に投稿 コメントを残す

和達清夫
2/5改定【マグニチュードの概念を考え始めて、気象台長を務めた】

東大

こんにちはコウジです!
「和達清夫」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
和達清夫が生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 – 1827年3月26日)

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

自然の恵み
【スポンサーリンク】
【1902年(明治35年)9月8日 – 1995年1月5日】

愛知県に生まれた和達(わだち)清夫は和達三樹のお父様です。
(和達三樹の名は教科書でおなじみなのではないでしょうか)
和達清夫は地球科学に足跡を残し、特に気象学や地震学で
有名です。いわゆる「マグニチュード」の概念は和達清夫の研究が
ヒントとなったと言われています。

個々の地点で感じられる(観測される)
「震度」に対して地震そのものの大きさ(震源地での大きさ)を
表す指標が「マグニチュード」です。

マグニチュードの概念はその後、地震が起きるたびに活用されて
非常に重宝な概念として使われています。あたり前に使われています。
先進的な研究を続けて震源の深さから範囲も考えてマグニチュード
の概念に至ります。

地震について更に深く考えてみたいと思います。
今では子供でも知っていますが地震は波で震源から
遠ざかれば遠ざかる程に減衰します。

そして具体的には初期微動と本震から構成され(P波とS波から構成され)、
其々が 振動数と振幅を持ちます。
2つの構成波が、それぞれパラメターを持つのです。

そもそも和達清夫の博士論文は
「Shallow and deep earthquakes」
でした。

和達清夫の経歴を振り返れば、

東京帝國大学理学部物理学科を卒業

後に中央気象台に勤務していきます。

気象台では第6代気象台長を務めました。

和達清夫の時代から物理学が

実学として活用されていきます。

地球物理学を実務に適用したのです。

和達清夫は気象観測の黎明期において

指導的な役割を果たしました。

1960年から(第5代)日本学術会議議長

(第17代)日本学士院院長、

埼玉大学学長、日本環境協会会長

などを歴任しました。

和達清夫は1985年には

文化勲章を受勲しています。

そして92歳で亡くなっています。

 



テックアカデミー無料メンター相談
【スポンサーリンク】

〆最後に〆

以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。、

nowkouji226@gmail.com

2022/10/07_初回投稿
2024/02/05_改訂投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

 (2021年10月時点での対応英訳)

Wadachi Kiyoo born in Aichi is father of Miki Wadachi.(whether the name of Miki Wadachi is not familiar with a textbook)
Kiyoo Wadachi leaves a footprint for earth science and is famous for meteorology in particular and seismology.

It is said that a study of Kiyoo Wadachi became the hint as for the concept of so-called “magnitude”. Whenever an earthquake gets up afterwards, the concept of the magnitude to express size (size at the epicenter) of the earthquake itself for “the seismic intensity” that is felt to be individual points (is observed) is utilized and is used as a very useful concept. It is used in front of the area.
Wadachi continue an advanced study and think about the range from the depth of the seismic center and lead to a concept of the magnitude.

In the first place the doctoral dissertation of Kiyoo Wadachi
“Shallow and deep earthquakes”
I did it in this.

If look back on a career of Kiyoo Wadachi, Tokyo emperor country University department of science physics subject

After graduating from this, the Central Meteorological Observatory works.

Wadachi acted as Mayor of the sixth meteorological observatory in the meteorological observatory.

Physics is utilized as practical science from the times of Kiyoo Wadachi.

Wadachi applied geophysics to business.

Kiyoo Wadachi played a leading role in the dawn of the weather observation.

In 1960 (the fifth) Chairperson of Science Council of Japan (the 17th) Japan Academy’s director,

Wadachi successively held Saitama University’s president, Japanese environmental association’s chairperson.

As for Kiyoo Wadachi, Conforment of honor is doing the Order of Culture in 1985.

Wadachi die at 92 years old.

 

に投稿 コメントを残す

ポール・ディラック
2/4改定【数々の数学と逸話を生んだケンブリッジの天才】

こんにちはコウジです!
「ディラック」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、
ディラックが生まれた頃、ベートーベンはもう居ません。
(彼の人生は1770年12月16日頃 – 1827年3月26日)

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

超関数入門
【スポンサーリンク】
【1902年8月8日生まれ ~ 1984年10月20日】

無口なディラック

イギリスのディラックは

とても謙虚で無口な人でした。

ノーベル賞が決まった際には、

有名になる事を恐れて受賞の辞退を

考えていた様です。そんな人なのですが、

20世紀初頭の天才達がひしめく中で

エーレンフェストボーアパウリ、 

ファインマンハイゼンベルクシュレディンガーなど

と量子力学を確立します。特にシュレディンガーとは

同じタイミングでノーベル賞を受賞します。

ディラックの人柄を考えるにあたり少し、

その家族について言及します。

ディラックが10代後半の時期にスイスから

家族は国籍を移しています。そしてディラックの

性格形成を語っていく上で家庭環境は大きな要素

だったようです。まず1924年にディラックの

兄が自ら命を断っています。

色々考えた末だったのでしょうか。

ディラック自身も、その父と会話し辛い

場面が多々あったようです。そして、

極端に無口な人になっていったようです。

ディラックと数学

しかしディラックは、闇に沈まずに数学を駆使して
輝かしい成果を残しています。

特にデルタ関数やブラケット記法は素晴らしいのです。
独自の足跡を沢山残しました。

デルタ関数は超関数の仲間で積分を使って定義されます。

多分野で有用である関数ですが、物理の分野では観測に伴い、

波束が収束する様子が表現出来るのです。

数学上ではヘビサイド関数を表現出来ます。
現象は捉え方次第で色々な観測が出来て
周波数軸の観点で物事を考える時と
実座標軸(長さの観点)で考える時と
数式上の表現が異なります。
工学的にこの視点を応用した解析も
実用上で非常に便利に利用されていて
市販品のアナライザーで簡単に
業務解析をする事が出来ます。

ブラケット記法とは日本語で「括弧」
の記号を使った表記です。その定式化では
カギカッコ<>の形の 「<」 の部分
だけを「ブラベクトル」と呼び
カギカッコ<>の形の 「>」 の部分
だけを「ケットベクトル」と呼びます。

非常に分り易い表現でブラの部分がベクトル量
に相当してケットの部分が、
それと作用するベクトル量に相当する定式化です。

作用する前のケットが固有値を持つ場合に
固有状態を持つと表現されます。

そしてなんと、ケット・ブラの順番で並べると
その塊は行列相当の働きをします。
なんとも見事な定式化です。
数学の素養があれば上記文章が味わえます。
そして凄さが伝わるはずです。
あえて言葉にすることで数学の凄さが伝わります。

ここでのベクトルがヒルベルトベクトル(無限次元に対応)
であることが学部時代の私にとって感動的でした。
一瞬にして物理量に対応する状態が記述された気がしました。

一次元が線で、二次元が平面で、三次元が立体空間だ
というくらいしか想像がつかなかった高校時代から
想像は大きく膨らみ、いきなり無限次元に話が拡張したのです。

一つのベクトルが多くの情報を担います。
他方でデルタ関数は観測が一瞬にして
波束の収縮を引き起こす様子を表現していると思います。

こうした定式化をディラックは進め、
理論から提唱される物質を考え出しています。

具体的に反物質と呼ぶ存在がいくつも提唱され、
見つかっています。反物質は寿命が通常の物質より
若干短かったりしますので日常的ではありませんが、
粒子の生成消滅を論じたりする際に大事な要素です。

陽子には反陽子があり中性子には反中性子があります。

ディラック来日

そして、何よりディラックは無口な人です。

多くの成果を出していく中で各国の物理学会で招待する
動きがあって日本にも来ていたようです。

ただ性格が性格でですので余り逸話が残っていません。
「仁科さんとお茶飲んだ時に・・・」みたいな話が
残っていないのです。無論、歳下の朝永さんとか湯川さんは
尚更の事、話しづらかったと思えます。

話しかけても無言だったのでしょう。
多分オランダでも日常会話はほとんどなかったと思われます。
私見では「彼は言葉をとても大事に使いたがります。」
そして出てくる言葉が綺羅星だったり残念だったりします。

ディラックの笑い話

そんなディラックについて伝わっている有名な話があります。
ディラックの無口な性格を表す逸話です。

周りの人々が奇妙に思いながらも尊重していた様子が伺えます。
ケンブリッジでは「1Dirac」という単位を使われていました。
仲間内での意味としては

「1Word/1Hours」が「1Dirac」に相当して
一時間あたりに単語二つを使ったら「2Dirac」消費
されたとして換算されました。

ディラックは一時間に数Dirac程度しか言葉を残さなかったそうです。 

その他、ディラックに対する逸話

ディラックの人柄を感じさせる暖かいやりとりです。
例えば以下。

⓪1928年の春ライデンに居た頃に…すぐに答えが出ない
 ような質問があった。ディラックは黒板に非常に小さい文字で
 それをかくすようにしてすばやく計算した。それを見て 
 エーレンフェストは興奮して「彼が実際にどうやって研究を
 するか垣間見ることが出来る!」といった。しかし、
 みんながそれをよく見ない内にディラックは直ぐにその計算を消して
 何時ものスタイルでエレガントな表式を書き進めた。
(以上、カシミールの経験)
①ディラックは「パウリには一個の砂糖で十分だと思う」と言った。
 しばらくして「誰にも一個の砂糖で十分だと思う。」
 更にしばらくして
「一個で十分なように砂糖は作られていると思う。」
(こればボーアがカシミールに話したことだという。
②ディラックと研究所の図書館の脇で立ち話をしている
 時のことです。仁科はディラックに 貴方の論文には
 符号の誤りがあるのをみつけました。」と言ってから、
 次のような会話が仁科とディラックの間で交わされました。
 ディラック「しかし結果は正しいですよ。」
 それに対して仁科は「では二つあやまりがあるにちがいありません。」
 するとディラック「偶数個の過ちがあるといわなければなりませんね。」
③1933年のボーア・コンファレンスで恐らくディラックだけが
 エーレンフェストの相当なうつ状態に気付いていた。その事を
 心配してボーア夫人に話したが、誰も何もできなかったという
 (後にボーア婦人がカシミールに話したこと。)エーレンフェストが
 命を絶ったのはそのすぐ後であった。

 

 伝統を受け継ぐディラック

しかし、そんなディラックは真面目な性格、心を重んじる性格
もあって周囲から大事にされていた様子が伺われます。

本ブログのTOP画面で使っている集合写真でも
真ん中の列の中央に居ます。若き天才ディラックに
アインシュタインキュリー夫人が気を遣って
「君の研究は素晴らしい。これからも頑張って下さいよ!」
といった気持で尊重しているような気がするのです。

そして、写真の真ん中にニュートンの伝統を受け継ぐ
ケンブリッジで研究をするディラックが居て、共に
時代を重ねていくパウリハイゼンベルクが居るのです。

そして、
ディラックはイギリスの伝統を受け継いだ人でもあります。
ケンブリッジではルーカス教授職を務めました。

この名誉は初代・アイザック・バローから始まり
二代目・アイザック・ニュートンと続き、ディラックが継ぎ、
最近では宇宙論で名を成したS・W・ホーキング博士
が受け継いでいます。


【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2020/08/17_初稿投稿
2023/08/08_改定投稿
2024/02/04‗改訂投稿

舞台別のご紹介へ
時代別(順)のご紹介へ

イギリスのご紹介へ
ケンブリッジのご紹介へ
オランダ関係の紹介へ
ライデン大学のご紹介へ

アメリカ関連のご紹介へ
熱統計関連のご紹介
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

Quiet Dirac

Dirac in England was a very humble and reticent person. When the Nobel Prize was decided, he seemed to be thinking about declining the award for fear of becoming famous. Although he is such a person, he establishes quantum mechanics with Feynman, Heisenberg, Schrodinger, etc. in the midst of the geniuses of the early 20th century. In particular, he won the Nobel Prize at the same time as Schrodinger. In considering Dirac’s personality, I would like to mention his family for a moment.

His family transferred nationality from Switzerland when Dirac was in his late teens. And it seems that the family environment was a big factor in talking about Dirac’s personality formation. First, in 1924, Dirac’s brother died himself. Was he the end of many thoughts? It seems that Dirac himself had many difficult conversations with his father. And he seems to have become an extremely reticent person.

Dirac and math

However, Dirac has achieved brilliant results by making full use of mathematics without sinking into the darkness. Especially the delta function and bracket notation are great. I left a lot of such footprints.

The delta function is a family of generalized functions defined using integrals. It is a useful function in many fields, but in the field of physics, it is possible to express how the wave packet converges with observation. Heaviside functions can be expressed mathematically. Various observations can be made depending on how the phenomenon is perceived, and the mathematical expression differs between when thinking about things from the perspective of the frequency axis and when thinking from the perspective of the actual coordinate axis (from the perspective of length). Analysis that applies this viewpoint engineeringly is also very convenient in practical use, and business analysis can be easily performed with a commercially available analyzer.

Bra-ket notation is a notation that uses the “parentheses” symbol in Japanese. In that formulation
Only the “<” part in the shape of the key bracket <> is called the “bra vector”.
Only the “>” part in the shape of the key bracket <> is called the “ket vector”.
The bra part is a vector amount in a very easy-to-understand expression
The part of the ket corresponding to is the formulation corresponding to the amount of vector acting on it.

Eigenstate and dirac

It is expressed as having an eigenstate when the pre-acting ket has an eigenvalue. It was impressive to me when I was an undergraduate that the vector here is a Hilbert vector (corresponding to infinite dimensions). I felt that the state corresponding to the physical quantity was described in an instant. From high school, when I could only imagine that one dimension was a line, two dimensions were a plane, and three dimensions were a three-dimensional space, my imagination expanded greatly, and the story suddenly expanded to infinite dimensions. One vector carries a lot of information. On the other hand, I think that the delta function expresses how the observation causes the wave function collapse in an instant.

Dirac is proceeding with this formulation and has come up with substances proposed by theory. A number of specific antimatter entities have been proposed and found. Antimatter is not routine because it has a slightly shorter lifespan than normal matter, but it is an important factor when discussing the formation and annihilation of particles. Protons have antiprotons and neutrons have antineutrons.

Dirac visits Japan

And above all, Dirac is a reticent person. While he has produced many achievements, he seems to have come to Japan as he was invited to the Physical Society of Japan. He just doesn’t have much anecdotes because he has a personality. There is no such thing as “when I drank tea with Nishina-san …”. Of course, it seems that Mr. Tomonaga and Mr. Yukawa, who are younger, were even more difficult to talk to.

He would have been silent when he spoke. Perhaps there was little daily conversation in the Netherlands. In Cambridge, the unit “1 Dirac” was used. As for the meaning within the group, “1 Word / 1 Hours” is equivalent to “1 Dirac”, and if two words are used per hour, it is converted as “2 Dirac” consumed. Dirac left only a few words per hour.

However, it seems that such Dirac was taken care of by the people around him because of his serious personality and personality that does not deceive people. The group photo used on the TOP screen of this blog is also in the center of the middle row. I feel that Einstein and Mrs. Curie care about the young genius Dirac and respect him with the feeling that “Your research is wonderful. Please continue to do your best!”

And Dirac is also a man who inherited the British tradition.
He was a Lucas professor in Cambridge. This honor begins with the first Isaac Barrow, continues with the second Isaac Newton, and has recently been inherited by Dr. SW Hawking, who has made a name for himself in cosmology.

に投稿 コメントを残す

あけましておめでとうございます。今年も宜しくお願い致します。【本ブログの方向性】

年が明けて目出たいですね。

皆様あけましておめでとうございます。今年もどうぞよろしくお願いします。

個人的には昨年度は色々と新しいことがありましたが、なにより

AIとの出会いがとても意義深かったです。

これからもAIを中心にネット活動を続け、理想を具現化します。

本ブログの今後(方向性)

なにより本ブログは私のネット生活のきっかけとなったブログで

これからも大事にしていきたいと考えています。

少なくとも、年に7人程度の物理学(数学)者を掘り起こし

主にリライトをしながら個別記事を洗練・充実させていく

方向で今後も続けていきたいと思います。

どうぞ宜しくお願い致します。

|コスパ最強・タイパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2024/01/01_初版投稿

舞台別のご紹介
時代別(順)のご紹介

オーストリア関連のご紹介
ウィーン大関連のご紹介
オランダ関係の紹介へ
ライデン大学のご紹介

熱統計関連のご紹介へ
量子力学関係

AIでの考察(参考)

 

に投稿 コメントを残す

ドラマまとめ【物理ネタでもしっかりしたドラマがあるって知ってました?】

ドラマでも物理を追いかけよう

本稿を起こしている気持ちとしては逃避の側面があります。

研究や会社員の世界にどっぷりハマった日常生活から
「抜け出したい!!」という切なる願いがありました。

それでも、
普段の生活に戻った時に落差が大きいのは嫌なので
今回の原稿に繋がっています。さらっと楽しんでください。

海外ドラマは新鮮!!

まず、現地でのタイトルは「Einstein]!!をご紹介します。

アインシュタイン天才科学者の殺人捜査

(以下、後日追記します)

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2023/10/29‗初稿投稿
2023/12-30‗改訂投稿

旧舞台別まとめへ_
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

 

に投稿 コメントを残す

【お勧めの海外ドラマ‗2015年ドイツ制作】アインシュタイン天才科学者の殺人捜査

アインシュタインの犯罪捜査

昨日、アマゾンで御嫁が見ていて

面白かったので私もこれから見続けます。

何と言ってもスピード感が秀逸!!

初回は2015年放送、シリーズ化は2017年です。

 

 

テレビドラマの「相棒」でも

仲間内での会話がブラックだったりして

言葉遊びでワクワクする瞬間があります。

そんな感じで会話もテンポよく進みます。

舞台はドイツ語圏が多い。

 

主人公自体はルール大学の教授で

違法薬物の前科で逮捕されると刑務所行きの人。

そんな人がアインシュタインの子孫なのです。

まぁ無茶無茶な設定で痛快??

 

作中でもドラック使ったりして

教育的には良くない気もしますが

エンターテイメントとして楽しめばよいでしょう。


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2023/10/29_初稿投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
力学関係のご紹介

に投稿 コメントを残す

大森賢治氏が冷却原子方式に挑む【超電導の実現へ向けて新しい方式を提案】

東大

はじめに

本稿は2023年9月13日の日経新聞に掲載された記事を骨子として、
著者であるコウジ独自の関心に従い追記した内容となっています。

量子コンピュータの実現へ

量子コンピューターの実現に向けて 各国が独自の技術を競い合う中で、
単一原子 に着目した 原子冷却方式と呼ばれる 方式に
日本の技術者が挑戦しています。アメリカの学会で
成果を発表したところ 反響著ししく、
新たな成果が期待されています。

米ロードアイランド州のサルベレジーナ大学で
開かれた量子制限に関する研究会で、
日本人の大森賢司さんが議長を務めました。

この合同研究かは 90年以上の歴史を持ち
特にジョン・マスティース米カリフォルニア 大学教授 ら
著名な学者が参加していることで有名です。

今回160人の規模で会議が開かれています
大森さんらが手がける冷却原子方式の量子コンピューターは
実用化で先行する超電導方式、光方式に続く
第3の量子コンピューターと呼ばれています。

マティニス教授も絶賛

昨年8月に 大森教授らが開発した 研究成果を マティニス教授は
主に評価しています。 計算速度を上げるためにゲート操作時の
原子間の距離を十分に近づける事が必要なのに対して
超高速のパルスレーザーを照射するという
独自の方式で実現した結果です。

操作スピードは従来方式に比べ2桁早くなり
Google が超電動方式で2020年に発表した記録を
しのいでいます。

どこにメリットがあるか

第1のメリットとしては現在主流となってる超伝導方式の
量子コンピューターと異なり冷却器が不要という点です。
装置が必要で稼動できるということが大きな特徴です。
新しい方式では大規模化が難しく好ましい量子状態が
長時間維持できるという所が大きな特徴です。

また大規模化が容易で量子状態を長時間維持できる
特徴があります。ただし計算する時の冷凍操作に
時間がかかることが大きな問題点でした。

卓越したアイディア

2010年頃に大森教授が各界で評価を受けた内容は「通常のコンピューターのように電荷で情報を担う」のではなくて波動関数が情報の担い手として活躍する仕組みです!!

超高速の分子コンピューターと呼ばれます。分子にアト秒間隔で2つのレーザーパルスを与え反応を見ます。1アト秒とは100京分の1秒、一秒間に地球を7周半の距離を進む光がやっと0.3 nm 進めるくらいの非常に短い時間です。その感覚で情報を与える仕組みが波動関数に影響を与えます。

その他の量子コンピュータ

前日した光学方式は技術として先行しており研究成果が多数あります。
また理科学研究所で導入しているような量子ビット方式のコンピューターは
マイナス百ケルビン以下に冷却する必要があり 計算組織を
適切な状態に維持することはとても難しいです。

また計算時間の 十分な 確保も大きな課題です。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2023/09/13‗初稿投稿

旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

摩擦の物理の再考【揺動散逸定理とか熱雑音とかデコヒーレンスとか】

摩擦の歴史

摩擦の歴史は古いです。古代から続くモデルとして
熱さの発生と凹凸のある表面での摩擦面での微小な
部分の変形を考えていったのです。その後、
ニュートンによる力の定式化や、熱力学での
熱とエネルギーの相互の定式化が進み
一定の定式化と応用がされていきました。

揺動散逸定理

アインシュタインが1905年の革新的な
論文ラッシュの中でブラウン運動を定式化
していき静止した液体中での粒子の不規則な
運動が摩擦として働く運動を定式化しました。
具体的には
D を粒子の拡散係数、μ を移動度とした時の関係を
しめします。ここでのμは外力F に対する粒子の終端ドリフト速度 vd
 の比 μ = vd/F として表現されています。この時、

D = μkT となります。

熱雑音

アインシュタインより少し後の時代、
情報理論でナイキストの定理として知られている
法則を確立したナイキストが自由電子の不規則な運動
に対して熱がどう関わるかを定式化しました。
電流が無い場合に自由電子が雑音として作用して
静電圧に対して、その二乗平均電圧 ⟨V 2⟩ が考察できます。
更に電気抵抗 R 、と上記のボルツマン定数、温度との関係として

<V^2> = 4R KBTΔV

デコヒーレンス

量子的エンタングルメントを実現している状態が
壊れていく様子も今後議論されていくと思われます。

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2023/07/23_初回投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

サイトポリシー【位置づけと今後の記事の方向性を考察します。また、物理学の理解をより明確にします】

きっかけとブログの志向

サイトポリシーを定めとよう、と考えた始めは
「質量」に対しての再考がきっかけです。
MKS単位系を学校教育の中で学んでいった筆者が
大学・大学院と学び続ける中で時間、距離、
電荷、質量、誘電率、密度、と様々な概念を
理解していく中で知識が再構築されていき
もう一度考えてみたくなったのが「質量」なのです。

自分の娘を抱きしめている時を思い出し、
電子であれ、二体問題の重心であれ、存在を実感
しながら理解を確かめられるパラメターが質量だと考えます。

強い力・弱い力、電磁力がニュートン【N】で表されて
1キログラムに対して。どんな割合で考察できるかを
基本として理解します。きっと、
色んな予備知識を持った読者諸氏と共通の認識で
文章を作り、読んで頂ければ共通認識が確認出来るでしょう。

私のブログは議論の為の場であるべきだと考えています。
それだから「知っているよ!」という知識だけではなく
多様な最新の知識を含めて情報拡充していきます。

ブログの立場と想定読者

このブログでは20世紀初頭における科学史の発展に焦点を当てていますが、個別の発展、成果を追いかけられる事を目指していますいます。その流れで原論文を読みこなす読者も念頭に置いていますし、ざっくりとした話の流れだけでも分かれば良い読者も想定しています。

筆者が関心のある物理学の分野

特に近年、筆者は量子コンピュータに大きな関心を持っています。コプレイナーを始めとして様々な関連技術が興味深いです。先に明言しましたが物理的実態として質量を私は重視しています。それだからスピンであれ磁場であれパラメターを生み出すハードウェア関心の焦点を置きます。

今現在の関心事はQUBIT同士のもつれ合いが中心です。

その他、一般的な注意事項

・本サイトへのお問い合わせを通じて得た、お名前、
メールアドレス、年齢、住所などの個人情報は厳密に管理し
いかなる理由があっても第三者に明かしません。

・Google などの第三者配信事業者が Cookie を使用して、ユーザー殿が
そのウェブサイトや他のウェブサイトに過去にアクセス
した際の情報に基づいて広告を配信します。

・Google が広告 Cookie を使用することによりユーザーが
そのサイトや他のサイトにアクセスした際の情報に基き、
Google やそのパートナーが適切な広告をユーザーに表示します。

・本サイトは上記Cookieを使用した広告配信を想定し、
ユーザーは使用端末の設定に従って広告配信を
制限・無効化出来るものとしています。

・ユーザーは本ブログの情報で不利益があっても
本ブログは責任を負いません。無論、全てに対して責任放棄する訳ではありません。議論に対しては誠意対応致します。

・本ブログ内の情報は議論の対象となるものが含まれています。
不本意ながら間違った発言も含まれるものとします。
その際も改善に向け議論し続けます。

・画像・文章に対しては著作権を認め、
無断での転載を慎みます。このポリシーに反して
意図せず著作権や肖像権を侵害してしまった
場合は事実に対して速やかに対処します。

最後に連絡先と返信までの想定期間

 

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。
返信期間は大よそ営業日を想定していますが
時間がかかりそうな場合は一報します。

nowkouji226@gmail.com

2023/07/18_初回投稿
2023/08/05_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

【TOPIC】これまでの高温超伝導体は乱れていたことが判明しました(モット絶縁体相極近傍での現象)

発見のメンバー

東京大学 物性研の黒川 氏、近藤 師、
+東京理科大の磯野氏、常盤師

の研究グループが今回の発表での主要メンバーです。
長年の常識と違う角度で「問題を深堀していこう」
という研究成果となります。

柏にある物性研究所で思いついたのですが、
理科大は野田にキャンパスがありますね。

今回の発表とは全く関係ありませんが、近い!!
偶然でしょうが。

そういえば本郷と後楽園も近い!!
偶然でしょうが。

そうして考えていくと御茶ノ水女子大も
将来的に絡んできそうですね。

どうでも良いですが。。。

発見の意義

さて、今回の発表での対象となる物質は
「銅酸化物」です。

酸化銅に微量のイットリウムや
ビスマス系の化合物を加えて

結晶構造が特徴的となる点に
「現象の理由」があるのではないか

と思っていました。

なにより転移温度が比較的高い高温超伝導体の
メカニズムが
数十年来の実験の
焦点となっていたと思われます。

どうして転移温度が高温(それでも氷点下です)
となるのか

メカニズムが説明できていませんでした。

超電導現象自体はBCS理論を使って理路整然と
説明が出来ていて転移温度が説明できて
ボーズ凝縮とのクロスオーバーが論じられます。

所が「ゆらぎ」に関する理論は明快に
取り入れられていなかった

と言えるのではないでしょうか。

発見のポイント

注目すべきは銅酸化物高温超伝導体におけるモット絶縁体相の極近傍での現象です。

東大物性研のホームページによると【以下、太字部が引用】
電荷が微少かつ均一に分布する乱れの無い
極めて綺麗な結晶面を見出し、その電荷の振る舞いを解明した。

モット絶縁体に注入される電荷が限りなく微少
であっても長寿命の粒子が生成され、自由に動き回れる

本来。キャリアが無い状態で反強磁性モット絶縁体である
銅酸化物高温超電導体においてCuO2面の状態を「均一(なめらか)」
にしていく事でエネルギーギャップの問題を解決していき
電荷が自由に動き回れる」状態を実現しています。

今後の展開

今回の発表の意義は
「銅酸化物高温超伝導体での電子相図を綺麗にしていく事」だと言えます。

今までの電子相関図が「乱れたも」ものだと考えなおすことで
問題を解決していこうという試みです。実際に今まで蓄積された
知見の数々を実証していく事で研究が進んでいく事が期待されます。

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2023/07/15‗初稿投稿

旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

共鳴現象(音叉や2つのコイル)とエンタングルメントの比較
7/12改訂

共鳴とエンタングルメント

先ず何より、本件は思い付きの域を出ないかもしれません。ご了承下さい。
共鳴現象とエンタングルメントを比較します。

剛体共鳴電磁気共鳴エンタングルメント
事例波紋電磁場Qudit
介在物媒質電磁場環境のセッティング

こうした比較は現象理解をしていくうえで大事になる時があります。
エンタングルメントは電磁場とは明らかに異なります。
一瞬にして情報が伝わるのです。

音叉の共鳴の原理

剛体同士の共鳴として音叉の共鳴状態を考えます。この時は
音波Aが振動して別の所にある音叉Bも振動を始めます。
介在するのは二つの音叉の間にある空間で空気の振動が振動を伝えます。

大事なポイントは音叉の機器と空間の相性です。
より高い音の方が空気中を伝わりやすく、
別の音叉に影響を与えます。

電磁共鳴の原理

電磁共鳴の例として二つのコイルが共鳴している
状態を考えます。例えば近年ではワイヤレス給電
を考えたりしていますね。

具体的なモデルを考えていくと
電力供給側の装置にあるコイルが磁界を作り、
電力を受ける装置内のコイルが磁界を受け
電力を受ける装置内で電力を発生する仕組みです。

考えているモデルではエネルギー供給側の装置と
エネルギー受領側の装置は空間的に離れていて
電磁場を使って電力の情報が伝わります。
エーテル問題が論じられていたように
電磁場の伝搬には媒質は全く必要なく
真空中であっても電磁場は伝わっていきます。
電磁場の理論形成において何との対応があった
事実はとても有益だったと言えますね。

エンタングルメントの原理

エンタングルメントの例として二つの量子ビットQUBITを考えます。

何より明記したいポイント

エンタングルメント検出には統計情報が大事だという点です。
比較表の中では環境のセッティングと書きましたが
「幾つかの量子系が観測にかかる設定」
がエンタングルメントを作ります。

本稿での主題の一つは共鳴との比較ですが共鳴現象では
媒質が役割を果たすのに対してエンタングルメントでは
適切な環境であれば、観測が行われた時点で
遠隔地での情報が確定します。
量子テレポーテーションという言葉でも議論されています。

テックアカデミー無料体験
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2023/07/10_初稿投稿
2023/07/28_改定投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
熱統計関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】