致しします。nowkouji226@gmail.com2020/08/24_初回投稿 2023/09/13_改定投稿舞台別のご紹介へ 時代別(順)のご紹介 アメリカ関連のご紹介へ【このサイトはAmazonアソシエイトに参加しています】(2021年11月時点での対応英訳)Asimov’s portraitThis time, I’m a little away from physics. Asimov is a science fiction writer famous for “Three Laws of Robotics”. Biochemistry is the actual research field of Asimov, but his face as a writer is more famous. When I looked it up, Asimov was born in Russia. He personally wants to show us the world of today’s maglev trains. Also, robots are no longer commonplace. Asimov foresaw such a future in the 20th century. He envisions a future of mechanization with his knowledge of the 20th century, and wonders what will happen if it progresses, but he points out a favorable direction and asks the public. In short, he was throwing a dream of science.Asimov’s writer debutAsimov was recognized for his first science fiction work in a magazine in 1938, and has made his debut as a writer since 1939. He’s like America, who recognizes his talent. He graduated from Columbia University this year and went on to graduate school.He advocates the so-called Three Laws of Robotics, but Asimov is taking a leave of absence from school in the era of World War II. Asimov was amazed at the speed at which science gathered knowledge, and he wanted society to gather wisdom. How does he see the world that is still divided?Unexpected endingAnd, surprisingly, Asimov died in 1992 due to HIV infection. He seems to be infected with the transfused blood used during heart bypass surgery. I think he really had a lot of experience in his life.
2023年9月12日2023年8月31日に投稿 投稿者 元)新人監督 — コメントを残すR・P・ファインマン9/12改訂【天才|経路積分やファインマンダイヤグラムを考案】 こんにちはコウジです! 「ファインマン」の原稿を改定します。 今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。 初見の人が検索結果を見て記事内容が分かり易いように再推敲します。SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを チェックし続けてます。ご意見・関連投稿は歓迎します。 【スポンサーリンク】 【1918年5月11日 ~1988年2月15日】アメリカのファインマン有名な教科書の著者で、私が学生時代からその著書は 日本で使われていました。世界中でその教科書は使われています。 またファインマンは量子電磁気学の業績で 朝永 振一郎と共にノーベル賞を受賞しています。。具体的に、ファインマンの名を聞いて 真っ先に思い出す業績は経路積分です。 数学的な定式化が驚異的なのです。 【参考_Wikipedeiaの記載:経路積分】その発想はとてもユニークだとも言えます。経路積分の考え方二つの経路を初めに考えて、其々からの寄与を 考えていく時に拡張が出来て二つ、三つ、四つ、、、 そして無限大の経路。と経路を 無限大に広げていくのです。もう少し具体的にファインマンの考えを紹介しますと、 ダブルスリットの実験を拡張した場合に何も無い空間 を考える事になっていくという考え方なのです。この経路に関するファインマンの考え方には数学的な難点 も指摘されているようですが物理の世界では非常に面白い 考えであり、考え進めていきたい視点です。また、素粒子の反応を模式化したファインマンダイアグラムは 視覚的に、直感的に秀逸です。本当に天才の技に見えました。業績の話が先行しましたが、最後に 生い立ち,人つながりの話を致します。ファインマンはユダヤ系なので苦労を強いられています。 ユダヤ人枠で大学に入れなかったりした時代もありました。 後にMITやプリンストン大学で研究を進めます。電気力学の量子論についてのゼミをプリンストン大学で 行うことになった時には、ゼミの話を聞きつけて ユージン・ウィグナー、ヘンリー・ノリス・ラッセル、 フォン・ノイマン、E・パウリ、アインシュタイン が参加していたそうです。天才大集合ですね。そして、ファインマンはアインシュタインと共に 原爆開発の計画であるマンハッタン計画に参画しています。その中で、率直に意見を述べたメモが 没後の2018年にサザビースで落札されています。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては適時、 返信・改定をします。nowkouji226@gmail.com2020/09/01_初版投稿 2023/09/12_改定投稿纏めサイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 アメリカ関係のご紹介へ 電磁気関係へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】(2021年11月時点での対応英訳)American FeynmanHe is the author of a well-known textbook, and his book has been available in Japan since I was a student. The textbook is used all over the world. He has won the Nobel Prize with Shinichiro Tomonaga for his achievements in quantum electrodynamics. .. Specifically, the first achievement that comes to mind when I hear Feynman’s name is path integral.The mathematical formulation is amazing. [Reference_Wikipedeia description: Path integral]Concept of path integralTwo, three, four, … infinite routes that can be expanded when considering the two routes first and then the contributions from each. And expand the route to infinity. To introduce Feynman’s idea a little more concretely, the idea is that if we expand the double-slit experiment, we will think of an empty space. It seems that Feynman’s way of thinking about this path has some mathematical difficulties, but it is a very interesting idea in the world of physics, and I would like to continue thinking about it. In addition, the Feynman diagram, which models the reaction of elementary particles, is visually and intuitively excellent. It really looked like a genius.I talked about achievements first, but at the end I will talk about how I grew up and how people connect. Feynman is struggling because he is Jewish. There was a time when he couldn’t enter university because of the Jewish quota, but he pursued research at MIT and Princeton University. When it was decided to hold a seminar on quantum theory of electromechanics at Princeton University, Eugene Wigner, Henry Norris Russell, von Neumann, E. Pauli, and Einstein were attending the seminar. is. Feynman and Einstein are participating in the Manhattan Project, a plan to develop the atomic bomb. Among them, a memo that frankly expressed his opinion It was sold at Sotheby’s in 2018 after his death.〆
2023年9月11日2023年8月30日に投稿 投稿者 元)新人監督 — コメントを残すD・J・ボーム_9/11改訂【マンハッタン計画に参画しボーム解釈を提唱】 こんにちはコウジです! 「ボーム」の原稿を改定します。 今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。 初見の人が検索結果を見て記事内容が分かり易いように再推敲します。SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを チェックし続けてます。ご意見・関連投稿は歓迎します 【スポンサーリンク】 【1917年12月20日 ~ 1992年10月27日】 ペンシルバニアに生まれたボーム細かく記載すると、その名は、デヴィッド・ジョーゼフ・ボーム_David Joseph Bohm、ヘブライ語表記ではדייוויד ג’וֹזף בוֹהם, דוד יוֹסף בוֹהם。偶然でしょうがボームはロシア革命の年に生まれてます。 そんな時代背景もボームの人生に影響を残しているのでは ないでしょうか。ハンガリー系ユダヤ人の父と リトアニア系ユダヤ人の母の間に ペンシルベニア州で生まれ、 UCB(カリフォルニア州立大学バークレー校)で オッペンハイマーの教えを受けます。そんな時期に学生時代に当時の知人の影響で 思想的に影響を受け、異なった社会モデルを持つ 急進的な主義の考えをボームは抱きます。 後にはその為にFBIにマークされたりします。 マンハッタン計画とボーム第2次世界対戦の時にはボームは師であるオッペンハイマーに従いマンハッタン計画に参加します。その計画は陽子と重陽子の衝突研究を進め、濃縮ウランを作り原爆を製造する計画で実行に移されました。戦後、ボームはプリンストン大学でアインシュタインと共に働いていましたが、いわゆるマッカーシズム(政治的な圧力)にあい、プリンストン大学を追われます。社会主義者としての過去の活動を当局に問題視されたのです。アインシュタインはボームに彼の助手として大学に残る事を勧めました。ところが、その願いは叶わずにボームはブラジルのサンパウロ大学に移りました。少し島流し的な印象を持ってしまいます。菅原道真公の左遷も思い起こされます。研究者としてボームは幾多の成果を残しています。先ず量子力学の解釈の面でボーム解釈。EPRパラドックスの確認。そして、電磁気学でのA-B効果です。 それぞれ問題の本質をとらえようと考え続けていたように思えます。こうした業績で、その分野の考えに 今でも残る影響を与えています。【スポンサーリンク】〆間違い・ご意見は 以下のアドレスまでお願いします。 最近全て返事が出来ていませんが 全て読んでいます。 適時、改定をします。nowkouji226@gmail.com2020/10/31_初稿投稿 2023/09/11_改定投稿纏めサイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 アメリカ関係のご紹介へ 電磁気関係へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】Baume born in PennsylvaniaTo be precise, its name is David Joseph Bohm, in Hebrew notation דייוויד ג’וֹזף בוֹהם, דוד יוֹסף בוֹהם.Coincidentally, Baume was born in the year of the Russian Revolution. I think that such a historical background has also influenced Baume’s life. Born in Pennsylvania to a Hungarian Jewish father and a Lithuanian Jewish mother, he is taught by Oppenheimer at the UCB (University of California, Berkeley). At that time, Baume embraced the idea of radicalism, which was ideologically influenced by his acquaintances at the time when he was a student and had a different social model. He was later marked by the FBI for that.Manhattan Project and BaumeDuring World War II, Baume follows his teacher Oppenheimer to participate in the Manhattan Project. The plan was put into practice with a plan to produce enriched uranium and produce an atomic bomb by proceeding with research on the collision of protons and deuterium. After the war, Baume worked with Einstein at Princeton University, but was ousted from Princeton University due to so-called McCarthyism. His past activities as a socialist were questioned by the authorities. Einstein advised Baume to stay in college as his assistant. However, that wish did not come true and Baume moved to the University of Sao Paulo in Brazil.As a researcher, Baume has made many achievements. He first interprets Baume in terms of the interpretation of quantum mechanics. Proposal of the EPR paradox. And the AB effect in electromagnetism. It seems that each of them kept trying to capture the essence of the problem. These achievements still have an impact on his thinking in the field.。
2023年9月10日2023年8月29日に投稿 投稿者 元)新人監督 — コメントを残す矢野 健太郎9/10改訂【数々の数学書を監修|「解法のテクニック」の著者】 こんにちはコウジです! 「矢野 健太郎」の原稿を改定します。 今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。 初見の人が検索結果を見て記事内容が分かり易いように再推敲します。SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを チェックし続けてます。ご意見・関連投稿は歓迎します。 【スポンサーリンク】 【1912年3月1日生まれ ~ 1993年12月25日没】矢野健太郎の多彩な活躍矢野健太郎は私が使っていた数学の教科書の著者でした。 同名の方で漫画家の「矢野健太郎」と サッカー選手の「矢野健太郎」が居ますが、 本稿は数学者の矢野健太郎に関する原稿です。因みに、名前の「矢野」に関するエピソードとして 有名なものがあります。外人との雑談をする中で 「矢野」って英語でいえばどんな表現? と聞かれた際に矢野さんは当意即妙で 矢野さんは次のように答えました。「矢」=「Vector」、「野(野原)」=「Field」。だから「矢野」って「ベクトル場」ですね。そう答えたそうです。当然、外人は大喜び。専門は幾何学関係か解析学関係だったかと。彫刻家の子として生まれ東京帝大で学びます。矢野健太郎とパリ大学矢野健太郎の小学生時代にアインシュタインが来日し 健太郎は刺激を受けました。また、 帝大の山内恭彦先生から物理学の理解には 代数幾何学が必要だと教えを受けました。物理現象のモデル化の有用性を感じた筈です。 その後、矢野はカルタン先生の下で学ぶべく パリ大学へ留学します。パリ大学で纏めた博士論文は 射影接続空間に関する論文でした。この頃から統一場理論にも関心を持ちます。 矢野健太郎とアインシュタイン戦後にはプリンストン高等研究所で微分幾何学の研究 をしていき、同時期に在席していたアインシュタインと交流 を持ちます。奥様と一緒にアインシュタインが写った写真は 大事にしていて、家宝としたそうです。 その他、矢野健太郎の著作は多岐に渡り、受験参考書の定番だった(今でも定番)「解法のテクニック」は矢野健太郎の著作です。また、アイザックアシモフ、ポアンカレ、アインシュタイン の書物を日本に紹介する際に監修をしたりしました。私や皆さんが知った情報も矢野健太郎 の仕事かも知れませんね。そんな、矢野健太郎はバイオリンが好きな静かな人でした。安らかな印象を持ち続けたいと思います。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 この頃は全て返信できていませんが 頂いたメールは全て見ています。 適時、返信・改定をします。nowkouji226@gmail.com2020/11/12_初稿投稿 2023/09/10‗改定投稿(旧)舞台別のご紹介 纏めサイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 日本関連のご紹介 東大関連のご紹介 力学関係のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】Various activities of Kentaro YanoKentaro Yano was the author of the textbook I was using. There is a manga artist “Kentaro Yano” and a soccer player “Kentaro Yano” who have the same name, but this article is about the mathematician Kentaro Yano. By the way, there is a famous episode about the name “Yano”. What kind of expression is “Yano” in English while chatting with foreigners? When asked, Mr. Yano was selfish “Arrow” = “Vector”, “Field (field)” = “Field”, so “Yano” is a “vector field”. I heard that he answered. Naturally, foreigners are overjoyed. Was my specialty related to geometry or analysis? He was born as a child of a sculptor and studied at the University of Tokyo.Kentaro Yano and the University of ParisKentaro Yano was inspired by Einstein’s visit to Japan when he was in elementary school. Also, Professor Yasuhiko Yamanouchi of Imperial University taught me that algebraic geometry is necessary to understand physics. It seems that he found the usefulness of modeling physical phenomena. After that, Yano will study abroad at the University of Paris to study under Professor Cartan. His dissertation he compiled was a dissertation on the projective connection space. From this time on, he was also interested in unified field theory.Kentaro Yano and EinsteinAfter the war, he studied differential geometry at the Princeton Institute for Advanced Study and interacted with Einstein, who was present at the same time. He cherished the photo of Einstein with his wife and made it a heirloom.Kentaro Yano has a wide variety of authors, and Kentaro Yano’s “Solution Technique”, which was a staple of examination reference books. He also supervised the introduction of Isaac Asimov, Poincaré and Einstein’s books to Japan. The information that I and everyone knew may be Kentaro Yano’s work. Kentaro Yano was a quiet person who liked the violin. He wants to keep a peaceful impression.〆
2023年7月23日2023年9月17日に投稿 投稿者 元)新人監督 — コメントを残す摩擦の物理の再考【揺動散逸定理とか熱雑音とかデコヒーレンスとか】 摩擦の歴史摩擦の歴史は古いです。古代から続くモデルとして 熱さの発生と凹凸のある表面での摩擦面での微小な 部分の変形を考えていったのです。その後、 ニュートンによる力の定式化や、熱力学での 熱とエネルギーの相互の定式化が進み 一定の定式化と応用がされていきました。揺動散逸定理アインシュタインが1905年の革新的な 論文ラッシュの中でブラウン運動を定式化 していき静止した液体中での粒子の不規則な 運動が摩擦として働く運動を定式化しました。 具体的には D を粒子の拡散係数、μ を移動度とした時の関係を しめします。ここでのμは外力F に対する粒子の終端ドリフト速度 vd の比 μ = vd/F として表現されています。この時、D = μkBT となります。熱雑音アインシュタインより少し後の時代、 情報理論でナイキストの定理として知られている 法則を確立したナイキストが自由電子の不規則な運動 に対して熱がどう関わるかを定式化しました。 電流が無い場合に自由電子が雑音として作用して 静電圧に対して、その二乗平均電圧 ⟨V 2⟩ が考察できます。 更に電気抵抗 R 、と上記のボルツマン定数、温度との関係として<V^2> = 4R KBTΔVデコヒーレンス量子的エンタングルメントを実現している状態が 壊れていく様子も今後議論されていくと思われます。〆以上、間違い・ご意見は 以下アドレスまでお願いします。 この頃は全て返信できていませんが 頂いたメールは全て見ています。 適時、返信・改定をします。nowkouji226@gmail.com2023/07/23_初回投稿(旧)舞台別のご紹介 纏めサイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 日本関連のご紹介 東大関連のご紹介 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】
2023年7月18日2023年8月5日に投稿 投稿者 元)新人監督 — コメントを残すサイトポリシー【位置づけと今後の記事の方向性を考察します。また、物理学の理解をより明確にします】 きっかけとブログの志向サイトポリシーを定めとよう、と考えた始めは 「質量」に対しての再考がきっかけです。 MKS単位系を学校教育の中で学んでいった筆者が 大学・大学院と学び続ける中で時間、距離、 電荷、質量、誘電率、密度、と様々な概念を 理解していく中で知識が再構築されていき もう一度考えてみたくなったのが「質量」なのです。自分の娘を抱きしめている時を思い出し、 電子であれ、二体問題の重心であれ、存在を実感 しながら理解を確かめられるパラメターが質量だと考えます。強い力・弱い力、電磁力がニュートン【N】で表されて 1キログラムに対して。どんな割合で考察できるかを 基本として理解します。きっと、 色んな予備知識を持った読者諸氏と共通の認識で 文章を作り、読んで頂ければ共通認識が確認出来るでしょう。私のブログは議論の為の場であるべきだと考えています。 それだから「知っているよ!」という知識だけではなく 多様な最新の知識を含めて情報拡充していきます。ブログの立場と想定読者このブログでは20世紀初頭における科学史の発展に焦点を当てていますが、個別の発展、成果を追いかけられる事を目指していますいます。その流れで原論文を読みこなす読者も念頭に置いていますし、ざっくりとした話の流れだけでも分かれば良い読者も想定しています。筆者が関心のある物理学の分野特に近年、筆者は量子コンピュータに大きな関心を持っています。コプレイナーを始めとして様々な関連技術が興味深いです。先に明言しましたが物理的実態として質量を私は重視しています。それだからスピンであれ磁場であれパラメターを生み出すハードウェア関心の焦点を置きます。今現在の関心事はQUBIT同士のもつれ合いが中心です。その他、一般的な注意事項・本サイトへのお問い合わせを通じて得た、お名前、 メールアドレス、年齢、住所などの個人情報は厳密に管理し いかなる理由があっても第三者に明かしません。・Google などの第三者配信事業者が Cookie を使用して、ユーザー殿が そのウェブサイトや他のウェブサイトに過去にアクセス した際の情報に基づいて広告を配信します。・Google が広告 Cookie を使用することによりユーザーが そのサイトや他のサイトにアクセスした際の情報に基き、 Google やそのパートナーが適切な広告をユーザーに表示します。・本サイトは上記Cookieを使用した広告配信を想定し、 ユーザーは使用端末の設定に従って広告配信を 制限・無効化出来るものとしています。・ユーザーは本ブログの情報で不利益があっても 本ブログは責任を負いません。無論、全てに対して責任放棄する訳ではありません。議論に対しては誠意対応致します。・本ブログ内の情報は議論の対象となるものが含まれています。 不本意ながら間違った発言も含まれるものとします。 その際も改善に向け議論し続けます。・画像・文章に対しては著作権を認め、 無断での転載を慎みます。このポリシーに反して 意図せず著作権や肖像権を侵害してしまった 場合は事実に対して速やかに対処します。最後に連絡先と返信までの想定期間 以上、間違い・ご意見は 以下アドレスまでお願いします。 この頃は全て返信できていませんが 頂いたメールは全て見ています。 適時、返信・改定をします。 返信期間は大よそ営業日を想定していますが 時間がかかりそうな場合は一報します。nowkouji226@gmail.com2023/07/18_初回投稿 2023/08/05_改定投稿(旧)舞台別のご紹介 纏めサイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介【このサイトはAmazonアソシエイトに参加しています】
2023年7月15日2023年7月15日に投稿 投稿者 元)新人監督 — コメントを残す【TOPIC】これまでの高温超伝導体は乱れていたことが判明しました(モット絶縁体相極近傍での現象) 発見のメンバー東京大学 物性研の黒川 氏、近藤 師、 +東京理科大の磯野氏、常盤師 の研究グループが今回の発表での主要メンバーです。 長年の常識と違う角度で「問題を深堀していこう」 という研究成果となります。柏にある物性研究所で思いついたのですが、 理科大は野田にキャンパスがありますね。 今回の発表とは全く関係ありませんが、近い!! 偶然でしょうが。そういえば本郷と後楽園も近い!! 偶然でしょうが。 そうして考えていくと御茶ノ水女子大も 将来的に絡んできそうですね。 どうでも良いですが。。。発見の意義さて、今回の発表での対象となる物質は 「銅酸化物」です。 酸化銅に微量のイットリウムや ビスマス系の化合物を加えて 結晶構造が特徴的となる点に 「現象の理由」があるのではないか と思っていました。なにより転移温度が比較的高い高温超伝導体の メカニズムが数十年来の実験の 焦点となっていたと思われます。 どうして転移温度が高温(それでも氷点下です) となるのか メカニズムが説明できていませんでした。超電導現象自体はBCS理論を使って理路整然と 説明が出来ていて転移温度が説明できて ボーズ凝縮とのクロスオーバーが論じられます。所が「ゆらぎ」に関する理論は明快に 取り入れられていなかった と言えるのではないでしょうか。発見のポイント注目すべきは銅酸化物高温超伝導体におけるモット絶縁体相の極近傍での現象です。東大物性研のホームページによると【以下、太字部が引用】 「電荷が微少かつ均一に分布する乱れの無い 極めて綺麗な結晶面を見出し、その電荷の振る舞いを解明した。」「モット絶縁体に注入される電荷が限りなく微少 であっても長寿命の粒子が生成され、自由に動き回れる」本来。キャリアが無い状態で反強磁性モット絶縁体である 銅酸化物高温超電導体においてCuO2面の状態を「均一(なめらか)」 にしていく事でエネルギーギャップの問題を解決していき 「電荷が自由に動き回れる」状態を実現しています。今後の展開今回の発表の意義は 「銅酸化物高温超伝導体での電子相図を綺麗にしていく事」だと言えます。今までの電子相関図が「乱れたも」ものだと考えなおすことで 問題を解決していこうという試みです。実際に今まで蓄積された 知見の数々を実証していく事で研究が進んでいく事が期待されます。〆以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2023/07/15‗初稿投稿旧舞台別まとめへ 舞台別のご紹介へ 時代別(順)のご紹介【このサイトはAmazonアソシエイトに参加しています】
2023年7月10日2023年7月18日に投稿 投稿者 元)新人監督 — コメントを残す共鳴現象(音叉や2つのコイル)とエンタングルメントの比較7/12改訂 共鳴とエンタングルメント先ず何より、本件は思い付きの域を出ないかもしれません。ご了承下さい。 共鳴現象とエンタングルメントを比較します。剛体共鳴電磁気共鳴エンタングルメント事例波紋電磁場Qudit介在物媒質電磁場環境のセッティングこうした比較は現象理解をしていくうえで大事になる時があります。 エンタングルメントは電磁場とは明らかに異なります。 一瞬にして情報が伝わるのです。音叉の共鳴の原理剛体同士の共鳴として音叉の共鳴状態を考えます。この時は 音波Aが振動して別の所にある音叉Bも振動を始めます。 介在するのは二つの音叉の間にある空間で空気の振動が振動を伝えます。大事なポイントは音叉の機器と空間の相性です。 より高い音の方が空気中を伝わりやすく、 別の音叉に影響を与えます。電磁共鳴の原理電磁共鳴の例として二つのコイルが共鳴している 状態を考えます。例えば近年ではワイヤレス給電 を考えたりしていますね。具体的なモデルを考えていくと 電力供給側の装置にあるコイルが磁界を作り、 電力を受ける装置内のコイルが磁界を受け 電力を受ける装置内で電力を発生する仕組みです。考えているモデルではエネルギー供給側の装置と エネルギー受領側の装置は空間的に離れていて 電磁場を使って電力の情報が伝わります。 エーテル問題が論じられていたように 電磁場の伝搬には媒質は全く必要なく 真空中であっても電磁場は伝わっていきます。 電磁場の理論形成において何との対応があった 事実はとても有益だったと言えますね。エンタングルメントの原理エンタングルメントの例として二つの量子ビットQUBITを考えます。何より明記したいポイントエンタングルメント検出には統計情報が大事だという点です。 比較表の中では環境のセッティングと書きましたが 「幾つかの量子系が観測にかかる設定」 がエンタングルメントを作ります。本稿での主題の一つは共鳴との比較ですが共鳴現象では 媒質が役割を果たすのに対してエンタングルメントでは 適切な環境であれば、観測が行われた時点で 遠隔地での情報が確定します。 量子テレポーテーションという言葉でも議論されています。〆テックアカデミー無料体験 【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 時間がかかるかもしれませんが 必ず返信・改定をします。nowkouji226@gmail.com2023/07/10_初稿投稿 2023/07/28_改定投稿纏めサイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】