に投稿 コメントを残す

ニコラ・テスラ
6/23改訂【磁場の単位を残し、それを社名として名を残したアメリカの天才】

austria-Credit:pixabay

こんにちは。コウジです。
テスラの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

電気モーター(教育玩具)
【スポンサーリンク】

ニコラ・テスラ【1856年7月10日生まれ ~ 1943年1月7日没】

 発明家テスラ

テスラはオーストリア帝国に生まれ
工夫を重ね、
誘導モーターを発明します。

そのモーターを広める為に
アメリカに渡って、かのエジソン
のもとで働いていましたが独立して
高電圧の変換をして発表をしたり
回転界磁型の電動システムを実用化して
供電社会の礎を築いたりしました。

テスラとエジソン

テスラとエジソンとの間には次第に対立関係が生まれますが、2陣営の対立は送電方式の考え方の違いが大きかったようです。エジソンが直流による電力事業を考えていたのに対してテスラは交流による電力事業に利点があると考えていました。実際に交流が主流になるのです。

幸運な事にテスラは多才でした。例えば
テスラはプレゼンテーションが上手でした。

学会での発表を聞いていたジョージ・ウェスティングハウスが感銘を受け、テスラは資金供給を受け始めます。最終的にはナイアガラの滝を使った発電システムの実現に繋がり、テスラは成功を収めました。ナイヤガラの滝を眺めて誰しも壮大な景色に心を動かされると思いますが、その時の感動を事業のアイディアへ繋げていく思考がテスラならではの凄さですね。事業計画のプレゼンテーションをする時に説得力を持ちますね。後は「本当に出来るの?」と聞かれている内容を説明していく説得力も大事です。そのアイディアや説得力をテスラは持っていました。

数々の事業を成功へ導いたテスラですが、色々な別れがあり晩年は寂しい老後を送っていた様です。テスラは生涯独身でした。内向的な性格が影響しているようです。

そしてテスラの名は今、磁場の単位として使われている他に、会社の名前として名を残しています。数トンの重さがあったと言われる彼の発明品や設計図はFBIが写しをとった後に母語へと返されています。

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

【スポンサーリンク】

nowkouji226@gmail.com

2020/10/16_初版投稿
2024/06/23_改定投稿

舞台別のご紹介
時代別(順)のご紹介
アメリカ関係へ
電磁気関係
オーストリア関連のご紹介
グラーツ大学関連へ

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年9月時点での対応英訳)

Inventor Tesla

Tesla was born in the Austrian Empire and invented an induction motor. After that, he traveled to the United States to spread the motor in addition, worked under Edison, but independently converted high voltage and made presentations and put into practical use a rotating field type electric system. It laid the foundation for a power supply society.

Tesla and Edison

A confrontational relationship with Edison gradually arises, but it seems that the confrontation between the two camps was largely due to the difference in the way of thinking about the power transmission method. While Edison was thinking of a DC power business, at that time, Tesla thought that an AC power business would have an advantage. In fact, exchange becomes mainstream.

Fortunately, for example Tesla was good at presenting.

George Westinghouse, who was listening to the conference presentation, was impressed and began to receive funding.

Ultimately, Tesla was successful in realizing a power generation system using Niagara Falls.

He is Tesla, who has led many businesses to success, but he seems to have had a lonely old age in his later years due to various farewells. Tesla was single all his life.

And in addition to being used as a unit of magnetic field, Tesla’s name is now left as the name of the company.

Tesla’s inventions and blueprints, which are said to have weighed several tons, have been returned to their native language after being copied by the FBI.

に投稿 コメントを残す

山川 健次郎
6/22改訂【後進を育てた日本物理学黎明期の先駆者・東大総長】

東大

こんにちは。コウジです。
山川 健次郎の原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

難しくない物理学
【スポンサーリンク】

山川 健次郎【1854年9月9日生まれ ~ 1931年6月26日没】

山川健次郎の人生

山川 健次郎は日本初の物理学者です。その家は会津藩の家老家で戊辰戦争では健次郎は白虎隊に所属していました。自刀していった仲間もいた中で、山川健次郎は落ち延びました。その後に米国へ国費留学を果たし、イェール大学で物理学を修めます。日本に戻り、最終的には東大総長・京大総長を務めます。

山川健次郎と辰野金吾

私の家祖が会津藩・彰義隊でしたので個人的に彼になんとなく親近感と敬意を持っていました。山川健次郎は国費留学生として イェール大学で学位を修めます。また、東京駅の設計に携わった建築家・辰野金吾とは奥様を通じて親戚関係となっています。

山川健次郎のお人柄と研究成果

山川健次郎のお人柄を表すエピソードとして
日露戦争に関するものがあります。当時、
彼は東大で総長を務めていましたが、
愛国心に満ちた健次郎は陸軍に詰め寄り、
一兵卒として従軍させろ」と担当を困らせたそうです。
個人・家族・所属国家と意識が繋がっていたのですね。
その時にはもはや、賊軍だった頃の意識は無いのでしょう。

山川健次郎の時期の物理学会は諸外国との交流を感じさせません。特にコペンハーゲン学派が中心となって次々と新しい知見をもたらしていた時代に日本の物理学は黎明期にありました。欧州よりもむしろ日本に開国を促した米国に目を向けていたのです。それが精一杯だったのでしょう。「お雇い外人」は殆ど米国人です。

そして山川の時代まで欧州は遠く、新大陸はまだ
未開の部分が今より多い時代です。
米国の独立戦争が1861年から1865年だったことも
思い返してみましょう。

後の時代に原子核内の相互作用を解き明かしていく若者達を育てていく時代だったのです。山川健次郎と同年代のカメリー・オネスローレンツは師に恵まれ論敵に恵まれて、マッハボルツマンの構築した知見の中で考えを進めていたのです。大きく異なる環境から日本の物理学はスタートしています。

山川健次郎自身の研究成果は伝えられていません。研究内容をまとめた論文も広く知られていません。あるのでしょうか。それよりも寧ろ、後輩達を育てながら次の時代への為の土壌を育んでいたと考えるべきでしょう。

また、この時代に千里眼を巡る話題が世間を騒がせていましたがそれに対して山川健次郎は批判的で冷静な立場をとっていたと伝えられています。今も昔も千里眼という不可思議な現象は「議論して解明できる内容ではない」と考える方が良いようです。

〆最後に〆

コスパ最強・テックジム|プログラミング教室の無料カウンセリング【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/09/23_初回投稿
2024/06/22_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
京大関連のご紹介
イェール大学関連のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年9月時点での対応英訳)

Yamakawa Kenjiro’s life

Kenjiro Yamakawa is Japan’s first physicist. The house was the old family of the Aizu clan, and Kenjiro belonged to Byakkotai during the Boshin War. Kenjiro Yamakawa fell asleep while he had his own sword. He then went on to study abroad in the United States and studied physics at Yale University. He will return to Japan and eventually serve as President of the University of Tokyo and President of Kyoto University.

Kenjiro Yamakawa and Kingo Tatsuno

My ancestor was the Aizu clan Shogitai, so I personally had a sense of familiarity with him. Kenjiro Yamakawa is a government-sponsored international student and he completes his degree at Yale University. He also has a relative relationship with the architect Tatsuno Kingo, who was involved in the design of Tokyo Station, through his wife.

Yamakawa Kenjiro’s personality
and research results

There is an episode about the Russo-Japanese War as an episode that shows the personality of Kenjiro Yamakawa. At that time, he was the president of the University of Tokyo, but the patriotic Kenjiro rushed to the Army and asked him to serve as a soldier. Your consciousness was connected to your individual, your family, and your nation. At that time, I wouldn’t be aware of what I was when I was a thief.

The Physical Society of Japan during Kenjiro Yamakawa’s time does not make us feel any interaction with other countries. In particular, Japanese physics was in its infancy at a time when the Copenhagen school was playing a central role in bringing in new knowledge one after another.

It was an era of nurturing young people who would unravel the interactions within the nucleus in later times. Kamerlingh Ones and Lorenz, who were of the same age as Kenjiro Yamakawa, were blessed with teachers and controversial opponents, and were advancing their thoughts based on the knowledge built by Mach and Boltzmann. Japanese physics starts from a very different environment.

Kenjiro Yamakawa’s own research results have not been reported. A paper summarizing his research is also not widely known. Is there? Rather, it should be considered that he was raising his juniors and nurturing the soil for the next era. In addition, it is said that Kenjiro Yamakawa took a critical and calm position against the topic of clairvoyance that was making a noise in this era. Even now and in the past, it seems better to think that the mysterious phenomenon of clairvoyance is “not something that can be discussed and clarified.”

に投稿 コメントを残す

【改訂】東大が量子コンピューターを2023年秋に導入
(IBM社製‗127量子ビット)

東大

こんにちはコウジです!
「東大が量子コンピューター」の原稿を改定します。
今回の主たる改定は新規追記分の補完です。
大分長いこと改定していませんでしたね。

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

(写真は従来の基盤の写真です)

以下投稿の内容は2023/04/22の
日経新聞記載の情報メインです。
現代の情報だと考えて下さい。

新聞記事を離れた所で冷静に考えていくと
税金の使い道の話でもあります。

日本国民の皆様が一緒になって考えて、
出来れば知恵を出し合えたら
より良い展開に
つながる類の話題なのです。しかし、
実のところ、大多数の日本国民は
「量子コンピュータ?言葉は聞くけれども…」
って感じで内容が議論されていません。
議論を喚起しましょう。

本記事では私論を中心に語ります。但し、
記載した量子ビット数は何度も確認しています。

ニュースのアナウンサーも語れる内容が少ない
のでしょう。
そんな中で東大本郷キャンバスでは
記者会見が開かれ、IBM社のフェローが
「有用な量子コンピューターの世界がすぐそこまで来ている」
と語っています。

物理学を専攻していた私でも多分野において下調べが必要です。
当面、「ラビ振動」、「共振器と量子ビットの間の空間」
「ミアンダの線路」、「量子誤り訂正」といった概念を
改めて理解し直さないと最新の性能が評価できません。

特に理化学研究所に導入された機種は
色々な情報が出ていて教育的です。対して
東大が導入するIBM社製の量子コンピューターは
トヨタ自動車やソニーグループなど日本企業12社での
協議会による利用を想定していて、
利益享受を受ける団体が限られています。
今後の課題として利用の解放(促進)が望まれます。 

東京大学が川崎拠点に導入

既に27量子ビットを導入している川崎拠点に2023年の秋に
127量子ビットの新鋭機を導入する予定です。
経済産業省は42億円の支援を通じて計算手法等の
実用面へ向けての課題を解決していく予定です。

一例としてJSR(素材メーカー)が「半導体向け材料の開発」
を想定して活用する方針を打ち出しているようですが
具体的にプロジェクトに参加する事で得られるメリットを
明確にする作業は大変そうです。

現時点での量子コンピューターの国内体制

報道では「量子ビット」の数に着目した表現が多いです。
実際に理化学研究所では2023年の3月に64量子ビットの
装置を導入して研究を進めています。

また、英国のオックスフォード・クァン・サーキッツ
は都内のデータセンターに今年の後半に量子コンピューター
を設置予定で外部企業の利用も想定しています。

対して米国のIBMでは433量子ビットのプロセッサーが開発
されていて、2023年度中には1000量子ビットの実現、
2025年度には4000量子ビット以上の実現を計画しています。 

EV電池開発に革新的貢献ができるか

一例としてIonQ社とHyundai Motor社は共同で
量子コンピューターに対する
バッテリー化学モデル
を開発しています。(2022年2月発表~)

実際に同社は新しい変分量子固有値ソルバー法
(VQE:Variational Quantum Eigensolver)を共同で開発してます。
開発目的はバッテリー化学におけるリチウム化合物や
化学的相互作用の研究への適用です。

 特定の最適化問題を解決するVQEは原理的に
量子コンピューターと親和性が良いです。
変分原理を使用し、ハミルトニアンの基底状態エネルギー、
動的物理システムの状態の時間変化率を考えていくのです。
計算上の限界で、既存システムでは精度に制約がりました。

 具体的に酸化リチウムの構造やエネルギーのシミュレーション
に使用する、量子コンピュータ上で動作可能な
バッテリー化学モデルを共同開発しています

リチウム電池の性能や安全性の向上、コストの低減が進めば
EV開発における最重要課題の解決に向けて効果は大きいです。
【実際、EV価格の半分くらいはバッテリーの価格だと言われています】

ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2023/04/23_初稿投稿
2024/03/17‗改訂投稿

舞台別のご紹介へ
時代別(順)のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

日本での量子コンピューターの実現へ向け新会社設立【分子研が中心‗冷却原子方式採用】

次世代の高速計算機を商用化へ

国内のメーカーと国の研究機関が2024年度に新会社を立ち上げます。新会社が成功するためには、大事な事が思い浮かびますね。

まず、産業連携と協力:

他の企業や研究機関との連携が重要です。共同研究やパートナーシップを通じて、幅広い視点からの知見を取り入れること大事です。

そして、市場調査と需要予測:

顧客のニーズを正確に把握し、市場調査を行い、将来の需要を予測することが重要です。これにより、製品やサービスの開発において競争力を維持できます。

最後に、人材の確保と育成:

高度な技術を持った人材を確保し、彼らのスキルを磨くための継続的な教育プログラムを提供することが成功の鍵となります。アイディア出しの段階とは別に産業塾生の為に大事な時期があると考え、産業成長の為に尽力する人員が必要です。

日本の特技とプレーヤー

会社としてプレーヤーとして名乗りを上げているのは富士通、日立製作所、NEC、浜松フォトニクス、スタートアップのblueqatやグルーヴノーツが参加する予定です。

国の研究機関としては自然科学研究機構・分子科学研究所(分子研・愛知県岡崎市)が中心となり新会社を設立する模様です。こうした事業で想定される予算の流れを考えると出資比率に伴い、国から各社に補助金がつく形となる事でしょう。詳細は今後決めていくようです。また他機関としての日本投資銀行も参画します。

超伝導方式と冷却原子方式

今回の量子素子(従来コンピューターでのビットに相当)を実現する
ハードウェアは「冷却原子方式」と呼ばれる新しいタイプです。

理化学研や米IBMが超伝導方式(今のスタンダード)を採用
しているのに対して、新団体の方式は絶対零度近くに冷やした
ルビジウム電子を使います。

「原子1個1個を高精度で捕捉できる「光ピンセット」と呼ぶ技術の発達」

を使っている所がポイントです。
従来方式より技術的なメリットが出てきます。

夫々の方式で計算時のエラー対策や素子の集積化など課題
はありますが冷却原子方式の方が超伝導方式に比べて
素子の安定性が高く集積化にも有利ではないかと言われています。

【分子科学研・大森氏のコメント】

開発の課題

全体的な目論みとしては日本独自の将来の国際競争力を確保する目論見
がありそうです。2024年2月の時点での大きな進展として、新方式での
計算原理で大事になってくる「操作」に関わる時間を大幅に短縮しました。
分子研の大森賢治教授らが独自のレーザー技術で基本操作を10ナノ秒以下の
短時間で実現しています。
(原理的には2022年に英国の雑誌に発表しています)

また、
競合としてハーバード大学とその関係者(クエラ・コンピューティング)
が居て日米での競争となっています。

最後に
著者は急速に発展する量子コンピューターと
AIの技術進展が同時期に起きている事情に鑑み
この二者が関連しているのではないかという視点
を込めて今後の考察を進めていきます。
「何となく」
って感覚も大事ですよね。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、返信・改定をします。

nowkouji226@gmail.com

2024/03/06_初回投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
【(別ブログ)雑記の纏め記事へ

【このサイトはAmazonアソシエイトに参加しています】

 

に投稿 コメントを残す

物質同士が真空で引き合う?!3/1改訂【狭い空間でのカシミール効果とその検証】

こんにちはコウジです!
「カシミール効果」の原稿を改定します。
今回の主たる改定はAI情報の再考です。また、

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

カシミール効果の検証

先ず本稿は2024年1月7日の記事からの情報で起草しています。近接した2つの物体が量子力学的な効果で引き合うという現象です。

電磁力でもなく万有引力でもない力でマクロなスケールの物体が引かれ合う現象は不可思議だと言えますが、正に量子的な効果だと言えます。

蘭ヘンドリク・カシミール

そもそも、こうした現象は理論的に予言されていました!!オランダのヘンドリックカシミールが真空中で生じると1948年に予想していたのです。

量子力学的に考えて、板の内側の狭い空間(数十nm)での真空状態を考えた時に板の内側での波動関数が外側と異なる筈なのです。結果として板同士が引き合う力が生じます。板の内側の波動関数の方が外側よりも秩序を持っているからだとも言えますね。エネルギーに相当する振動(波)を観測する作業となります。

ゆらぎの効果と制御

カシミール効果の検証は困難でしたが技術の進展に伴い、最近観測されるようになりました。1997年に実験で確かめられています。(参考:京都大学での測定

産業ではトヨタ中研でロードベアリングでの応用を考えているそうです。またMEMS(超微小電気機械システム)への応用が検討されています。江崎ダイオードを実用化したように独自の技術が期待できますね。

名大での2012年の実験

そもそも「ゆらぎの」現象が顕著となる設定は不確定性原理を十分に考察する必要があります。

その不確定性原理を覆す観測が2012年に名古屋大学で報告されています。

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2024/02/18_ 初稿投稿
2024/03/01_改訂投稿

旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係へ
電磁気関係へ
熱統計関連のご紹介へ
量子力学関係へ

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

物質同士が真空で引き合う?!【狭い空間でのカシミール効果とその検証】

カシミール効果の検証

先ず本稿は2024年1月7日の記事からの情報で起草しています。近接した2つの物体が量子力学的な効果で引き合うという現象です。

電磁力でもなく万有引力でもない力でマクロなスケールの物体が引かれ合う現象は不可思議だと言えますが、正に量子的な効果だと言えます。

蘭ヘンドリク・カシミール

そもそも、こうした現象は理論的に予言されていました!!オランダのヘンドリックカシミールが真空中で生じると1948年に予想していたのです。

量子力学的に考えて、板の内側の狭い空間(数十nm)での真空状態を考えた時に板の内側での波動関数が外側と異なる筈なのです。結果として板同士が引き合う力が生じます。板の内側の波動関数の方が外側よりも秩序を持っているからだとも言えますね。エネルギーに相当する振動(波)を観測する作業となります。

ゆらぎの効果と制御

カシミール効果の検証は困難でしたが技術の進展に伴い、最近観測されるようになりました。1997年に実験で確かめられています。(参考:京都大学での測定

産業ではトヨタ中研でロードベアリングでの応用を考えているそうです。またMEMS(超微小電気機械システム)への応用が検討されています。江崎ダイオードを実用化したように独自の技術が期待できますね。

名大での2012年の実験

そもそも「ゆらぎの」現象が顕著となる設定は不確定性原理を十分に考察する必要があります。

その不確定性原理を覆す観測が2012年に名古屋大学で報告されています。

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2024/02/18_ 初稿投稿
2024/02/29_改訂投稿

旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係へ
電磁気関係へ
熱統計関連のご紹介へ
量子力学関係へ
AIでの考察(参考‗以下8行)
【量子力学において、物体が近接している状況では、電磁力や重力といった古典的な力だけでなく、】
【量子効果によっても相互作用が起こります。これは「量子力学的な引力」と呼ばれることがあります。】
【具体的な例としては、カスミール効果が挙げられます。これは、2つの平行な平板が非常に近接していると、】
【真空中における零点振動により、これらの平板が引き合う現象です。カスミール効果は量子場論の一部であり、】
【真空中の量子フラクトゥエーションによって引き起こされるものです。】
【このような量子的な引力効果は、通常の重力や電磁気力とは異なる特性を持ち、微小な距離や】
【微小なスケールでの相互作用に関与します。これは古典的な物理学の範疇を超えるものであり、】
【近年ではナノテクノロジーや微小な物体の挙動の理解において重要な要素となっています。】

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

あけましておめでとうございます。今年も宜しくお願い致します。【本ブログの方向性】

年が明けて目出たいですね。

皆様あけましておめでとうございます。今年もどうぞよろしくお願いします。

個人的には昨年度は色々と新しいことがありましたが、なにより

AIとの出会いがとても意義深かったです。

これからもAIを中心にネット活動を続け、理想を具現化します。

本ブログの今後(方向性)

なにより本ブログは私のネット生活のきっかけとなったブログで

これからも大事にしていきたいと考えています。

少なくとも、年に7人程度の物理学(数学)者を掘り起こし

主にリライトをしながら個別記事を洗練・充実させていく

方向で今後も続けていきたいと思います。

どうぞ宜しくお願い致します。

|コスパ最強・タイパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2024/01/01_初版投稿

舞台別のご紹介
時代別(順)のご紹介

オーストリア関連のご紹介
ウィーン大関連のご紹介
オランダ関係の紹介へ
ライデン大学のご紹介

熱統計関連のご紹介へ
量子力学関係

AIでの考察(参考)

 

に投稿 コメントを残す

ドラマまとめ【物理ネタでもしっかりしたドラマがあるって知ってました?】

ドラマでも物理を追いかけよう

本稿を起こしている気持ちとしては逃避の側面があります。

研究や会社員の世界にどっぷりハマった日常生活から
「抜け出したい!!」という切なる願いがありました。

それでも、
普段の生活に戻った時に落差が大きいのは嫌なので
今回の原稿に繋がっています。さらっと楽しんでください。

海外ドラマは新鮮!!

まず、現地でのタイトルは「Einstein]!!をご紹介します。

アインシュタイン天才科学者の殺人捜査

(以下、後日追記します)

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2023/10/29‗初稿投稿
2023/12-30‗改訂投稿

旧舞台別まとめへ_
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

 

に投稿 コメントを残す

【お勧めの海外ドラマ‗2015年ドイツ制作】アインシュタイン天才科学者の殺人捜査

アインシュタインの犯罪捜査

昨日、アマゾンで御嫁が見ていて

面白かったので私もこれから見続けます。

何と言ってもスピード感が秀逸!!

初回は2015年放送、シリーズ化は2017年です。

 

 

テレビドラマの「相棒」でも

仲間内での会話がブラックだったりして

言葉遊びでワクワクする瞬間があります。

そんな感じで会話もテンポよく進みます。

舞台はドイツ語圏が多い。

 

主人公自体はルール大学の教授で

違法薬物の前科で逮捕されると刑務所行きの人。

そんな人がアインシュタインの子孫なのです。

まぁ無茶無茶な設定で痛快??

 

作中でもドラック使ったりして

教育的には良くない気もしますが

エンターテイメントとして楽しめばよいでしょう。


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2023/10/29_初稿投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
力学関係のご紹介

に投稿 コメントを残す

大森賢治氏が冷却原子方式に挑む【超電導の実現へ向けて新しい方式を提案】

東大

はじめに

本稿は2023年9月13日の日経新聞に掲載された記事を骨子として、
著者であるコウジ独自の関心に従い追記した内容となっています。

量子コンピュータの実現へ

量子コンピューターの実現に向けて 各国が独自の技術を競い合う中で、
単一原子 に着目した 原子冷却方式と呼ばれる 方式に
日本の技術者が挑戦しています。アメリカの学会で
成果を発表したところ 反響著ししく、
新たな成果が期待されています。

米ロードアイランド州のサルベレジーナ大学で
開かれた量子制限に関する研究会で、
日本人の大森賢司さんが議長を務めました。

この合同研究かは 90年以上の歴史を持ち
特にジョン・マスティース米カリフォルニア 大学教授 ら
著名な学者が参加していることで有名です。

今回160人の規模で会議が開かれています
大森さんらが手がける冷却原子方式の量子コンピューターは
実用化で先行する超電導方式、光方式に続く
第3の量子コンピューターと呼ばれています。

マティニス教授も絶賛

昨年8月に 大森教授らが開発した 研究成果を マティニス教授は
主に評価しています。 計算速度を上げるためにゲート操作時の
原子間の距離を十分に近づける事が必要なのに対して
超高速のパルスレーザーを照射するという
独自の方式で実現した結果です。

操作スピードは従来方式に比べ2桁早くなり
Google が超電動方式で2020年に発表した記録を
しのいでいます。

どこにメリットがあるか

第1のメリットとしては現在主流となってる超伝導方式の
量子コンピューターと異なり冷却器が不要という点です。
装置が必要で稼動できるということが大きな特徴です。
新しい方式では大規模化が難しく好ましい量子状態が
長時間維持できるという所が大きな特徴です。

また大規模化が容易で量子状態を長時間維持できる
特徴があります。ただし計算する時の冷凍操作に
時間がかかることが大きな問題点でした。

卓越したアイディア

2010年頃に大森教授が各界で評価を受けた内容は「通常のコンピューターのように電荷で情報を担う」のではなくて波動関数が情報の担い手として活躍する仕組みです!!

超高速の分子コンピューターと呼ばれます。分子にアト秒間隔で2つのレーザーパルスを与え反応を見ます。1アト秒とは100京分の1秒、一秒間に地球を7周半の距離を進む光がやっと0.3 nm 進めるくらいの非常に短い時間です。その感覚で情報を与える仕組みが波動関数に影響を与えます。

その他の量子コンピュータ

前日した光学方式は技術として先行しており研究成果が多数あります。
また理科学研究所で導入しているような量子ビット方式のコンピューターは
マイナス百ケルビン以下に冷却する必要があり 計算組織を
適切な状態に維持することはとても難しいです。

また計算時間の 十分な 確保も大きな課題です。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2023/09/13‗初稿投稿

旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】