に投稿 コメントを残す

シュレディンガー
【1887年8月12日生まれ‐6/26改訂】

SolvayConf-1927

こんにちはコウジです。「シュレディンガー」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と5/28の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3533‗②ev2Fz71Tr4x7b1k‗2717⇒3085
‗③BLLpQ8kta98RLO9‗2543⇒4725‗④KazenoKouji‗3422⇒5831
なので合計‗6102+5965=【12067@2/9】⇒6618+10556【17174@5/28】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1887年8月12日生まれ ~ 1961年1月4日没】


【スポンサーリンク】 

シュレディンガーの生い立ち

シュレディンガーはオーストリア=ハンガリー帝国

に生まれました。彼はその父に影響を受けた

言われていますが、その父とははバイエルン王国

に生まれ広い教養をもった人だったようです。その点が、

シュレディンガーの性格に影響しているかと思われます。

色々調べるにつけ分かってくるのですが、シュレディンガーの考えは物理学の枠に囚われない所があります。未知の事象を捕まえていく際に、また対象を色々な視野から洗い出していく際に、活用できるような「考え方のモデル」が沢山作られていったのでしょう。他の人が作りえないような独自のモデルを作るという大きな目標が物理学にはあります。

シュレディンガーの猫

シュレディンガーは猫の例えで有名です。具体的には「量子力学的現象」と連動して「猫を毒殺する仮想実験」を議論しました。

議論の帰結としてミクロな物理現象が確率的な実在として表現出来るというシュレディンガーの解釈が完成したのです。具体的には空間的に広がる確率波を数学的に考えていきます。確率波の時間発展はシュレディンガー方程式と呼ばれ量子力学の基礎方程式となるのです。私は大学院時代にそこから考え始めて超伝導現象に挑みました。新しい現象理解に繋がっていったのです。今もその枠組みで議論がされています。世界中で議論がされています。

シュディンガ―音頭

こぼれ話となりますが、若手の物理学者の勉強会である「物性若手夏の学校」ではシュレディンガー音頭という歌がありΨ(ぷさい)とφ(ふぁぃ)を取り入れて楽しげに、形の違いを確認出来ます。英文で表記したりする時にこの二つは似ていて混同しがちなのですが、直ぐに思い出せます。シュレディンガー音頭で手のひらを上にあげる方がΨです。一度踊ると踊った人は一生忘れません。 

シュレディンガー形式 

そうした量子力学の表現形式としては、ハイゼンベルク形式(描像)とシュレディンガー形式があり、その2つは完全に等価です。数学の側面から大まかに表現すると、ハイゼンベルク形式はヒルベルト空間上の行列とベクトルを使い、シュレディンガー形式では同空間での演算子と波動関数を使います。共に直感に響く側面を持ち相補して全体を補い合うのですが、私には「粒子の二面性を感じる時などに初学者がイメージを作る段階」ではシュレディンガー形式が適していると思われました。そんな記述をシュレディンガーは纏めたのです。

ボルツマンとシュレディンガー

最後に、もう一度シュレディンガーの人となりに話を戻したいと思います。シュレディンガーはウィーン大学でボルツマンの後任であるハゼノールの教えを受けていて、ボルツマンと関わりが出来たのです。彼はボルツマンの示した道筋を受け継いでいた人でした彼はボルツマンに対してい想いを持っていました。曰く、

「ボルツマンの考えた道こそ
科学に於ける
私の初恋
と言っても良い亅_

【万有百科大事典 16 物理・数学の章より引用しました。】

いわば、ボルツマンが完全に確立出来なかった原子論を

シュレディンガーは彼らしい表現方法で具現化したのです。

また、ボルツマンを中心に考えると、もう一人の弟子であるエーレンフェストが思い浮かびます。彼は統計力学の切り口から原子の表現に挑みました。エーレンフェストの定理は個別粒子の運動を分かり易い形で記述すると思えます。他方でシュレディンガーは波動的側面から原子の表現に挑みました。量子力学の初学者がこの二人のどちらを先に知るかといえばシュレディンガーでしょう。量子力学の議論の範囲で説明出来るからです。大学ごとの教育カリキュラムで別途統計関係の講義との兼ね合いも考えなければいけません。ただ、歴史的にはシュレディンガーの理解が後なのです。

そして二人ともボルツマンの考えを受け継いでいるのです。

 

〆最後に〆

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。

nowkouji226@gmail.com

2020/08/16_初稿投稿
2022/06/26‗原稿改定

舞台別のご紹介
時代別(順)のご紹介

オーストリア関連のご紹介
ウィーン大関連のご紹介
量子力学関係
グラーツ大学関連へ

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

Schrodinger’s upbringing

Schrodinger was born in the Austro-Hungarian Empire. He is said to have been influenced by his father, who seems to have been born in the Kingdom of Bavaria and well-educated. It seems that this influences Schrodinger’s personality. As you can see from various investigations, Schrodinger’s idea is not bound by the framework of physics. It seems that many “models of thinking” have been created that can be used when capturing unknown events and when identifying objects from various perspectives. Physics has the big goal of creating unique models that no one else can.

Schrodinger’s cat

Schrodinger is famous for the analogy of cats. Specifically, we discussed “a virtual experiment to poison cats” in conjunction with “quantum mechanical phenomena”. As a result of the argument, Schrodinger’s interpretation that microscopic physical phenomena can be expressed as stochastic reality has been completed. Specifically, he mathematically considers the probability waves that spread spatially. The time evolution of stochastic waves is called the Schrodinger equation and becomes the basic equation of quantum mechanics. When I was in graduate school, I started thinking about it and challenged the superconducting phenomenon. It led to a new understanding of the phenomenon. Discussions are still being held within that framework. There is debate all over the world.

Shudinger Ondo

It’s a spillover story, but at the study session for young physicists in Japan, “Schrödinger Young Summer School,” there is a song called Schrodinger Dance, and Ψ (Psi) and φ (Phi) are incorporated to happily confirm the difference in shape. can. When writing in English, the two are similar and often confused, but I can easily remember them. It is Ψ to raise the palm up with Schrodinger dance. Once you dance, you will never forget the person who danced. Twice

Schrodinger format

There are two forms of expression of such quantum mechanics, the Heisenberg form (picture) and the Schrodinger form, and the two are completely equivalent. Roughly speaking from a mathematical point of view, the Heisenberg form uses matrices and vectors in Hilbert space, and the Schrodinger form uses operators and wavefunctions in the same space. Both have intuitive aspects and complement each other to complement each other, but I think that the Schrodinger format is suitable for “the stage where beginners create images when they feel the duality of particles”. rice field. Schrodinger put together such a description.

Boltzmann and Schrodinger

Finally, I would like to return to Schrodinger’s personality. Schrodinger was taught by Hazenor, Boltzmann’s successor, at the University of Vienna, and was able to get involved with Boltzmann. He was the one who inherited the path Boltzmann showed. He had a passion for Boltzmann. He says

“The way Boltzmann thought
In science
My first love
You can say that _

[Encyclopedia of Banyu 16 Quoted from the chapter on physics and mathematics. ]

So to speak, Schrodinger embodied the atomism that Boltzmann could not completely establish in his own way of expression. Also, when we think about Boltzmann, I think of another disciple, Ehrenfest. He challenged the expression of atoms from the perspective of statistical mechanics. Ehrenfest’s theorem seems to describe the motion of individual particles in an easy-to-understand manner. Schrodinger, on the other hand, challenged the expression of atoms from the wave side.

Schrödinger is the first to know which of these two scholars of quantum mechanics knows first. This is because it can be explained within the scope of the discussion of quantum mechanics. In the educational curriculum of each university, it is necessary to consider the balance with the lectures related to statistics. However, historically, Schrodinger’s understanding was later. And both of them inherit the idea of ​​Boltzmann.

に投稿 コメントを残す

ニールス・ボーア
【1885年10月7日生まれ 6/25原稿改訂】

SolvayConf-1927

こんにちはコウジです。「ボーア」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と5/28の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3533‗②ev2Fz71Tr4x7b1k‗2717⇒3085
‗③BLLpQ8kta98RLO9‗2543⇒4725‗④KazenoKouji‗3422⇒5831
なので合計‗6102+5965=【12067@2/9】⇒6618+10556【17174@5/28】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1885年10月7日生まれ ~ 1962年11月18日没】


【スポンサーリンク】

ボーアの生い立ち

ボーアは量子力学の発展で需要な役割を果たしました。

ソルベー会議でも議論の中心に居て、TOP画で

使っている写真では中列右端に立っています。

北海に面したユトランド半島および、その近辺の多くの島々からなる立憲君主制国家である、デンマーク王国にボーアは生まれました。

若い時代にはアマチュアサッカー選手リーグのABコペンハーゲンでゴールキーパーを務めていたという一面もあります。ボーアはそんな人でもあるんです。

ボーアと原子論

そしてボーアは前期量子論形成に於いて先駆的な理論を提供し続けました。ボーアは当時、不完全であった原子像を洗練させて独自の原子模型を提唱します。

先ず1911年にイギリスへ留学し、J・J・トムソンラザフォード_の元で原子核に対する基礎知識を吸収して先進的な考察の土台を作っていきます。そもそも光学顕微鏡で見えないほど小さい領域にまで議論が進んでいくのですが、その世界に対して考察を止めることなく幾多の議論を重ね、量子力学を確立していきます。例えば今でも原子の大きさを議論する時に「ボーア半径」という言葉を使います。この言葉はこの時代に確立されていった概念です。

その後、ボーアはイギリスから帰国後に幾多の仲間をコペンハーゲンに集め、コペンハーゲン学派と呼ばれた仲間を形成します。そこでまとまった解釈はコペンハーゲン解釈と呼ばれるようになり、それまでの物理学でのスタイルを変えていきます。

ボーアとコペンハーゲン解釈 

コペンハーゲン解釈は微視的世界での

「観測に対する考え方」です。

光学顕微鏡で微細な世界を覗いても分解能の問題でどうしても画像がぼやけてしまう「限界」にいきつきます。

アルファー線やベータ―線といった粒子線を純度の高い物質に当てて光路から内部構造を予想しようとする試みも色々な形で繰り広げられました。日本では寺田寅彦の時代にそうした解析が行われています。そうした蓄積を辻褄(つじつま)の合う理論で結びつける体系が必要とされていたのです。

目で見てとれる現象は顕微鏡の分解能の範囲で終わってしまいます。実際にはそれ以下の大きさで繰り広げられる現象が存在していて、観測しようとして光を当てると(光子を作用させると)、「観測する事情」で「状態をかき乱してしまう」のです。位置と運動量の微視的分解能の限界をA・アインシュタインと論じた話などが今に残っています。

また段々に分かってくるのですが、後にパウリが示すスピンの自由度も電子は持っていて、軌道半径だけをイメージして議論すれば話が終わる訳ではないのです。

その中でボーアは本質的な「ボーアの量子化条件」を用いて様々な現象を説明してみせます。長さスケールで10の‐23乗メートルのスケールでの議論では「位置等の観測値」が「とびとびの値」を示すのですが、その事象を現実世界での本質的な性質であると提唱したのです。

原子半径、磁気的性質も現代では、その形式で考えるが方がわかりやすい訳です。師であるラザフォードの原子モデルに改良を加えてボーアモデルを作りあげます。

そして晩年

ボーアはデンマーク最高の勲章である

エレファント勲章を受けています。

その際には東洋密教で使う陰陽のマーク

を模してボーア家の紋章を

デザインしたと言われています。

また、英国の王立協会では

外国人会員の栄誉を受けていました。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。

nowkouji226@gmail.com

2020/08/31_初版投稿
2022/06/25_改定投稿

纏めサイトTOP
舞台別のご紹介
舞台別のご紹介
時代別(順)のご紹介
デンマーク関係
イギリス関係

ケンブリッジ関連
熱統計関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

Bohr’s upbringing

Bohr played a demanding role in the development of quantum mechanics. He was also at the center of the discussion at the Solvay Conferences, standing at the right end of the middle row in the photo used in the TOP picture.

Bohr was born in the Kingdom of Denmark, a constitutional monarchy of the Jutland Peninsula facing the North Sea and many of its surrounding islands. On the one hand, he was a goalkeeper in the amateur soccer player league, AB Copenhagen, when he was young. Bohr is also such a person.

Bohr and Atomism

And Bohr continued to provide pioneering theories in old quantum theory. Bohr refines the imperfect atomic image at the time and proposes his own atomic model.

He first studied abroad in England in 1911, and under the guidance of JJ Thomson and Rutherford, he absorbed basic knowledge about atomic nuclei and proceeded with advanced consideration. In the first place, the discussion goes to a level that is too small to be seen with an optical microscope.

He continues to discuss the world with many discussions and establish quantum mechanics. For example, he still uses the term “Bohr radius” when discussing the size of an atom. This word is a concept established in this era.

After returning from England, Bohr gathered many friends in Copenhagen to form a group called the Copenhagen School. The collective interpretation came to be called the Copenhagen interpretation, changing the style of physics up to that point.

Bohr and Copenhagen Interpretation

The Copenhagen Interpretation is the “thinking about observation” in the microscopic world. Even if you look into the minute world with an optical microscope, you will reach the “limit” where the image will be blurred due to the problem of resolution.

Attempts to predict the internal structure from the optical path by applying particle beams such as alpha rays and beta rays to high-purity substances have also been made in various forms. In Japan, such an analysis was carried out during the time of Torahiko Terada. There was a need for a system that would connect such accumulations with a theory that fits Tsujitsuma.

Phenomena that are visible to the eye end up within the resolution of the microscope. Actually, there is a phenomenon that unfolds in a size smaller than that, and when light is applied to observe it (when photons act), it “disturbs the state” due to “observation circumstances”. There is a story that discusses the limit of microscopic resolution of position and momentum with A. Einstein.

Also, as we gradually understand, electrons also have the degree of freedom of spin that Pauli shows later, and the discussion does not end if we discuss only by imagining the orbital radius.

In it, Bohr explains various phenomena using the essential “Bohr’s quantization condition”. In the discussion on the scale of 10-23 meters on the length scale, “observed values ​​such as position” indicate “staggered values”, but we propose that the phenomenon is an essential property in the real world. I did.

In modern times, it is easier to understand the atomic radius and magnetic properties in that format. He will improve the atomic model of his teacher, Rutherford, to create the Bohr model.

And his later years

Bohr has received the Order of the Elephant, Denmark’s highest medal. At that time, he is said to have designed the coat of arms of the Bohr family, imitating the Yin-Yang mark used in Oriental esoteric Buddhism. He also received the honor of a foreign member at the Royal Society of England.

に投稿 コメントを残す

西川 正治
【1884年12月5日生まれ ‐6/24改訂】

東大

こんにちはコウジです。「西川 正治」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と5/28の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3533‗②ev2Fz71Tr4x7b1k‗2717⇒3085
‗③BLLpQ8kta98RLO9‗2543⇒4725‗④KazenoKouji‗3422⇒5831
なので合計‗6102+5965=【12067@2/9】⇒6618+10556【17174@5/28】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1884年12月5日生まれ ~ 1952年1月5日没】


 【スポンサーリンク】

食物繊維と西川

西川 正治は寺田寅彦の指導を受け

物理学を学んでいきます。特に、

彼は竹や麻等の植物由来の構造体

に着目して繊維構造物質に対して

電磁波がどう作用するか考えました。

手法としてはX線回折を駆使して

スピネル群結晶内の電子配置を

決定しています。

X線解析での問題

そもそも、電子は不可視の存在ですが、電磁波に対して作用して結果を残すのでその結果を画像で解析すれば結晶内での微視的な電子配置の情報が得られるのです。初学者は単純なモデルから学ぶので電子が個々の性質を見せると思いがちです。実際はそんな事は無くて電子単体で「観測にかかる」事象はなかなか見当たりません。

たとえば相互作用を考えていって「輝点」の議論をしている時でも、話の中には色々な要素があって、どこまでが観測事実か、はたまた勝手な想像であるか、判断に迷うことがあります。万人に説得力を持つ議論を進めるのはとても大変な作業です。加えて、当時の時点での知識で原子からの寄与と、電子からの寄与を明確にしていくには多くの知見が必要だったと思われます。X線情報の精度を考えるだけで大変で、一つ一つ推論を裏付けていった筈です。

そうした「新しい計測手法」を手掛かりに

西川正治は解析していったのです。

西川正治はそうした業績を残しながら

二人のお子様を育て、其々が学者として

名を残しています。また、同時に

幾人もの弟子を育て日本物理学会に

今も続く、大きな足跡を残しています。

【スポンサーリンク】

以上、間違い・ご意見は
次のアドレスまでお願いします。
適時、返信・改定を致します。

nowkouji226@gmail.com

2020/12/13_初稿投稿
2022/06/24_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
熱統計関連のご紹介へ
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点他の対応英訳)

Dietary fiber and Nishikawa

Shoji Nishikawa will study physics under the guidance of Torahiko Terada. In particular, he focused on plant-derived structures such as bamboo and hemp and considered how electromagnetic waves act on fibrous structural materials. As a method, the electron configuration in the spinel group crystal is determined by making full use of X-ray diffraction.

Problems with X-ray analysis

In the first place, electrons are invisible, but they act on electromagnetic waves and leave results, so if you analyze the results with images, you can obtain information on the microscopic electron configuration in the crystal. Beginners tend to think that electrons show individual properties because they learn from simple models. Actually, there is no such thing, and it is difficult to find an event that “observes” an electron alone. For example, even when thinking about interaction and discussing “bright spots”, there are various elements in the story, and it is judged how far the observation facts are, or whether it is a selfish imagination.

You may get lost. Proceeding with a convincing discussion for everyone is a daunting task. In addition, it seems that a lot of knowledge was needed to clarify the contribution from atoms and the contribution from electrons with the knowledge at that time. It was difficult just to think about the accuracy of X-ray information, and it should have supported the inference one by one.

Shoji Nishikawa analyzed using such a “new measurement method” as a clue. Shoji Nishikawa raised two children while leaving such achievements, and each of them has left his name as a scholar. At the same time, he raised a number of disciples and left a large footprint that continues to the Physical Society of Japan.

に投稿 コメントを残す

ピーター・デバイ
【1884年3月24日生まれ-6/23原稿改訂】

SolvayConf-1927

こんにちはコウジです。「デバイ」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1884年3月24日生まれ ~ 1966年11月2日没】


【スポンサーリンク】

オランダ生まれのデバイ

デバイはオランダに生まれていて、

物理学者にして化学者です。

ドイツで教授を務めていたりもしました。

第二次大戦の時には渡米してコーネル大学で

教授を務めていました。そんなデバイは、

比熱の定式化で名を残しています。

デバイの業績①

また、電子の双極子モーメントを使って誘電率の説明をしました。自由電子が内部に存在しない誘電体を考えた時に、その物質内部で電場付加時に電子と原子核は反対方向に移動して双極子を作ります。この考えで「双極子モーメント」が定義され、その単位体積当たりの値を吟味することで電場と誘電率の関係が示せたのです。高度な物理モデルの構築と物性への適用です。誘電率は真空中を基準とした時に

アルミナ、雲母、NaCl、水晶、ダイヤモンドで
5から9の値をとり、水(純水)で80の値をとり、
メチルアルコールで33の値をとります。
【理科年表より】_

こうした業績からデバイは

分子モーメントの単位として名を残しています。

デバイの別の業績②

また、

デバイの別の業績としては比熱に対しての物もあります。一般的に比熱のモデルですが、今日では一般的に

アインシュタイン・モデルと

デバイ・モデルが使われます。

アインシュタインの比熱モデルは拘束された原子核のがバネでつながれたイメージです。二次元で例えてみると碁盤の線の交点に原子があって、 交点間の線にバネがあって隣の交点に熱を伝えます。交点に足る特定の原子が激しく動くとその隣に隣接する上下左右4点の原子がバネを介してエネルギーを受けるイメージのモデルです。対してデバイ・モデルは音子(フォノン)が箱の中を動き回るモデルであって理想気体が運動する様子に近いです。デバイモデルでは長波長の弾性波をモデルに取り入れる事が出来るうえに、外界とのリンクも勘定しやすいです。現代の我々は夫々のモデルが当てはめられる場合の考察が出来るのです。

具体的にデバイモデルでは外界とのリンクを取り入れていて、それは箱の出口となるドアで表されています。こういった概念を纏めているサイトを見つけました。最後に以下にURLを記します。
ご参考にして下さい。


(ときわ台学さん)
(別リンク)

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2020/09/25_初稿投稿
2022/06/23_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
オランダ関係
ドイツ関係
アメリカ関係
力学関係
電磁気関係
熱統計力学関係
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

Dutch-born debye

Debye was born in the Netherlands and is a physicist and chemist. He was also a professor in Germany. He traveled to the United States during the war and was a professor at Cornell University. Such Debye has made a name for himself in the formulation of his specific heat.

Debye’s achievements ①

I also explained the permittivity using the dipole moment of electrons. When considering a dielectric in which free electrons do not exist inside, the electrons and nuclei move in opposite directions when an electric field is applied inside the material to form a dipole. Based on this idea, the “dipole moment” was defined, and the relationship between the electric field and the permittivity was shown by examining the value per unit volume. The permittivity takes a value of 5 to 9 for alumina, mica, NaCl, crystal, and diamond, 80 for water (pure water), and 33 for methyl alcohol, based on vacuum. [From the Chronological Scientific Tables] _ From these achievements, Debye has left its name as a unit of molecular moment.

Another achievement of Debye②

Another achievement of Debye is for specific heat. Although it is generally a specific heat model, the Einstein model and the Debye model are commonly used today. Einstein’s specific heat model is an image of constrained nuclei connected by springs. If you compare it in two dimensions, there is an atom at the intersection of the lines on the board, and there is a spring in the line between the intersections to transfer heat to the next intersection.

This is a model of the image that when a specific atom sufficient for an intersection moves violently, four adjacent atoms on the top, bottom, left, and right next to it receive energy via a spring. On the other hand, the Debye model is a model in which a phonon moves around in a box, which is similar to the movement of an ideal gas. In the Debye model, long-wavelength elastic waves can be incorporated into the model, and it is easy to count links with the outside world. Specifically, the Debye model incorporates a link to the outside world, which is represented by the door that exits the box.

に投稿 コメントを残す

F・W・マイスナー
【1882年12月16日生まれ ‐6/21改訂】

deutuland

こんにちはコウジです。「マイスナー」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と5/28の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3533‗②ev2Fz71Tr4x7b1k‗2717⇒3085
‗③BLLpQ8kta98RLO9‗2543⇒4725‗④KazenoKouji‗3422⇒5831
なので合計‗6102+5965=【12067@2/9】⇒6618+10556【17174@5/28】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1882年12月16日生まれ ~ 1974年11月16日没】


【スポンサーリンク)

その名は正確には

フリッツ・ヴァルター・マイスナー_

Fritz Walther Meißner (Meissner)。

  ドイツ・ベルリン生まれの物理学者です。

ミュンヘン工科大学でプランクの師事を
受けた後に物理工学院で研究を進めます。
マイスナーが関心を持っていたのは
超伝導でした。1920年頃に色々な物質で
転移が起きる事を確認しています。
タンタル、化学記号はTa、転移温度4.47K。
ニオブ、化学記号はNb、転移温度は9.25K。
チタン、化学記号はTi、転移温度は0.4K。
トリウム、化学記号はTh、転移温度は1.38K。
に対して相転移を確認した後に化合物に
着目してNbCにおいて10ケルビンを超える
転移温度を確認しています。
念のために記載しておきますがケルビン(K)は一つの単位で、よく使われている摂氏℃との関係は-273℃=0K程度、0℃=273K程度です。摂氏温度℃が一度上昇すると同じ変化としてケルビンも一度上がります。それぞれの単位である「0」となる基準が異なるのです。

マイスナー効果

その後、マイスナーはいわゆるマイスナー効果
を発見していてます。この現象は協同研究者の
オクセンフェルトの名前と合わせて
マイスナー―オクセンフェルト効果と呼ばれる
こともあります。

よく、超電導の説明で不自然な磁力線の図が見られますが、実際の計測結果としても通常の磁力線と全く異なる形が現れるのです。

また性質の側面から完全反磁性
とも呼ばれます。磁性を使って超電導現象を特徴
づけているとも言えます。大きな成果でした。


以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。

nowkouji226@gmail.com

2020/12/19_初回投稿
2022/06/21_改定投稿

旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介

ドイツ関係のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

The name is exactly

Fritz Walther Meißner (Meissner).
He is a physicist born in Berlin, Germany.

After studying Planck at the Technische Universität München, he goes on to study at the Institute of Applied Physics. Meissner had  interested in superconductivity . Meissner has confirmed that various supplies will cause metastasis around 1920.
Tantalum ,and chemical symbol is Ta, transition temperature 4.47K.
Niobium ,chemical symbol is Nb, transition temperature is 9.25K.
Titanium , and it’s symbol is Ti, transition temperature is 0.4K.
Thorium ,it’s symbol is Th, transition temperature is 1.38K.
After confirming the phase transition, we focused on the compound and confirmed the transition temperature exceeding 10 Kelvin in NbC.
[As a reminder, Kelvin (K) has a relationship with -273 ° C = 0K and 0 ° C = 273K, which are often used in one unit system.]

Meissner effect

Since then, Meissner has discovered the so-called Meissner effect. This phenomenon is sometimes referred to as the Meissner-Ochsenfeld effect, in conjunction with the name of his collaborator Ochsenfeld.

Often, in the explanation of superconductivity, you can see a figure of an unnatural field line, but even in the actual measurement result, a shape completely different from the normal field line appears.

Some people called completely anti-magnetic because of its nature. It can be said that it uses magnetism to characterize the superconducting phenomenon. It was a big achievement.

に投稿 コメントを残す

マックス・ボルン
【1882年12月11日‐6/20改訂】

SolvayConf-1927

こんにちはコウジです。「マックス・ボルン」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と5/28の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3533‗②ev2Fz71Tr4x7b1k‗2717⇒3085
‗③BLLpQ8kta98RLO9‗2543⇒4725‗④KazenoKouji‗3422⇒5831
なので合計‗6102+5965=【12067@2/9】⇒6618+10556【17174@5/28】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1882年12月11日 ~1970年1月5日】


【スポンサーリンク】

マックスボルンと確率解釈

M・ボルンはユダヤ系ドイツ人なので、

第二次世界大戦時は大変苦労しています。

そんな中で前期量子論において本質的な

現象理解である「確率解釈」を提唱しています。

簡単に確率解釈を表現してみると、観測にかかる現象は一意的に求まる物だけではなく一定の確率で観測される事象も含まれるという解釈です別言すると観測値が一定の確率との掛け合わせである場合が許されるのです。

ボルンの人間関係

ボルンはドイツ本国で教授職を解雇されたりしていて、反戦の姿勢、非核の姿勢を貫きラッセル=アインシュタイン宣言にも参加しています。この点ではドイツに残り、原爆開発に参加していたハイゼンベルクとは全く別の人生を歩んでいます。ちなみに、ハイゼンベルクはボルンの門下生です。オッペンハイマーもまた弟子にあたります。オッペンハイマーとは「ボルン・オッペンハイマー近似」と呼ばれる業績を残し、共に研究していた時代があります。

共にユダヤ系でしたのでボルンはイギリス、オッペンハイマーはアメリカへと追われていきます。ユダヤ人排斥運動の中でボルンは教授職を奪われたのです。戦時下でのどうしようもない事情でした。

彼の解釈で有名なやり取りがあります。ボルンの考え方である確率解釈に対して反論したアインシュタインが量子力学の解釈をサイコロ遊びに例えたのです。

【Wikipedeaより引用:アインシュタインの有名な言葉
「彼(神)はサイコロを遊びをしない」は1926年
にボルンに当てた手紙の中で述べられたものである。】

さいころ遊びに例えた手紙が交わされた翌年の1927年にハイゼンベルグが不確定性関係を定め、このサイトTOPで写真を使っている第五回ソルベー会議が開かれます。【於10月】其処で本質に対して真剣な議論が交わされるのです。人類の理解が大きく変化していった時代でした。

確率解釈は人類の思想にとって大きなパラダイムシフトです。

ボルンの考え方は、それまでの発想を大きく変えました。

最後にトリビア話

ボルンの孫の一人に歌手であるオリヴィア・ニュートン・ジョンが居ました。私も初稿を書く際に分かったのですが意外ですね。勝手に想像するとボルンは如何にもドイツ人らしい人だったのでしょうね。アインシュタインとのやり取りは、そんな彼を偲ばせます。イギリスに亡命後にドイツへ帰国しており、プランクと同じゲッティンゲン市立墓地に眠っているそうです。母国の土に帰りたい想いもあったのでしょう。そしてきっと、お孫さんのオリビア・ニュートンジョンも墓参りに来るのでしょう。

関連URL(YouTubeへ:)
https://www.youtube.com/watch?v=E-JGTk_WM1k

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。

nowkouji226@gmail.com

2020/08/30_初版投稿
2022/06/20_改定投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
ドイツ関連のご紹介

量子力学関係

【このサイトはAmazonアソシエイト参加しています】

(2021年10月時点での対応英訳)

Max Born and Probabilistic Interpretation

Since M. Born is a Jewish German, he had a lot of trouble during World War II. Under such circumstances, he advocates “probabilistic interpretation”, which is an essential understanding of phenomena in the early quantum theory. To express the probability interpretation simply, it is an interpretation that the phenomenon related to the observation includes not only the uniquely obtained object but also the event observed with a certain probability. In other words, the observed value is multiplied by the certain probability. It is permissible if it is a match.

Born Relationships

Born has been dismissed as a professor in Germany, and he has been involved in the Russell-Einstein Declaration with an anti-war and non-nuclear stance. In this respect, he remains in Germany and lives a completely different life from Heisenberg, who participated in the development of the atomic bomb. By the way, Heisenberg is a student of Born. Oppenheimer is also a disciple. There was a time when Oppenheimer left a work called “Born-Oppenheimer approximation” and studied together. Both were of Jewish descent, so Born was chased by England and

Oppenheimer was chased by the United States. Born was deprived of his professorship during the Jewish exclusion movement. It was a terrible situation during the war. There is a well-known exchange in his interpretation. Einstein, who argued against Born’s idea of ​​stochastic interpretation, likened the interpretation of quantum mechanics to dice play.

[Quoted from Wikipedea: Einstein’s famous words
“He (God) does not play dice” is 1926
It was stated in a letter to Born. ]

In 1927, the year after this letter was exchanged, Heisenberg established an uncertainty relationship, and the 5th Solvay Conference using photographs will be held on the top of this site. [October] There is a serious discussion about the essence. It was an era when human understanding changed drastically. Probabilistic interpretation is a major paradigm shift for human thought. Born’s thinking changed his way of thinking.

Finally the trivia story

One of Born’s grandchildren was the singer Olivia Newton-John. I also found out when writing the first draft, but it’s surprising. Imagine that Born was a German person. The interaction with Einstein is reminiscent of him. He returned to Germany after his exile in England and is sleeping in the same Göttingen Cemetery as Planck. Perhaps he also wanted to return to his homeland. And I’m sure his grandson Olivia Newton-John will come to visit the grave.

に投稿 コメントを残す

石原純
 【1881年1月15日生まれ‐6/19改訂投稿】

東大

こんにちはコウジです。「石原純」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と5/28の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3533‗②ev2Fz71Tr4x7b1k‗2717⇒3085
‗③BLLpQ8kta98RLO9‗2543⇒4725‗④KazenoKouji‗3422⇒5831
なので合計‗6102+5965=【12067@2/9】⇒6618+10556【17174@5/28】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1881年1月15日生まれ ~ 1947年1月19日没】


【スポンサーリンク】

日本の物理学史の中から一人ご紹介します。

2021年の時点で同性同名の方が現存されますが、

これは19世紀の物理学者の記事です。

石原さんの業績

物理学者として石原さんには

大きな二つの業績があると思います。

先ず、黎明期の日本において外国で進んでいた最新の物理学を成果をいち早く紹介して広めたことです。そして、2つ目は結晶解析に対する考察です。この後者の業績は国内に留まらずに最先端の学者達に色々な刺激を与えたことでしょう。日本でもそうした「共感」が始まりだしたのです。

多彩な活躍をした石原さん

山川健次郎田中館愛橘長岡半太郎

本多光太郎寺田寅彦、、、、

と続く黎明期の中で異色の人生を歩みました。アインシュタイン来日時に通訳を務め、西田幾多郎に不確定関係を伝えたパイオニアです。日本物理学界に多大な貢献を残しつつ、女性関係で帝大を去ります。あーぁあ。

そもそも石原さん、歌人の伊藤左千夫の弟子なので斉藤茂吉に家庭を大事にするように説得されたりしていますが、聞く耳を持たずにのめり込んでいたようです。アララギの発刊に携わったメンバーでしたが、この事件でアララギ脱会に至ります。と、ここまではwikipedia等に載っている範疇の話です。

 

語り継がれた石原さん

私的な思い出としては、大学の恩師が彼を評価

していて、講義の中で情熱を込めて語ってくれて

いた時間です。日本の科学の為に多大な功績を

残しながらも学会と距離を置き、交通事故による

不慮の最後を遂げた人生を思いを込めて暖かい

語り口で講じていました。

【スポンサーリンク】

〆最後に〆

以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。、

nowkouji226@gmail.com

2020/11/11_初回投稿
2022/06/19_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

 (2021年10月時点での対応英訳)

I would like to introduce one person from the history of physics in Japan. As of 2021, the same-sex name still exists, but this is an article by a 19th-century physicist.

Mr. Ishihara who played a variety of roles

I lived a unique life in the early days of Kenjiro Yamakawa, Aikitsu Tanakadate, Hantaro Nagaoka, Kotaro Honda, Torahiko Terada, and so on.

He was a pioneer who acted as an interpreter when he came to Einstein and conveyed the uncertain relationship to Kitaro Nishida. He leaves the imperial university in relation to women, leaving a great contribution to the Japanese physics world. Ahhhh.

In the first place, Mr. Ishihara, a disciple of the poet Sachio Ito, was persuaded by Mokichi Saito to take good care of his family, but he seemed to be absorbed in it without listening. She was a member involved in the publication of Araragi, but this incident led to her withdrawal from Araragi. So far, it is a story of the category listed in wikipedia etc.

Mr. Ishihara’s achievements

As a physicist, I think Mr. Ishihara has two major achievements. First of all, I was the first to introduce and disseminate the latest physics that was advancing abroad in Japan in the early days. And the second is consideration for crystal analysis. This latter achievement would have inspired cutting-edge scholars not only in Japan. Such sympathy began in Japan as well.

Mr. Ishihara handed down

My personal memory is the time when my college teacher was praising him and talking passionately in his lectures. Although he made great achievements for Japanese science, he kept a distance from the academic society and gave a warm talk about his life, which had ended unexpectedly due to a traffic accident.

に投稿 コメントを残す

P・エーレンフェスト
【1880年1月18日生まれ‐6/19改訂】

こんにちはコウジです。「エーレンフェスト」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と5/28の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3533‗②ev2Fz71Tr4x7b1k‗2717⇒3085
‗③BLLpQ8kta98RLO9‗2543⇒4725‗④KazenoKouji‗3422⇒5831
なので合計‗6102+5965=【12067@2/9】⇒6618+10556【17174@5/28】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1880年1月18日生まれ ~ 1933年9月25日没】

【←ローレンツとアインシュタイン_
エーレンフェストの自宅前で
Crediit;:_ pinterest.com_】


【スポンサーリンク】

エーレンファストと期待値と波動関数

ポール・エーレンフェストは

統計力学と量子力学を

洗練された形で結びつけたと言えるでしょう。

それぞれの分野での2つの指標である

期待値と波動関数を結びつけたのです。

また、本稿の中で使っている写真も意義深いです。アインシュタインローレンツという2人の偉人をより強く結びつけているのがエーレンフェストだからです。エーレンフェストの家で沢山の考えが進んでいった筈なのです 。

オーストリアに生まれウィーンで育ったエーレンフェストは研究生活において非常に恵まれていたと思います。

まず、ボルツマンの講義を受ける環境をもち、熱力学の考えや気体分子の運動論に大変、感銘を受けます。ミクロの世界と可視下で想像できる質点モデルの世界を繋げる事が出来たのです。更に小旅行でローレンツに出合い、互いに刺激を受け、その後、アインシュタインと交友関係を結びます。アインシュタインとエーレンフェストは共にユダヤ系でしたので多くの
「思想」・「話題」を共有したことでしょう。

より詳細な期待値の解説

冒頭に、エーレンフェストは2つの指標、期待値と波動関数を関連付けたと記載しましたが「期待値」とは簡単に言えば「平均値」の事です。例えば、距離で考えてみると精度を上げるほど実測値には幅が出てきます。4.155㎜だったり4.154㎜だったりします。そこで数回の測定の平均値をとって確からしいと思われる数値を決めます。期待値です。期待値という言葉を使う時には分散値とか誤差とか併記され統計的な処理がなされていると思って下さい。
【より細かい話としては離散値だけでなく連続値
に対して
期待値・分散値を考えていきます。】

より詳細な波動関数の解説

また、エーレンフェストが考えていたもう一つの概念である波動関数は、細かい世界を表現するにあたり、当時は観測にかからない、とも考えられたミクロな対象に対する物理量を表現する数学的手段です。ヒルベルト空間で議論される関数で、無限次元の規定をとります。ミクロの物質には粒子性と波動性が混在する事情もあり、双方を具現化する波動関数が登場します。

エーレンフェストの定式化した定理によると
波動性が顕著に表れていると思える現象でも
その運動量や速度が求まり粒子と比較して
議論する事が可能です。2つの手法が繋がるのです。


 エーレンファストの定理の時代背景

フランスのド・ブロイが提唱した物質波という概念は論文審査の時点で独逸のアインシュタインが高く評価して、オランダのエーレンフェストが定量的な議論を深めたのです。その概念形成の達成は国を超えて人々が求め続けた疑問の解決でした。そして今では大学生であっても共有できている人類の知識なのです。また、ボルツマンの没後にエーレンフェストはその大きな業績をいくつも纏めて発表しました。そうした活動を知った人々は当然、エレンフェストに期待を寄せます。ボルツマンが執筆中だった未完の仕事にエーレンフェストは着手します。数学者が統計力学を考える仕事だったそうですが、形になっていないモデルの検証に対して鋭い考察がありました。また、棚上げになっていた問題を洗い出して整理していました。その作業には数学者であったエーレンフェストの奥様が協力していて、共に数学モデルを駆使して未解決の物理での問題に挑んでいました。

また、
エーレンフェストは優れた教育者でした。
1912年にドイツ語圏の大学訪問の中で
プランクに会い、
ゾンマーフェルトに会い、
アインシュタインに会います。

そしてライデン大学でのローレンツ
地位を引き継ぎます。

ライデン大学の教授を務めた彼のもとには
多彩な人材が集まり育っていきました。
彼は弟子達をヨーロッパの研究機関で修行
する事を勧め、海外の違った環境で研究を
する事を奨励しました。
ヘンリク・クラマース、
ジェラルド・カイパー
などが学生として所属、
グンナー・ノルドシュトルム、
エンリコ・フェルミ
イーゴリ・タム、オスカル・クライン、
ロバート・オッペンハイマー
ハイゼンベルク
ポール・ディラック
_が外国人研究者として

長期間研究をしました。

ボルツマンを思い返すとエーレンフェストという人が点であって、その点がオーストリアという糸でボルツマンと結ばれていったような気がします。そして、ボルツマンの考えを受け継いだエーレンフェストが他国の糸と絡み合っていく気がします。また、ボルツマンの考えを受け継いだシュレディンガーがエーレンフェストの研究室で議論したディラックと同時に1933年のノーベル物理学賞を受賞します。人を育てるという大変さと重要さを感じます。大きな仕事です。

そして晩年

そして晩年なのですが、エーレンフェストは
重度のうつ病に苦しんでいたようです。
アインシュタインが仕事量を減らすように
職場に働きかけたたようです。
最後はダウン症だった末っ子Wassikを
打ち殺し自らも命を絶ちます。
ご冥福をお祈りするしか出来ません。
彼が考え抜いた末の結論だったのです。

そして、エーレンフェストが始めた
ライデン大学での夜間・物理学コロキウムは、
今でも「Colloquium Ehrenfestii」と呼ばれ、
続いているそうです。
今晩も議論しているかも知れません。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/21_初版投稿
2022/06/19_改定投稿

舞台別のご紹介
時代別(順)のご紹介

オーストリア関連のご紹介
ウィーン大関連のご紹介
オランダ関係の紹介へ
ライデン大学のご紹介

熱統計関連のご紹介へ
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

Ehrenfast, expected value and wavefunction

Paul Ehrenfest can be said to be a sophisticated combination of statistical mechanics and quantum mechanics. He combined two indicators in each field, the expected value and the wave function.

The photos used in this article are also significant. It is Ehrenfest that more strongly connects the two great men, Einstein and Lorenz. A lot of thoughts should have gone on at Ehrenfest’s house. Born in Austria and raised in Vienna, Ehrenfest in his research life

I think he was very fortunate.

First of all, he has an environment where he receives Boltzmann’s lectures, and he is very impressed with the idea of ​​thermodynamics and the kinetic theory of gas molecules. He was able to connect the micro world with the world of mass model that can be imagined under the visible. He also met Lorenz on a short trip, inspired each other, and then made friends with Einstein. Since Einstein and Ehrenfest were both Jewish, they probably shared many “thoughts” and “topics.”

More detailed explanation of expected value

At the beginning, Ehrenfest stated that he associated two indicators, the expected value and the wave function, but the “expected value” is simply the “average value”. For example, when considering the distance, the higher the accuracy, the wider the measured value. It can be 4.155 mm or 4.154 mm. So he takes the average of several measurements to determine what he thinks is likely. Expected value. When you use the word expected value, please think that the variance value and the error are written together and statistically processed.
[As a more detailed story, not only discrete values ​​but continuous values
We will consider the expected value and variance value for. ]

More detailed wave function explanation

In addition, Ehrenfest’s other concept, the wave function, is a mathematical means for expressing physical quantities for microscopic objects that were thought to be unobservable at the time when expressing the fine world. A function discussed in Hilbert space, which takes an infinite dimensional definition. There is also a situation where microscopic substances have both particle and wave properties, and a wave function that embodies both will appear.

According to Ehrenfest’s formalized theorem, it is possible to find the momentum and velocity of a phenomenon in which wave nature appears prominently and to discuss it in comparison with particles. The two methods are connected.

 

Background of the era of Ehrenfast’s theorem

The concept of matter waves advocated by France’s de Broglie was highly evaluated by Einstein, who was unique at the time of the dissertation review, and Ehrenfest of the Netherlands deepened the quantitative discussion. Achieving that concept formation was the solution to the questions that people continued to seek across countries. And now it is the knowledge of humankind that even university students can share.

Also, after Boltzmann’s death, Ehrenfest summarized and announced a number of his great achievements. People who know about such activities naturally have high expectations for Ehrenfest. Ehrenfest embarks on an unfinished work that Boltzmann was writing. He was said to have been a mathematician’s job of thinking about statistical mechanics, but he had a keen eye for the verification of unformed models. In addition, the problems that had been shelved were identified and sorted out. Ehrenfest’s wife, who was a mathematician, cooperated in the work, and both worked on unsolved physics problems by making full use of mathematical models.

Ehrenfest was also an excellent educator.

He met Planck, Sommerfeld, and Einstein during a visit to a German-speaking university in 1912. And he will take over Lorenz’s position at Leiden University. He was a professor at Leiden University, and a diverse group of human resources grew up under him. He encouraged his disciples to practice at European research institutes and to study in different environments abroad.
Hans Kramers,
Gerard Kuiper
Etc. belong as a student,
Gunnar Nordström,
Enrico Fermi,
Igor Tamm, Oskar Klein,
Robert Oppenheimer,
Heisenberg,
Paul Dirac
_ Has studied for a long time as a foreign researcher.

Looking back on Boltzmann, I think that the point was Ehrenfest, and that point was tied to Boltzmann with a thread called Austria. And I feel that Ehrenfest, who inherited Boltzmann’s ideas, is intertwined with threads from other countries. In addition, Schrodinger, who inherited Boltzmann’s ideas, won the 1933 Nobel Prize in Physics at the same time as Dirac discussed in Ehrenfest’s laboratory. He feels the difficulty and importance of raising people. It’s a big job.

And his later years

And in his later years, Ehrenfest seems to have suffered from severe depression. Einstein seems to have worked on the workplace to reduce his workload. In the end, he kills his youngest child, Wassik, who had Down Syndrome, and kills himself. You can only pray for your soul. It was the final conclusion he had thought out.

And the night and physics colloquium at Leiden University, which Ehrenfest started, is still called “Colloquium Ehrenfestii” and it seems to continue. I may be discussing it tonight as well.

に投稿 コメントを残す

A・アインシュタイン
【1879年3月14日生まれ‐6/19改訂】

SolvayConf-1927

こんにちはコウジです。「アインシュタイン」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と5/28の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3533‗②ev2Fz71Tr4x7b1k‗2717⇒3085
‗③BLLpQ8kta98RLO9‗2543⇒4725‗④KazenoKouji‗3422⇒5831
なので合計‗6102+5965=【12067@2/9】⇒6618+10556【17174@5/28】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1879年3月14日生まれ ~ 1955年4月18日没】


【スポンサーリンク】

現時点で最も有名な物理学者でしょう。

このアインシュタイン(Albert Einstein)は

パラダイムシフトを起こし20世紀初頭、

物理学に大きな変化をもたらしました。

26歳のアインシュタイン

1905年に26歳のアインシュタイン

は3つの歴史的な論文を発します。

「光量子仮説」

「ブラウン運動の理論」

「特殊相対性理論」

です。

光量子化説は光の性質を考え量子化している論文、

ブラウン運動は花粉挙動から分子運動を
解析した論文、

特殊相対性理論は光速度に近い移動体の考察。

こういった考察から空間・時間の概念を変えていき、ミクロの物質の考察を進めています。色々な学者と討議を重ねて、現実に対しての理解を深めていきます。具体的にマリ・キューリーと親交を深めていて、チューリッヒ大学教職に推薦をしてもらっています。

少年時代のアインシュタイン

アインシュタインは少年時代から物理学者として「考える」土壌を育んでいました。そういった話をする際によく語られるのは、居眠りから目覚めた後に考え続けたと言われている思考実験です。

それはすなわち、「光の速さで光を追いかけたらどうなるか」という思考実験です。子供が大人から「光は速い」という事実と「光を使って物が見える」という2つの事実を学んだとしたら、その後に子供ならではの素朴な考えで、「それならば・・・・」と考え続けていったのです。

考えること自体は誰でも出来る事ではありますが、そこから先、解決出来ない疑問を覚えていて、大事だと思い、解決した結果が人類共通の知の財産となったのです。そこには必ず苦労と乗り越えた時の喜びがあります。

苦労人のアインシュタイン

時代的な話としてもアインシュタインはユダヤ系であるので彼は大変苦労しています。当時のドイツはナチスの時代ですからホロコーストが実際にあったのです。また、アインシュタインはドイツの為に原爆の製造をすることに貢献出来た筈です。

実際には崩壊していくドイツ帝国を去り、アメリカでマンハッタン計画に参加します。個人の物理学者として多少の無力感を感じていたのではないでしょうか。

またいつかアルバート・アインシュタインの子供、ハンス・アインシュタイン について記述することが出来ればと思っています。

アインシュタインの言葉 

苦労人のアインシュタインは数々の名言を残していますが、

私が好きな言葉を最後に残します。

アインシュタインの意志の強さを感じます。

「think and think for months and years.

Ninety-nine times, the conclusion is false.

The hundredth time I am right.」

私は、数ヶ月も何年も考え続けます。

99回まで、その結論は正しくないですが、

100回目に正しい答えを出すことができるのです。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来ていませんが
問題点には必ず返信・改定をします。

nowkouji226@gmail.com

2020/09/06_初稿投稿
2022/06/19_改定投稿

旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
ドイツ関係のご紹介
オランダ関係の紹介へ
ライデン大学のご紹介へ

熱統計関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

 famous physicist  Einstein 

Isn’t it the most famous physicist at the moment? Introducing Albert Einstein, a paradigm shift that brought about major changes in physics in the early 20th century. In particular, in 1905, 26-year-old Einstein published three historical treatises. “Photon hypothesis,” “Brownian motion theory,” and “special relativity.”

Three paper’s

The photonunization theory is a paper that quantizes light properties, the Brownian motion is a paper that analyzes molecular motion from pollen behavior, and the special relativity is a study of moving objects that are close to light velocity.

From these considerations, we are changing the concept of space and time, and are proceeding with the consideration of microscopic matter. He discusses with various scholars and deepens his understanding of reality. He specifically has a close relationship with Mari Curie and has been recommended by the University of Zurich teaching profession.

Einstein in childfood 

Einstein has cultivated a “thinking” soil as a physicist since his childhood. When talking about such things, a thought experiment that is said to have continued to think after waking up from a doze is often talked about. In other words, it is a thought experiment of “what happens if you chase light at the speed of light”. If a child learns from an adult the fact that “light is fast” and “you can see things using light”, then the simple idea of ​​a child is “If so …” I kept thinking.

Anyone can think about it, but from that point onward, I remembered the questions that I couldn’t solve, thought it was important, and the results of the solutions became a common property of humankind. There is always the hardship and the joy of overcoming it.

Germany at that time

Einstein is of Jewish descent, so he is having a hard time. Germany at that time was in the Nazi era, so the Holocaust actually existed. Einstein could also have contributed to the production of the atomic bomb for Germany. He actually leaves the collapsing German Empire and joins the Manhattan Project in the United States. Perhaps he felt a little helpless as an individual physicist. I also hope to be able to describe Hans Einstein, a child of Albert Einstein, someday.

Einstein, a hard worker, has left a number of quotes, but the last one I like. I feel the strength of Einstein’s will.

“Think and think for months and years. Ninety-nine times, the conclusion is false. The hundredth time I am right.”

に投稿 コメントを残す

大河内正敏
【1878年12月6日生まれ‐6/18原稿改訂】

東大

こんにちはコウジです。「大河内正敏」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と5/28の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3533‗②ev2Fz71Tr4x7b1k‗2717⇒3085
‗③BLLpQ8kta98RLO9‗2543⇒4725‗④KazenoKouji‗3422⇒5831
なので合計‗6102+5965=【12067@2/9】⇒6618+10556【17174@5/28】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1878年12月6日生まれ ~ 1952年8月29日没】


【スポンサーリンク】

大河内家の御曹司

大河内正敏は旧上総大多喜藩主にして子爵の

大河内正質の息子として生まれました。

正敏は学習院初等科に進み、大正天皇と共に学びます。

また大河内とは珍しい名字だなと思っていたら

奥様も大河内家から娶っていたりして、なんだか

皇族みたいな感じがしました。平民とは違う華麗なる一族

って感じです。鹿鳴館で踊っていても違和感ありません。

政界では子爵議員として貴族院で議員を2期務めます。そんな中で若かりし無名の田中角栄を可愛がっていたといわれます。そんな人なので理化学研究所の3代目所長に就任したした時は理研研究員にして、貴族院議員で子爵、そして東京帝大教授でした。そんな偉人を今回はご紹介します。

大河内正敏の業績

大河内正敏は東大で物理学を学んでましたが時節柄、寺田寅彦と飛行弾丸の研究をしていたようです。物理学を駆使すれば流体力学や表面の解析が出来ます。

大河内正敏が進めた具体的な別の活用事例としては、ピストンの開発があります。ここでもシリンダー内の熱流体解析や、摂動面の摩擦特性を解析出来ます。この研究は後の株式会社リケンにつながります。戦後にリケンのグループは、GHQより十五大財閥の一つとして指定を受けます。

そして、眠りに

こうした業績を残して今、大河内正敏は埼玉県にある

平林寺で永眠しています。

その近くには理化学研究所の分室があり、

今でも研究者たちが世界に冠たる研究を続けています。

【スポンサーリンク】

〆最後に〆

以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。

nowkouji226@gmail.com

2020/12/17_初版投稿
2022/06/18_改訂投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

Okochi family sergeant

Masatoshi Okochi was born as the son of Masatoshi Okochi, the former lord and viscount of the Otaki feudal lord of Kazusa. Masatoshi goes to Gakushuin Elementary School and studies with Emperor Taisho. Also, when I thought that Okochi was a rare surname, my wife was also a kid from the Okochi family, and I felt like a royal family. It feels like a splendid clan different from the commoners. I’m sure they were dancing at Rokumeikan.

He is a member of the House of Lords for two terms as a Viscount member in politics. Under such circumstances, it is said that he loved the young and unknown Kakuei Tanaka. As such, he was a RIKEN researcher, a member of the House of Lords, a Viscount, and a professor at the University of Tokyo when he became the third director of RIKEN. I would like to introduce such a great man this time.

Achievements of Masatoshi Okouchi

Masatoshi Okouchi studied physics at the University of Tokyo, but he seems to have been studying flying bullets with Torahiko Terada. He can use physics to analyze fluid mechanics and surfaces.

Another specific use case promoted by Masatoshi Okouchi is the development of pistons. Here, too, you can analyze the thermo-fluid inside the cylinder and the friction of the perturbing surface. This research will lead to RIKEN CORPORATION later. After the war, this group was designated by GHQ as one of the 15 major conglomerates.

And to sleep

With these achievements, Masatoshi Okouchi is now sleeping at Heirinji Temple in Saitama Prefecture. There is a branch office of RIKEN nearby, and researchers are still conducting world-class research.