2023年4月16日2023年5月6日に投稿 投稿者 元)新人監督 — コメントを残す【トピック】超伝導コプレーナ型伝送線路(量子コンピューターの基礎技術|人口原子と電磁波の相互作用) 超伝導コプレーナ型伝送線路今日の私は少し考えすぎてます。本ブログを書いて少しリセット。以前に見たYouTubeでコプレイナーのライン(回路?)とミアンダのライン(回路?)を懸案にしていて別論文で又出てきて困っていたのです。本稿は何度も加筆します。量子コンピュータ関連の技術ですが、ざっくり話がまとまらない状態ですので。投稿日にはお味噌汁を飲むつもりのタイミングでインスタントコーヒーを味噌汁茶碗にいれいて自分でびっくりしていました。はぁ。あほや。考えているのは2010 年にNECチームが発表していた研究です。コプレイナー型の回路は量子ビットと結合できる回路です。 コプレイナー型送波路自体が超伝導体で作られていて 超電導体の量子ビットと結合します。加えて 共鳴する役割を持ちます。「1 次元導波路としての超伝導コプレーナ型伝送線路に結合した量子ビットが,その共鳴周波数において導波路上のマイクロ波微小信号を完全反射する。」【超伝導量子ビット研究の進展と応用(中村)/ 総合報告 より引用(太字部|以下同様)】新しい私の知見として超伝導体で信号が伝わると(情報の)伝送線路に超伝導独特の現象が生じるのです。人口原子と電磁波の相互作用光子との反射関係が大事です。「1 次元導波路は伝搬モー ドの電磁波を扱うのに最適な舞台である.量子ビットあるいは 量子ビットが結合した共振器を導波路の終端に接続すると, マイクロ波の単一光子生成が可能になる.」数メートルクラスの大きさになる低温チャンバー内での超電導状態におけると超伝導コプレーナでの電子挙動とそこから室温の操作部へと伸びていく導線での挙動を想像して下さい。ここで重要なのは「単一」光子が生成されるという部分でしょう。 結果として次の2つの状態が観測にかかります。位相反転です。(|+>=|0>+|1>、⇒|ー>=|0>ー|1>つまり位相反転で入射モード中での光子の存在を観測します。NICTのレポートなどを見て人口原子と電磁波の相互作用を学んでます。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2023/04/16‗初稿投稿 2023/05/06‗改訂投稿旧舞台別まとめへ 舞台別のご紹介へ 時代別(順)のご紹介 力学関係へ 電磁気関係へ 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】
2023年4月14日2023年6月11日に投稿 投稿者 元)新人監督 — コメントを残す【書評】太田浩一著「ほかほかのパン」(ネーター・ランジュバン・ケプラー・他を収録) 【スポンサーリンク】この本のタイトルが暖かいですね。 タイトルの「パン」とはエミー・ネータの 人柄を表していて、 その章は「普遍変分問題」 を考えていた女性数学者の物語です。 ネータは「近代数学の母」とも呼ばれて「食べないと数学が出来ないじゃないの」なんて語る。暖かい人でした。「エミー・ネータは一塊のパンのように温かかった。彼女からは、おおらかな、元気づけるような、生き生きとした温かさが輝き出ていた。」【太字部は本文から引用しました。】このネータを含めて以下物理学者を紹介しています。 【目次】 光の波動方程式を発見‐マッカラー マクスウェル方程式を評価‐ヘヴィサイド 電磁波生成の考えを生んだ‐フィツジェラルド 電磁気学・統計力学の創設‐マクスウェル 古典物理の最後の伝道者‐ケルヴィン卿 一塊りのパンのように温かい‐エミー・ネーター 貧困からなりあがった‐ディーゼル マリー・キュリーとの小さな恋‐ランジュヴァン 量子力学の基礎考察:AB効果‐Dボーム 行列力学・不確定性原理確率‐ハイゼンベルク 謙虚な人生‐ヘンリー 4元数を残した酒で終わる人生‐ハミルトン 社会数学を提唱‐コンドルセー 放浪の孤高の天文学者‐ケプラー コンピューター科学の先駆者‐テューリング ろうそくの科学でクリスマスレクチャー‐ファラデイ以上、美しい文は心を洗い貴方を成長させていきます。 そして、人柄が伝わってくる文章は暖かいです。 是非読んでみて下さい。アマゾンでお試し読みをするだけでも 何となく貴方の人生が変わる気がしますよ。お勧めです。 【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 必要箇所は適時、改定をします。nowkouji226@gmail.com舞台別のご紹介 時代別(順)のご紹介 アメリカ関係のご紹介へ イギリス関係のご紹介へ ドイツ関連のご紹介へ 量子力学関係へ2023/04/14_初稿投稿 【このサイトはAmazonアソシエイトに参加しています】
2023年4月14日2023年5月7日に投稿 投稿者 元)新人監督 — コメントを残す【Topics】量子コンピューターの原理における回路量子電磁力学(特に超伝導共振器) (写真は従来の基盤の写真です)理研の中村泰信さんの論文から最近、中村さんに大変注目していて、そこから話を始めます。特に最近稼働を始めた量子コンピューターを勉強している中で私が今まで分かりづらかった情報読み出し機構について明快に2021年の論文で解説をしています。ジョセフソン接合ユーチューブで公開されていますが、 理化学研究所導入の量子コンピュータでは 「線幅100nm~200nmのジョセフソン接合」 を使い量子ビットの回路を作り上げています。ジョセフソン接合は具体的に超伝導体(例えばAL) で絶縁体(例えばAL2O3)を挟みます。これを使い 従来型の回路であるLC共鳴回路を発展させていく 事が出来ます。いわば超電導状態で働くLC回路です。 【以下、応用物理‐第90巻より引用(太字部)】超伝導体と超伝導体の間のトンネル接合であるジョセフソン 接合の寄与により,強い非線形性を導入することができる. ジョセフソン接合は回路上で非線形なインダクタンス として振る舞う.理化学研究所で導入している量子コンピュータを始めとして 世界中で今開発されているほとんど全ての量子コンピュータ では回路量子電磁力学の考え方に基づき設計され、 コプレーナ型伝送線路、ミアンダの回路、超電導共振器 といった各種アイディアを応用しています。超伝導共振器を使うアイディア【以下、応用物理‐第90巻より引用(太字部)】量子情報を非調和的な量子ビット回路に蓄えるのではなく, 超伝導共振器に蓄えようという アプローチである. 後者の利点として,ジョセフソン接合を必 要としないため, 電磁場モードが空間中に広がり表面・界面 欠陥の影響を 受けにくい 3 次元的な空洞共振器を用いるなどして, 量子ビットと比べて高い Q 値(=ω/k)すなわち長いコヒーレンス時間 を実現することが容易であることが挙げられる.加えて, 共振器中のデコヒーレンスは光子の損失によるエネルギー緩和 が支配的で位相緩和がほぼ無視できること,また調和振動子特有の 等間隔に並んだ多数のエネルギー準位によって形成される大きな 状態空間を用いた量子誤り訂正符号を実装可能 であることも利点である.₍中略) 量子ビット状態の非破壊射影読み出し機構として, こ の回路量子電磁力学のアイデアが使われている.すなわち, 量子ビットにそれとΔだけ離調した読み出し用共振器を結合させ, 量子ビットの状態に応じた読み出し用共振器の共鳴周波 数シフト (分散シフト~(g^2) /Δ)を,読み出し用マイクロ波パルスの受ける 反射位相の変化として検出することによるまた、もともとの考えはA. Wallraff, D.I. Schuster, A. Blais, L. Frunzio,J. Majer, M.H. Devoret, S.M. Girvin, and R.J. Schoelkopf等によって Phys. Rev. Lett. 95, 060501 (2005).にて議論されていた内容です。中村氏がSQUIDなどと合わせて全体像を解説してくれている中で紹介されています。コヒーレンス時間は長いほど良くて、計算量の増加につながりより複雑なアルゴリズムに対応した計算機を可能にします。現状での課題は高速化(~100 ns) ・高忠実度化(>99 %)・周波数多重化(~10ビット)。 (論文中引用55へ,論文中引用56へ).また、関心のある表現として 「波長オーダで空間的に分布した相互作用が存在する場合」を考えています。すなわち、波長オーダーをもった波動関数 が存在し、それが巨大原子として存在するのです。 「光と相互作用する超電導回路内での」作用です。私はこの考えに教えられ、今まで見てきたユーチューブなどでの量子コンピュータ基盤のパターンが納得出来るようになりました。 共振側の回路でのコヒーレント時間が確保できれば 実用上、量子コンピューターの計算が進められます。コヒーレンス時間とは量子コンピュータを考えるうえで非常に大事な概念で、量子的に考察した時の性能指標と言えます。それはおおよそ0.1ナノ秒程度の時間を目安に考えて下さい。この時間が量子コンピュータでの計算では重要となります。また コヒーレント時間を私は「(電源ではなく)情報に対するトランスミッター」といった イメージで超伝導共振器を考えています。 超伝導共振器に情報を蓄えるのです。共振を始めた時点で古典力学的な振り子運動がイメージ出来て 離散的な2準位系で|0>と|1>という2つの状態(ケット) が共振していくのです。重ねあわされた量子ビットの完成です。また時間を作り、量子コンピューターについて更に考えてみる積りですが、こうした明快な論文を出来るだけ見つけていきたいです。時は金なり。ありがたい時間です。他、参考論文: 東京理科大・髙柳 英明「ナノテクノロジー分野別バーチャルラボ 」〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2023/04/14‗初稿投稿 2023/04/30‗改訂投稿旧舞台別まとめへ 舞台別のご紹介へ 時代別(順)のご紹介 力学関係へ 電磁気関係へ 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】
2023年4月8日2023年4月9日に投稿 投稿者 元)新人監督 — コメントを残す【書評】西尾茂子著「現代物理学の父ニールス・ボーア」 【スポンサーリンク】今回ご紹介する書籍は数々の資料・調査に基づき カッチリした内容を届けています。それでいて暖かい。 【以下で、本稿の太字部は同書からの引用とします】(本書ではボーアに対して) 物理学者として最も優れ、 社会人として最も賢明で善良な一人の人物が 何を考え、何を行ったかをただ、記述しよう としたに過ぎない。と著者は語っています。私としては1921年3月3日を起点として 本書を読まれることをお勧めします。 広く知られた1925年からの論文ラッシュで 「量子力学」は数多くの人々が確立 していった分野ですが、その少し前に デンマークでボーアが研究所を立ち上げるのです。 そのタイミングが1921年です。 コペンハーゲン大学理論物理学研究所の開設です。 【現在の研究所へのリンク】そこでシュレディンガーが疲労困憊するまで議論して 病床でボーアに更に追い込まれる様子が描かれています。 また、ボーアがラザフォードを尊敬する様子、 パウリが坊弱無人とも言える追い込みをかける様子が ありありと描き出され、何時までも 楽しめる資料となっています。本書では暖かい人間観察と伝え方で夫々の物理学者を描き出しています。たとえば(ハイゼンベルグは)ボーアから 数学的形式化より前に物理的意味を 把握する事の重要性を学んだのです。 ボーアの魅力、ハイゼンベルグの魅力が伝わってきます。例えばディラックの魅力を伝えている言葉をご紹介しましょう。「他の人の仕事に口出しする事をしたことがない。 彼の時間を無駄に費やすのではないかといつも心配した。 私自身の時間を費やすことは何とも思わないが 他の人の時間を無駄にしたくない。」(そう語るディラックは) 非常に思いやりがあって、とても学閥など作る人ではなかった。 コペンハーゲン精神を広めなかった別格の人である。ディラックに対して尊敬と思いやりを込めた文章だと思います。〆 【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2023/04/08_初稿投稿 2023/04/09‗改訂投稿舞台別のご紹介へ 時代別(順)のご紹 イギリスのご紹介へ ケンブリッジのご紹介へ オランダ関係の紹介へ ライデン大学のご紹介へ アメリカ関連のご紹介へ 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】
2023年3月30日2023年4月1日に投稿 投稿者 元)新人監督 — コメントを残す大栗博司【おおぐり ひろし‗1962年生まれ ~ ご存命中】 はじめに今回、ご存命中ですが、私自身の興味が止められず 思いっきり現役の学者さんをご紹介します。 カリフォルニア工科大学の大栗博司氏です。 特に個人的な面識はありませんが 研究内容・研究室運営・期待感が圧倒的に魅力的なのです。その研究内容私にとって最も興味深い一面は研究内容です。大栗氏は 現代物理学での最先端だと言える「ひも理論」を研究しています。 竹内薫の「超ひも理論」を読んで、私が初めて理論を考え始めた時期には ひも理論が10次元の視点を持っている点が面白く思えました。相対性理論力学からが4次元までの拡張をしていった延長線上で、10次元がある ように思えたのです。その時期はひも理論は詳しく追いかけていません。 今でも理論を語れるとは思えないほどですが、どうしても気になっていました。その後、2023年の2月の終わりに日経新聞で改めて紹介されているのを見て 本記事の記載に至りました。この理論の紹介は外せません。特に初学者が分かり易い言葉を使ってご紹介いたします。 今も進んでいる物理学が伝われば幸いです。日経記事ではカリフォルニア工科大学のジョン·シュワルツらが「超弦理論」で1984年に大きな成果を上げた時期に、大栗氏が「米国から3ヶ月遅れの船便で届く論文を心待ちにし、むさぼるように読んで魅了されました」と伝えています。カッコ内は大栗氏の言葉でしょう。ご自身の関心を拡げたわけです。新しい情報に食らいつくことは大事です! 【新聞からの引用部分は太字にしています(以下同様)】その後、大栗氏は東京大学に進み理論を極めていきます。大栗氏は語ります。「理論物理学者には実際に密接に関わって新現象や新粒子を見つけるタイプと、長い目で見て理論的枠組みや普遍的な数学的手法を開発するタイプが居ます。僕は後者の方です。」 そして、量子力学と相対性理論を合わせて考える究極の統一理論の考えだします。具体的には重力を量子力学に取り組んでいこうと考え、宇宙誕生のメカニズムを踏まえて、大栗氏は紐理論の研究を進めるのです。大栗氏の華麗な足跡大栗氏は京都大学でマスターをとり、東京大学でドクターをとります。 その後、プリンストン、シカゴ大、京都大、UCBなどを経て カリフォルニア工科大学で教鞭をとっています。 シカゴ大学で大栗氏を誘ったのは40歳も年が離れた南部陽一郎でした。(カリフォルニア工科大学では今でも教えています)また、 パリ第六大学で客員成就をされていた時期もあったそうです。 科学史の舞台となった場所が次々出てくるのです。その研究室での活動は活発で現在でも各国から 研究者を受け入れて議論を進めています。 カリフォルニア工科大学内で ご自身のブログも開設されていて 数年前まではブログも頻繁に更新していたようです。 大栗氏は語っています。「超弦理論が究極の理論として正しい解であるかは分からない。しかしこれまでに試された理論の中では最良である。」と考えは変わらなかった。「不易流行という言葉があります。」。『不易(本質的)なものを目指して「統一理論(重力と量子力学の統合)」の世界に至る為に、超弦理論という「流行」へ飛び込んだ』と大栗氏は述べています。もっとも正しいと思える道を突き進んでいるのです。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2023/03/30‗初稿投稿 2023/04/01‗改訂投稿旧舞台別まとめへ 舞台別のご紹介へ 時代別(順)のご紹介 力学関係へ 電磁気関係へ 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】
2023年3月28日2023年7月12日に投稿 投稿者 元)新人監督 — コメントを残す書評まとめ【物理の教科書というよりも物理学者に対する書籍をご紹介してます】 以下、順不同で科学史を考える参考書籍をご紹介します。もちろん私が読んで「面白かった」、「おすすめです」と思える本だけをご紹介していきますのでご参考にして下さい。 【スポンサーリンク】 ・朝永振一郎「鏡の中の物理学」(私の書評) 【スポンサーリンク】 ・太田浩一「哲学者たり理学者たり:物理学者のいた街」 【スポンサーリンク】 ・太田浩一「ほかほかのパン:物理学者のいた街」(私の書評) 【スポンサーリンク】 ・太田浩一「ガチョウ娘に花束を:物理学者のいた街」(私の書評) 【スポンサーリンク】 ・太田浩一「それでも人生は美しい:物理学者のいた街」 【スポンサーリンク】 ・藤森茂「ロバート・オッペンハイマー」(私の書評) 【スポンサーリンク】・西尾茂子著「現代物理学の父ニールス・ボーア」(私の書評) 【スポンサーリンク】渡辺正著「アインシュタイン回顧録」(私の書評)〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2023/03/28‗初稿投稿 2023/04/14‗改訂投稿旧舞台別まとめへ 舞台別のご紹介へ 時代別(順)のご紹介 力学関係へ 電磁気関係へ 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】
2023年3月28日2023年3月19日に投稿 投稿者 元)新人監督 — コメントを残す【Topics】3/28更新・Indexされない実例|本サイトで2022年度からは問題点としてます こんにちはコウジです! 「Indexされない」の原稿を改定します。SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを チェックし続けてます。ご意見・関連投稿は歓迎します。 【以下改訂した原稿です】【↑ Credit; Pixabay ↑】本稿はメモです(Noindexは問題です)明文化できていなかった問題以前から気になっていて明文化できていなかった問題です。Googleサーチ・コンソールに対して検索リクエストをした際に「URL が Google に登録されていません」というメッセージが出てその後、数か月後にリクエストをしてもやはり同じメッセージが出てしまう問題です。私は2020年10月ごろから当サイトを運営していてドメインパワーも、そこそこ上がってきているので、今の私がリクエストを受け付けてもらえないのなら、最近ブログを立ち上げた人たちは尚更、この問題に問題を感じているのではないかと予想されます。そんな関心からの記録です。問題は文字数でしょうか。話題なのでしょうか。具体的なIndexされないページの例以下に当該メッセージの出た例を記載していき、何か共通点・法則性が出てきたら纏め直して対応案を作ります。オレンジに色を変えた部分は改善が出来ています。ただ、結果的に「インデックスされている」という意味で問題解決しているだけで「何が悪くてインデックスされないか」という問題の本質が解決できていません。デモクリトス・2022/3/22にGoogleへ再依頼⇒4/30にOK コペルニクス・2022/4/30にGoogleへ再依頼⇒10/15にOK デカルト・2022/10/15にGoogleへ再依頼⇒10/15にOK アイザック・バロー・2022/04/01にGoogleへ再依頼⇒10/18にOK ベルヌーィ・2022/04/06にGoogleへ再依頼⇒10/24にOK エルステッド・2022/4/19にGoogleへ再依頼⇒11/15にOK フーコー・2022/4/30にGoogleへ再依頼⇒11/18にOK メイデンホール・2022/5/10にGoogleへ再依頼⇒11/28にOK マイケルソン・2022/5/16にGoogleへ再依頼⇒12/3にOK テスラ・2022/5/21にGoogkeへ再依頼⇒12/8にOK 長岡半太郎・2022/02/24にGoogleへ再依頼⇒5/28にOK ヒルベルト・2022/06/06にGoogleへ初申請⇒12/14にOK 中村清二・2022/06/01にGoogleへ再依頼⇒12/21にOK M・ボルン・2022/03/10にGoogleへ再依頼⇒6/10にOK ピカール・2022/06/12にGoogleへ再依頼⇒’23/1/8にOK フォン・ノイマン・2022/04/02にGoogleへ再依頼⇒7/3にOK H.A.ベーテ・2022/7/6にGoogleへ再依頼⇒1/31にOK エドワード・テラー・2022/7/8にGoogleへ再依頼⇒2/2にOK ランダウ・2022/7/9にGoogleへ再依頼⇒2/3にOK 竹内均・2022/7/20にGoogleへ再依頼⇒2/14にOK ムツゴロウ・2022/03/03にGoogleへ再依頼⇒8/5にOK 益川敏英・2022/04/24にGoogleへ再依頼⇒8/8にOK ホーキング・2022/4/25にGoogleへ再依頼⇒8/9にOK Indexされない問題の要因と今後の対策先ず結論として 「インデックスされなくても半年くらいで大丈夫」 です。断言します。今回のIndexされない問題は、数年来今話題になっている「Google側のアルゴリズム対応」が主因であると思われます。生活様式。情報習得様式が大きく変化しているなかで、グーグルが対応に追われて、個々のインデックスの優先順をつけて処理しているだけ、と言えます。 もっと言えば(Coolに考えたら)グーグルは昔と変わらないけれどもネット社会が変わってきていて我々リクエストする側が問題であると考えるようになってきているとも言えます。定量的な指標として、検索リクエストしてから検索表示されるまでの時間が明らかに定量化できる数字で、皆さんは昨今、その数字を問題視します。私の感覚では「大まかに半年くらい待てば流石にインデックスされる」と期待できると言えます。(上記実績から、斯様に判断) 状況としては直ぐに変わらないと思えるのでGoogleを超えた所でツイッターやコ・ワーキングスペースでの議題とするとか、自分のブログから発信する仕組みを作るとかしていきたいと考えています。 〆Webデザインコース 【スポンサーリンク】以上、間違いやご意見があれば 以下アドレスまでお願いします。 問題点に対しては適時、 改定・訂正を致します。nowkouji226@gmail.com2022/02/24_初回投稿 2023/3/28‗改訂投稿纏めサイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介【このサイトはAmazonアソシエイトに参加しています】 3/29・舞台別のご紹介の更新 3/30・ひも理論と現代の理解 3/31・時代順のご紹介更新
2023年3月26日2023年3月26日に投稿 投稿者 元)新人監督 — コメントを残す3/26.太田浩一「ガチョウ娘に花束を」のまとめ(最終版) 休日なので書評(メモ)をまとめます。 【スポンサーリンク】(以下24行は3/15文) P191. 1975.10.29の手紙から ∫ と d が現れ ∫ と d が逆関係にあることが記されている。 「すなわち記号∫が次元を増やすようにdが減らす。記号∫は和を、 記号dは差を意味する。」と書いている。(ライプニッツが書いている) P194. 「活力論争」は19世紀にエネルギー保存則の確立によって終わる。 「活力」にエネルギーという名を与えたのはヤングだ。 P206.(ヤコブとヨハンは)1699年にパリ科学アカデミー会員 に選ばれてたが喧嘩を止めること、という条件が付けられた。 P207.オイラーと過ごした1733年までがダニエルのもっとも実りある時だった。 P208. 当時大陸ではニュートン力学は受け入れられていなかった。ダニエルは ライプニッツの微積分とニュートン力学を支持する最初の物理学者だった。 P209.ダニエルの考え方はあまりに時代の先を行き過ぎていた。 近代的な分子運動論はダニエールから一世紀以上が過ぎた1856年の タレニーヒと翌年のクラウジウスに始まる。 P211.「固有値問題」、「固有振動」、「重ね合わせの原理」はダニエル の発見である。 P224.ヘルムホルツは1864年にロンドンに招かれた時に マクスウェルの家に招かれている。 P13.アインシュタインは「奇跡の年」1905年の最初の論文 「光の発生と変換に関する発見的な見方について」によって 「光量子仮説」を提唱し、量子力学建設の最初の布石を打った。 ところが若い「革命家」たちが量子力学を完成した時、 アインシュタインは 決定論に矛盾する量子力学の基本原理を認めようとしなかった。(以下15行は3/13分) P130.ヤングは両親から高潔…クゥエーカー教徒としての P133.1795年にゲッティンゲン大学 P146.ディクレの最初の論文はフェルマーの最終定理 に関するものである。フェルマーの方程式 x^n+Y^n=R^n に対して n=4に対してはフェルマーが解いていて ディクレはn=5に対して回答を与えた。P150. 超ひも理論でのDブレインのDはディクレに由来するわけだ。 P150. ヤコビーが伝えている事だがガウスは「整数論」 の原稿を燃やして… P163.「(ラウエは)レントゲン線」による干渉実現象を発表した。 X線が光と同じ電磁波であること、物質が原子構造を持つ 事が証明されたのだ。 P165.超電流がラウエの発想。白い手袋 P174.ファンデルワールスは高等小学校の教育を受けただけである(以下19行3/9分) 太田浩一の本を読み進めています。 特にエーレンファストの人生に感動してます。 以下メモ。 P70.1906年に恩師ボルツマンの自命を知り、 エーレンファストは夫人となったタティアンナ と共に1911年に「力学における統計的観点の概念的基礎」 を出版した。 P72.1912年にエーレンファストはアインシュタインを訪ねた。 金曜日にプラハの駅に迎えに来たアインシュタインに出会い 夜も通して議論を重ね、日曜日にはアインシュタインのバイオリンと エーレンファストのピアノでブラームスのバイオリンソナタ を合奏した。 P75.波束の重心はニュートン方程式の意味において 波束の位置を支配する力に従う。(エーレンファストの定理) P75.1915年にエーレンファストはアインシュタインと ボーアを自宅に招き議論の機会を作った。そして、 1917年にソルベイ会議が開かれてアインシュタインは 「不確定性関係」に対して次々と反論を持ちかけて、 ボーアは反論を次々つぶす道具を哲学的煙雲の中から 必ず探し出す。(以下34行は3/8分) 太田浩一の「ガチョウ娘に花束を」を読んでます。 夫々の科学者のお墓を訪ねるショートショートですが しっかりした下調べと知見と現地調査に基づいています。 個別にメモを残します。 P8.アインシュタインは「スピノザのエチカへ寄せて」 という詩の中で 「僕があの高貴な人をどれほど愛しているか 言葉では言い尽くせないまでに。 だが僕はあの人が孤立していることを懼れる 輝く聖なる光と共に」 P11.アインシュタインは「存在するものの合法的調和の中に現れる スピノザの神を信じる。」 P24.ヘルツ「回転体球の誘導について」で学位をとる P28.ヘルツは1887年5月27日に論文 「紫外線の電気放電に対する効果について」 で光電効果に対する研究を始めた。 P29.ヘルツは1894年に敗血症で36歳で亡くなった。 「力学原理」で力学から力の概念を消去して、 時間・空間・質量のみを用いて公理と演繹の数学体系を作った。 ボルツマンは一週間、この本に没頭した。 妻にあてた手紙で思わず「愛しいヘルツ」と書いてしまった とのことである。(ドイツ語で「愛する人」は HertzではなくHerzである。 P30.レナールトはナチ物理学者 P39.ローレンツの偉大な業績は電子論である。(中略) マクスウェルの理論では電荷の意味がはっきりしなかった。 マクスウェルは誘電体であるエーテルが分極する事によって 電荷が生じると考えた。 P44.マイケルソンモーレの1887年の実験でエーテル仮説が否定された。 P55.レントゲンは「ドイツの大学教授の良き伝統に従って、 その発見や発明は人類に所属するものであり、それらは 特許とか、ランセンスとか、契約とか、あるいはある特定の 団体に管理されるべきではない、というのが私の意見です。」
2023年3月24日2023年3月25日に投稿 投稿者 元)新人監督 — コメントを残す【トピックス】記事の相互リンクに対して|人のつながりの大事さを伝えます 本記事はブログを運営する上で記載するべき事柄の整理です。 ご関心のない方は読み飛ばしていただいて結構ですが、 ご意見やご要望を頂けたら幸いです。さて本題。 ブログ内リンクは時代別の物理学者ご紹介を基準に考えてます。自分が研究を考えていた時代の原体験を大事にして 夫々の物理学者の足跡を考えていきます。 私だったらどう考えるのだろう?といった風に考えるのではなく 出来るだけ客観的に業績をご紹介する事を目指します。ただし、読者諸氏が前向きになれる言葉は盛り込みます。 考え方の強制は絶対にしたくありません。夫々の人物を起点に関連人物へリンクを貼っていく計画です。アインシュタインのようなタイプの学者でも、 ローレンツやエレンファストと影響を与えあいます。 また、マッハ哲学の影響もご紹介していきたいのです。 そして従軍中のシュヴァルツシルトの論文を世に送り、 評価されていなかったド・ブロイを絶賛したのです。 実のところ、アインシュタインは多くの人と繋がっていて 前向きに物理を押し進めています。 そんな面をご紹介して生きたと思います。また、引用に対してですが、私は今まで 引用は知財を乱用する気がして控えていました。 今の私の考えでは 「出典もとを明らかにしていたら引用は問題ない」 と考えています。それだから、具体的に書評の形で 記事を描き上げた後に、その本への引用の形で リンクをつければブログの読者にも関心が繋がり 本の著者にも有益だと思えてきたのです。そして、文章の最後に時代別や舞台別の関心を記載して 夫々の物理学者たちの関心・立ち位置を考え直していきます。 読者諸氏もぜひ、それぞれの国での つながりを考え直して欲しいです。 改めて考え直してください。 そうした方針で私は考えています。 〆観葉植物ならHanaPrime 以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に関しては 必ず返信・改定をします。nowkouji226@gmail.com2023/03/24_初回投稿 2023/03/25‗改訂投稿(旧)舞台別のご紹介 纏めサイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 力学関係へ 電磁気関係へ 熱統計関連のご紹介へ 量子力学関係へ3/26・日本関係のリンク更新 3/27・フランス関係のリンク更新 3/28・Indexされな記事に対して更新 3/29・舞台別のご紹介の更新 3/30・ひも理論と現代の理解 3/31・時代順のご紹介更新
2023年3月22日2023年3月12日に投稿 投稿者 元)新人監督 — コメントを残す3/22・今後の記事投稿頻度に関して【正の側面と負の側面を考えていきます】 記事投稿・改訂頻度の現実記事を改訂する頻度に関して、 結論からいうと年に一度になっていきそうです。無論、私が本ブログに対して愛情をかけていけるか といった問題も含んでいる話なのです。 そうした考えだけで進めると興味はどんどん膨らんで 話を纏める為に時間を兼ねけなければいけない筈です。ところが、私は悲しいサラリーマン。 他のサラリーマンよりもよりも休みを取りやすい部署 ではありますが、自宅で使える時間は限られています。そうした半面で、改訂したい内容は増えていきます。 とある物理学者の人生を見返した時に、 調べれば調べる程に①「残した仕事の関りと」 ②「私自身が深めていく理解」がある為に 関連した投稿はどんどん増えていくしかないのです。投稿頻度を左右する詳細ここで、問題を整理してみます。簡単化の為に 正の側面と負の側面を考えてみます。投稿が増やせない事情・一年は365日しかない ・私は子育てをしていて会社に通勤している ・通勤時や会社での隙間活動ではメモも取りにくい投稿・改訂を充実させた方が良い事情・分野や主人公の隣人を考えたら7人程度の追加紹介は続けていく ・関連文献やトピックスを出来るだけ紹介していく ・ページ内リンクを出来るだけ整理してサイト訪問者へ親切にする以上、色々考えたら今の半年ごとの更新は難しいので 一年ごとの更新としていきます。特に国ごとや研究機関ごとで 問題を整理し直す機会は重要ですし、日常的に生じてくる トピック的な紹介は全てのブログで大事な世界だと思えます。今後ともよろしくお願いいたします。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2023/03/22_初稿投稿旧舞台別まとめへ 舞台別のご紹介へ 時代別(順)のご紹介【このサイトはAmazonアソシエイトに参加しています】3/23・オランダ関係のリンク更新 3/24・記事の相互リンクに対して 3/25・ドイツ関係のリンク更新 3/26・日本関係のリンク更新 3/27・フランス関係のリンク更新 3/28・Indexされな記事に対して更新 3/29・舞台別のご紹介の更新 3/30・ひも理論と現代の理解 3/31・時代順のご紹介更新