に投稿 コメントを残す

J・L・ラグランジュ
【変分の原理を考案|解析力学を発展】-5/12改訂

こんにちはコウジです。
「ジラグランジュ」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

解析力学
【スポンサーリンク】
【1736年1月25日生まれ ~ 1813年4月10日没】

 

その名を全て書き下すと、

ジョゼフ=ルイ・ラグランジュ

Joseph-Louis Lagrange

ラグランジュの生きた時代

ラグランジュはイタリアのトリノで生まれ

プロイセン王国・フランスで活躍しました。

そんな彼の生きた人生は革命の起きていた時代でした。

同時代のラボエジェが処刑された事に際し
ラグランジュは何故自身が生き延びたか
自問自答したと言われています。
何故ならラグランジュはマリー・アントワネット
先生を務めていたからです。

 

ラグランジュの業績 

学問の世界でラグランジュは多大な業績を残しています。
物理学者というより数学者としての仕事に思えてしまいます。

力学体系の整理をしてラグランジュ形式と言われる
理解を進めています。私も学生時代に
ラグランユアンと呼ぶ関係を多用しました。

解析力学と呼ばれる分野で、

ラグランジュ方程式につながります。

後の数論につながる議論もしていますし、

天体に関する研究等もしています。

 

 考え方の有効性

ラグランジュの解析的な考えが有効だったのは

各種物理量を一般化して変分と呼ばれる類の

「数学的な形式」につながるからです。

後の量子力学はニュートンの作った微積分

だけではなく物理量の関係を

ラグランジュの使ったような関係で表現します。

つまり、

「ラグランジュアン」と呼ばれる数学形式を使います。

また、ラグランジュはエネルギー保存則から

最少作用の原理を導きその考えは力学に留まらずに

電磁気学・量子力学でも使われています。

こういった定式化が後の体系理解に不可欠です。

 

ラグランジュの未定乗数法や

定式化されたラグランジュアン

は誰しもが認める見事なものです。

そして、ラグランジュの名は

今でもエッフェル塔に刻まれています。

彼の残した仕事と栄誉と共に。



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。

nowkouji226@gmail.com

2020/10/02_初稿投稿
2025/05/12_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
力学関係のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年8月時点での対応英訳)

If you write down all the names,

Joseph-Louis Lagrange

The era of Lagrange’s life

Lagrange was born in Turin, Italy and was active in the Kingdom of Prussia, France. His life was a revolutionary era.

When his contemporary Labo Eger was executed, Lagrange might have asked himself why he survived.

Because he was a teacher of Marie Antoinette.

Lagrange’s achievements

In the academic world, Lagrange has made great achievements. He seems more like his job as a mathematician than as a physicist.

He organizes the mechanical system and promotes the understanding of what is called the Lagrangian form. I also used a lot of relationships called Raglan Yuan when I was a student.

In a field called analytical mechanics, it leads to the Lagrange equation. We are also discussing things that will lead to later number theory, and we are also doing research on celestial bodies.

Effectiveness of thinking

Lagrange’s analytical idea was effective because it generalizes various physical quantities and leads to a kind of mathematical form called variation.

Later quantum mechanics expresses not only the calculus made by Newton but also the relationship of physical quantities with the relationship used by Lagrange. In other words, it uses a mathematical form called “La Grand Juan”.
In addition, Lagrange derives the principle of minimum action from the law of conservation of energy, and the idea is used not only in mechanics but also in electromagnetism and quantum mechanics. A paradigm shift in these formulations is essential for later systems.

The Lagrange’s undetermined multiplier method and the formalized Lagrange Jean are undisputed and stunning.

And the name of Lagrange is still engraved on the Eiffel Tower. With the work and honor he left behind.

に投稿 コメントを残す

ジェームズ・ワット
【産業革命時に蒸気機関を改良しフライフォイールを発明】‐5/11改訂

こんにちはコウジです。
「ジェームズ・ワット」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

産業革命史
【スポンサーリンク】
【1736年1月19日生まれ ~ 1819年8月25日没】

 ワットはどんな人でしょう

ワットは蒸気機関の改良を通じて産業革命に
大きな成果を残したイギリスの偉人です。

イギリスにおいて産業革命が起きて、
年4回の耕作が行われ始めていき、多くの
農業従事者が自営業から雇われ農夫となったり、
植民地からの労働力を含めて人が大きく動き、
工場稼働率が高まっていきます。

急激に市場が拡大して産業が大きく変化していくのです。
そうした時代に蒸気機関や紡績機に対しての
技術開発に対する研究の重要性は増していきました。

そんな中、ワットはグラスゴー大学でジョゼフ・ブラックら

の協力を得て工房を作り作業を続けます。

蒸気機関を対象に研鑽を続けます。

 ワットによる蒸気機関の開発

ワットは具体的な改良には蒸気機関における凝縮器の設計をします。具体的には排熱効率を見直すことによってロスを減らして出力効率を大きく高めたのです。当初の設計でシリンダー部での熱の出入りが非効率である事情に着目していて、そこを改良した訳です。ポールトンという資金面での協力者も得て、ワットは事業化に成功して成功を修めます。

ワットが最終的に成功を収めた話を初めにしましたが、

実際の所は製品化までに大きな道のりがありました。

当時の加治屋さん達は今と比べて精度の低い生産過程

を当たり前だと思っていたので、ミリ単位

(場合によっては更に高精度)の加工を

現在考えるような誤差範囲でこなしていく事は

出来なかったのです。蒸気機関の性質上、

ピストンとシリンダー間の寸法誤差は

大きく性能を損ねます。丸い形で摺動方向に

延びていくピストンとシリンダーの精度を

上げていく事は大変な作業だった筈です。最終的には

大砲製造に向けて開発された「精密、中ぐり技術」

を使い製造していきます。また一方で、ワットはこれらの

製造に関わる技術に対しての特許習得にも

配慮しなければなりませんでした。

そういった創意工夫を重ねる中でワットは

関連会社の仕事として「鉱山の揚水機械」

の仕事を受けます。それは大変大きなもので、

直径127センチメートルのシリンダーをもった

7メートル以上の大きさの機械でした。

あまりに大きいので専用の建屋を建てて

運営していたそうです。その後、

機械に色々な改良を加えていきます。

益々効率的な機械になっていったのです。

 そのほかのワットの業績

現代の自動車のエンジンで当たり前に使われている、フライホイールもワットの発明です。回転ムラを無くして機械を円滑に動作させることで動きの効率を上げて振動を抑え、耐久性を向上させるのです。

何より、

ワットはそうした仕事の中でエネルギーの定式化を進め

力(Newton)の概念から仕事量(Watt)の概念
を発展させました。

多くの人々から尊敬を受けました。考え抜いた
討論をして自分の見識を広げていった人でした。
近年、イギリスのお札に肖像画が用いられています。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。

nowkouji226@gmail.com

2021/07/07_初回投稿
2025/05/11_原稿改定

舞台別の纏め
時代別(順)のご紹介
イギリス関係のご紹介
力学関係のご紹介
熱統計関連のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

 

(2021/年8月時点での対応英訳)

What kind of person is Watt?

Watt is a great British man who has made great strides in the Industrial Revolution through the improvement of steam engines.

Due to the Industrial Revolution in Britain, four farms are cultivated a year, farmers are hired from self-employment to become farmers, people including labor from the colony move significantly, and the factory utilization rate increases. In the meantime, the market will expand rapidly and the industry will change drastically.

In that era, the importance of research on technological development for steam engines and spinning machines increased.

Meanwhile, Watt continues his work at the University of Glasgow with the help of Joseph Black and others to create a workshop. He continues his studies on steam engines.

Development of steam engine by Watt

As a concrete improvement, in the design of the condenser in the steam engine, Watt reduced the loss and greatly increased the output efficiency by reviewing the exhaust heat efficiency. His original design focused on the inefficiency of heat in and out of the cylinder, which was improved. With the help of Paulton, a financial collaborator, Watt succeeds in commercializing it.

We started with the story of Watt’s ultimate success, but in reality there was a big road to commercialization.

At that time, Kajiya and others took it for granted that the production process was less accurate than it is now, so it was possible to handle machining in millimeters (or even higher precision in some cases) within the margin of error that we are currently thinking about. I didn’t. Due to the nature of the steam engine, dimensional errors between the piston and cylinder will significantly impair performance. It must have been a difficult task to improve the accuracy of the piston and cylinder, which have a round shape and extend in the sliding direction. in the end

We will manufacture using the precision and boring technology developed for cannon manufacturing. On the other hand, Watt had to consider obtaining patents for these manufacturing technologies.

While repeating such ingenuity, Watt receives the work of “pumping machine of the mine” as the work of the affiliated company. It was a very large machine, over 7 meters in size with a cylinder with a diameter of 127 centimeters.

It was so big that he built and operated a dedicated building. After that, he made various improvements to the machine. It has become an increasingly efficient machine.

Other Watts achievements

The flywheel, which is commonly used in modern automobile engines, is also Watt’s invention. By eliminating uneven rotation and operating the machine smoothly, the efficiency of movement is increased, vibration is suppressed, and durability is improved.

Above all, Watt proceeded with the formulation of energy in such work and developed the concept of work (Watt) from the concept of force (Newton).

He was respected by many. He was a person who had a well-thought-out discussion and broadened his insight. In recent years, portraits have been used on British bills.

に投稿 コメントを残す

平賀源内
【秩父で鉱山を開設|オランダからエレキテル等を日本人に紹介し啓蒙】‐5/10改訂

こんにちはコウジです。
「平賀源内」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

平賀源内
【スポンサーリンク】
【1728年生まれ ~ 1780年1月24日没】

平賀源内について
少し時代が古いです。平賀源内は江戸時代、
田沼意次が老中を務めていた時代で
多彩な能力を発揮しています。物理学関係に留まらない。
埼玉県秩父市で鉱山開発を行い、
炭焼き、通船の指導を行いました。 

そもそも、平賀源内は讃岐の国に生まれています。
家祖は信濃源氏の平賀氏。平賀氏は武田氏に敗れ、
一度、改姓して源内の時代に平賀姓に復姓しています。

時代考察

 

科学史の観点から平賀源内の時代を考えてみると欧米と日本の時代のずれを感じます。その「ずれ」は大きなものでニュートンがバローからルーカス職を受けたのが1664年、万有引力を定式化したのが1665年であることを思い起こせば西洋と日本の隔たりはとても大きいです。そんな時代には源内は未だ生まれていません。

加えて、平賀源内が「発明」したであろうものの独自性を考えていくと「新規性」という部分が殆ど見受けられません。内容は後述しますが、後世に残して人類の財産と出来るものは作り出せなかったのです。無論、当時の人々には目新しく、庶民に啓蒙をして意識を変えていった業績は大きいです。

だがしかし、「数学」なりの学問体系を整えてはいません。足し算引き算が出来ても「微分。積分」それなあに?って有様でした。教育制度が大きく異なる事情があるのですが、結果は大きく異なるのです。日本ではその後、
数理学の学問体系は数百年間未開のままでした。

平賀源内の業績

 

平賀源内が手掛けた分野は医学、薬学、漢学、

浄瑠璃プロデュース、鉱山の採掘、金属精錬、

オランダ語、細工物の販売、

油絵、俳句と多岐にわたりました。

その一つが「発明」で平賀源内は物理現象の啓蒙に一役買っているのです。所謂、エレキテルの紹介ですね。エレキテルは不思議な箱で内部にガラスによる摩擦起電部と蓄電部を持っています。じつのところ、平賀源内が発明したというよりオランダ製の物を平賀源内が紹介した訳ですが江戸時代の庶民達には摩訶不思議な魔法に見えたでしょうね。

なにより、平賀源内の現象理解は現在の学問体系

とは大きく異なっていたようです。

念の為にコメントしておくと、新しい考えを作り出して発表して他の国の人に内容を問いかけたりする動きは見受けられません。鎖国の時代ですからね。平賀源内の時代から百年以上後に海外の学問理解を学び、自ら論文を書いていき、世界に内容を問いかけるのです。そこまでの道のりは、まだまだ長いのです。平賀源内はそんな時代の先人でした。

そして、
文化的な功績も、そこかしこに残しています。
有名な言葉遊びで「源内が作者であろう」と言われ
ている句があります。それを最後にご紹介します。

「京都三条糸屋の娘 姉は十八・妹は十五
諸国大名弓矢で殺す 糸屋の娘は目で殺す 」

以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2020/09/18_初稿投稿
2025/05/10_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年8月時点での対応英訳)

about GENNAI

It’s a little old story. Hiraga Gennai is demonstrating a variety of abilities during the Edo period and when Tanuma Okitsugu was a senior citizen. It goes beyond physics.

In the first place, Hiraga Gennai was born in Sanuki Province.

His ancestor is Mr. Hiraga of Shinano Genji Family. Mr. Hiraga was defeated by Mr. Takeda, and once changed his name to Hiraga in the Gennai era.

If you think about the times in Hiraga Gennai from the perspective of the history of science, you can feel the difference between the times of Europe, America and Japan. The “deviation” is large, and the gap between the West and Japan is very large, recalling that Newton received the Lucas job from Barrow in 1664 and formulated universal gravitation in 1665. In addition, when considering the uniqueness of what Hiraga Gennai would have “invented,” there is almost no “novelty.” I will explain the contents later, but I could not create something that could be left as a property of humankind for posterity. Of course, it was new to the people at that time, and although it was a great achievement to educate the common people and change their consciousness, it has not prepared an academic system like “mathematics”. Even if addition and subtraction are possible, “differentiation. Integral” What is it? It was like that. There are circumstances where the education system is very different, but the results are very different. In Japan, the academic system of mathematics has remained undeveloped for hundreds of years since then.

Work of GENNAI

Hiraga Gennai’s fields ranged from medicine, pharmacy, Chinese studies, joruri production, mine mining, metal refining, Dutch, craft sales, oil paintings, and haiku.

One of them is “invention”, and Hiraga Gennai plays a role in enlightening physical phenomena. This is the introduction of so-called Elekiter.

Elekiter is a mysterious box that has a glass triboelectric generator and a power storage unit inside. As a matter of fact, Hiraga Gennai introduced a Dutch product rather than an invention by Hiraga Gennai, but it seemed like a mysterious magic to the common people in the Edo period.

Above all, it seems that the understanding of phenomena in Hiraga Gennai was very different from the current academic system.

If you comment just in case, there is no movement to create and announce new ideas and ask people from other countries about the content. More than 100 years after the time of Hiraga Gennai, he learned to understand foreign scholarship, wrote a treatise himself, and asked the world about the content. The road to that point is still long. Hiraga Gennai was a pioneer of that era.

に投稿 コメントを残す

L・オイラー
【失明して単眼の巨人(サイクロプス)と呼ばれ|自然対数を定式化】‐5/9改訂

こんにちはコウジです。
「L・オイラー」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

数学大辞典

【スポンサーリンク】
【1707年4月15日生まれ ~ 1783年9月18日没】

L・オイラーのLはレオンハルトのLです。

オイラーの業績 

スイスのオイラーは当時の18世紀の数学界の中心人物でした。その後の世に数学が厳密になっていく一方で、モデルが洗練されていくのですが、それを使いこなす為の基礎を固めたのです。その活動範囲は多岐にわたります。他の人が見つけたと思っていた業績が、実はオイラーの仕事の焼き直しだったりした事が多々あったそうです。後に出てくるガウスと合わせて数学界の二大巨人であると言われているのです。加えて、

オイラーは右目を失明していたので

「単眼の巨人(サイクロプス)」

と数学界で呼ばれていたそうです。

まさに怪人ですね。同時に

天文物理学でも業績を残しています。物理学で使う数学手法も残しました。オイラーが定式化した自然対数と三角関数の関係は私自身も何度も何度も、繰り返し使いました。

オイラーの人生 

さて、オイラーの人生における転機は大学時代に師となるベルヌーイがその才能を見出したタイミングでした。神学の道を目指していたオイラーの両親をベルヌーイが説得してオイラーは数学の道を選びます。

 

オイラーは招かれて外国で数年過ごしたりしながら研究を続けましたが、視力が低下していき遂には失明してしまいます。それでもオイラーは精力的に論文執筆の活動を続けました。頭の中で計算式を操り、口頭で協力者に内容を伝え、文章に起こしてもらい、論文を次々と完成させたのです。

そんな困難の中、

オイラーは晩年の研究を続けていました。

まさに人生をかけた研究だったのです。

〆最後に〆



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2020/09/26_初稿投稿
2025/05/09_改定投稿

舞台別の纏め
時代別(順)のご紹介
スイス関係のご紹介

量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

【2021年8月時点での対応英訳】

L. Euler’s L is Leonhard’s L.

Job of Euler

Euler in Switzerland became the center of the 18th century mathematics world at the time, laying the foundation for mastering sophisticated models while mathematics became more rigorous in later generations. The range of activities is wide-ranging. In many cases, the achievement that others thought they had found was actually a rehash of Euler’s work. He is said to be one of the two giants in mathematics, along with Gauss, who will appear later. father,

Euler was blind in his right eye, so he was called “monocular giant (cyclopes)” in the mathematical world. It’s just a monster. He also has a track record in astrophysics.

Euler also left behind the mathematical techniques used in physics. I myself used the relationship between the natural logarithm and trigonometric functions formulated by Euler over and over again.

LIFE of  Euler

Now, the turning point in Euler’s life was when his teacher Bernoulli discovered his talent during his college days.

Bernoulli convinces Euler’s parents who were aiming for the theological path, and Euler chooses the path of mathematics.

Euler was invited to spend several years abroad and continued his research, but his eyesight deteriorated and he eventually lost his eyesight.

Still Euler is energetically

He continued his treatise writing activities.

Euler manipulated the formulas in his head, verbally communicated to his collaborators, had them transcribed, and completed his treatises one after another.

In the midst of such difficulties, Euler continued his studies in his later years. I think it was a study that took his life.

に投稿 コメントを残す

理研で新型量子計算機稼働【米クオンティニュアム社が設置_イオン方式の新型】

新型量子コンピューターの概要

量子コンピューターは、従来のコンピューターでは解決が難しい問題に対して新たな可能性を提供する革新的な技術です。特に、イオントラップ方式は高い精度と安定性を持ち、量子コンピューターの実現において注目されています。本章では、イオントラップ方式の量子コンピューターについて、その原理、構造、そして拡張性に焦点を当てて解説します。

イオントラップ方式の原理

イオントラップ方式の量子コンピューターは、原子から電子を1つ取り去ったイオンを電場で空間に捕捉し、その内部状態を量子ビットとして利用します。これにより、外部環境からの影響を受けにくく、長いコヒーレンス時間を実現できます。また、レーザーを用いてイオンの状態を精密に制御し、量子ゲート操作を行います。この方式は、量子ビット間のばらつきが少なく、高い忠実度を持つことが特徴です。mki.co.jp+2日経クロステック(xTECH)+2理化学研究所+2J-STAGE+1日経クロステック(xTECH)+1

理化学研究所

出典: 日経クロステック

イオントラップ方式の構造

イオントラップ方式の量子コンピューターは、以下の主要な構成要素から成り立っています。

  • イオントラップ: 電場を用いてイオンを空間に捕捉する装置で、イオンの位置を安定に保ちます。日経クロステック(xTECH)+1mki.co.jp+1

  • レーザーシステム: イオンの状態を制御するために、特定の波長のレーザーを照射します。日経クロステック(xTECH)

  • 真空チャンバー: イオンが外部の粒子と干渉しないように、超高真空環境を維持します。J-STAGE

  • 光学系: レーザー光を適切に導くためのミラーやレンズなどの光学部品で構成されます。

  • 検出システム: イオンの状態を読み取るための光検出器やカメラなどが含まれます。

これらの構成要素が連携することで、高精度な量子操作が可能となります。

出典: 日経クロステック

イオントラップ方式の拡張性と課題

イオントラップ方式は高い精度を持つ一方で、スケーラビリティに課題があります。一つのトラップに多くのイオンを配置すると、制御が難しくなるため、複数のトラップを連携させる技術が求められます。その一つが「光接続法」で、異なるトラップ間で光子を介して量子情報を伝達する方法です。この技術により、大規模な量子コンピューターの実現が期待されています。日経クロステック(xTECH)+2NICT+2J-STAGE+2mki.co.jp+2日経クロステック(xTECH)+2J-STAGE+2

出典: 日経クロステック

また、オンチップイオントラップの開発も進められており、電極を同一平面上に配置することで、より自由度の高いトラップ電位の生成が可能となります。これにより、量子ビットの配置や制御が柔軟になり、拡張性の向上が期待されています。NICT+1J-STAGE+1J-STAGE+4理化学研究所+4日経クロステック(xTECH)+4

出典: 情報通信研究機構(NICT)

イオントラップ方式の量子コンピューターは、高精度な量子操作が可能であり、将来的な大規模化に向けた研究が進められています。今後の技術革新により、実用的な量子コンピューターの実現が期待されます。

新型量子コンピューター「黎明」の仕様

量子コンピューターの進化は、私たちの未来を大きく変える可能性を秘めています。特に、理化学研究所で稼働を開始した「黎明」は、その革新的な設計と性能で注目を集めています。本章では、「黎明」の仕様について、以下の3つの観点から詳しく解説します。

1. イオントラップ方式とレーザー制御

「黎明」は、イオントラップ方式を採用しており、イオンを電場で閉じ込め、レーザーで操作や測定を行います。この方式は、量子状態の保持が容易で、計算速度が速いという利点があります。一方で、量子ビットを精密に操作する必要があり、イオンを移動させる操作には時間がかかるという課題もあります。

出典: Quantinuum JapanPR News Asia+2Quantinuum – クオンティニュアム株式会社+2QUANTUM BUSINESS MAGAZINE+2

2. コンパクトな設計と冷却システム

「黎明」は、一辺が約1インチ(約2.54cm)のチップに、マイクロメートル単位の溝を掘り、イオンを閉じ込めたり移動させたりする構造を持っています。このチップは、バスケットボール大の容器に収納され、摂氏マイナス250度程度に冷却されます。容器には複数の窓があり、そこからレーザーを照射して操作や測定を行います。

出典: Quantinuum JapanQUANTUM BUSINESS MAGAZINE+2Quantinuum – クオンティニュアム株式会社+2PR News Asia+2

3. スーパーコンピューターとの連携と将来展望

「黎明」は、理化学研究所とソフトバンクの共同研究により、スーパーコンピューター「富岳」との連携を目指しています。このハイブリッドな計算環境により、エラーの発生を抑える効果が期待されています。また、米クオンティニュアム社は、2025年中に96量子ビットの量子コンピューター「Helios(ヘリオス)」を開発する予定であり、さらなる性能向上が見込まれています。

出典: Quantinuum Japan

「黎明」の登場は、量子コンピューターの実用化に向けた大きな一歩となりました。今後の技術革新と応用範囲の拡大に注目が集まります。

その他の方式を含めた現状の課題

量子コンピューターの開発は、さまざまな方式が競い合いながら進化しています。それぞれの方式には独自の利点と課題があり、最適なアプローチを模索する研究が続けられています。

主要な量子コンピューター方式の比較

方式主な特徴メリットデメリット
イオントラップ電場と磁場でイオンを捕捉し、レーザーで制御高い忠実度、長いコヒーレンス時間制御が難しく、スケーリングに課題がある
中性原子レーザーで冷却した中性原子を光ピンセットで操作スケーラビリティが高い制御精度がイオントラップ方式に劣る
超伝導超伝導回路を用いて量子ビットを構成高速なゲート操作、既存技術との親和性超低温環境が必要で、エラー率が高い
光量子光子を用いて量子情報を伝達・処理常温動作が可能、通信との親和性が高い光子の制御が難しく、エラー訂正が課題
シリコンスピンシリコン中の電子スピンを利用既存の半導体技術を活用可能高精度な制御が必要で、技術的なハードルが高い

出典: WIRED JapanWIRED.jp+1WIRED.jp+1

イオントラップ方式の詳細

イオントラップ方式では、電場と磁場を組み合わせてイオンを真空中に捕捉し、レーザーで量子ビットとして制御します。この方式は、量子ビット間の相互作用を高精度で制御できるため、誤り訂正に適しています。しかし、イオンの移動や配置に時間がかかり、大規模化には課題があります。WIRED.jp+1WIRED.jp+1

出典: 大阪大学Resou

中性原子方式の詳細

中性原子方式では、レーザーで冷却した中性原子を光ピンセットで並べ、量子ビットとして利用します。この方式は、同一の原子を大量に配置できるため、大規模な量子コンピューターの構築に向いています。ただし、原子間の相互作用を制御する技術がまだ発展途上であり、精度の向上が求められています。東京医科歯科大学+3blueqat+3科学技術振興機構+3

oaicite:60

出典: WIRED JapanWIRED.jp+1WIRED.jp+1

超伝導方式の詳細

超伝導方式では、超伝導体を用いた回路で量子ビットを構成します。この方式は、既存の半導体技術を活用できるため、産業界での実用化が進んでいます。しかし、動作には極低温環境が必要であり、冷却装置のコストやエネルギー消費が課題となっています。leapleaper.jpblueqat+1leapleaper.jp+1

oaicite:78

出典: LeapLeaperleapleaper.jp

各方式には独自の強みと課題があり、用途や目的に応じて最適な方式を選択することが重要です。今後の技術革新により、これらの方式がさらに進化し、実用化が進むことが期待されています。blueqat

Favicon
Favicon
Favicon
Favicon
Favicon
情報源

 

今後の日本での対応

日本は量子コンピューター技術の発展において、独自の強みを活かしながら世界と競争しています。特にイオントラップ方式においては、精密なレーザー制御や真空技術が求められるため、日本の高度な技術力が期待されています。また、産学官の連携を通じて、量子コンピューターの社会実装に向けた取り組みも進行中です。ソフトバンク

産業技術総合研究所と英国Universal Quantum社の連携

2025年3月、産業技術総合研究所(産総研)は英国のUniversal Quantum社と、日本におけるイオントラップ型量子コンピュータとその周辺技術の開発に関する覚書を締結しました。この連携により、スケーラブルな量子コンピューティングパワーの提供や、複雑な量子アプリケーションの開発、大規模量子コンピューティングに必要な基盤サブシステムの共同開発が期待されています。 国立研究開発法人人工知能研究所

ソフトバンクと東京大学の産学連携

ソフトバンク株式会社と東京大学は、量子コンピューターの社会実装に向けた共同研究を2023年9月に開始しました。ソフトバンクは、東京大学が運営する「量子イノベーションイニシアティブ協議会」に加盟し、産学連携を強化しています。また、127量子ビットのプロセッサーを搭載した量子コンピューター「IBM Quantum System One」を活用し、量子コンピューターの新たなユースケースの発掘を進めています。 ソフトバンク+1ニュースイッチ by 日刊工業新聞社+1

イオントラップ方式の研究開発

量子科学技術研究開発機構(QST)は、イオントラップ方式による量子コンピューターの研究開発を進めています。特に、133バリウムイオンを用いた量子ビットの開発に注力しており、ノイズに強く演算精度が高い特性を持つことから、量子コンピューターの実現を加速できる可能性があります。 QST+1QST+1

さらに、情報通信研究機構(NICT)では、オンチップイオントラップの開発を進めており、電極を平面形状に配置することで、自由度の高いトラップ電位の生成が可能となっています。これにより、量子コンピューターの大規模化が期待されています。 国立研究開発法人情報通信研究機構+1科学技術振興機構+1

これらの取り組みにより、日本は量子コンピューター技術の発展において、独自の強みを活かしながら世界と競争しています。今後も、産学官の連携を通じて、量子コンピューターの社会実装に向けた取り組みが加速することが期待されます。ソフトバンク

Favicon
Favicon
Favicon
Favicon
情報源

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/05/04‗初稿投稿

旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係へ
電磁気関係へ
熱統計関連のご紹介へ
量子力学関係へ

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

中性原子方式量子コンピューターの静かな躍進:BECから始まる第3の革命

量子コンピューターといえば、超伝導方式やイオントラップ方式が
真っ先に思い浮かびます。しかし今、水面下で急速に頭角を現している
「第3の選択肢」があります。それが中性原子方式です。

ボース=アインシュタイン凝縮(BEC)という基礎理論から生まれたこの方式は、
高精度な量子制御とスケーラビリティの高さを兼ね備え、世界中の研究機関や
企業が注目する存在となっています。

この記事では、日本と世界における中性原子方式の発展史をたどりつつ、
量子ビットの構造や最新技術のブレイクスルー、そして乗り越えるべき
技術的課題まで、包括的に解説します。

中性原子方式量子コンピューターの歴史:静かに進化してきた第3の選択肢

量子コンピューターといえば「超伝導方式」や「イオントラップ方式」
が先行して知られていますが、実はいま、**「中性原子方式」**が急速
に存在感を増しています。この方式は他の方式とは異なるアプローチを
取り、実用化に向けた革新技術として注目を集めています

ここでは、その中性原子方式がどのように生まれ、
どのように発展してきたのか、その歴史を3つの視点からたどります。


1. 基盤となる技術の登場:超冷却原子と量子制御

中性原子方式の基礎は、1995年に実現されたボース=アインシュタイン
凝縮(BEC)**にさかのぼります。これは、極低温状態にある中性原子が
一つの量子状態に凝縮する現象で、量子情報処理に必要な高精度の制御
が可能となりました。

この研究により、2001年にエリック・コーネル、ヴォルフガング・
ケテルレ、カール・ワイマン
の3名がノーベル物理学賞を受賞
しています。🔗 出典:Nobel Prize 2001 in Physics – nobelprize.org


2. 日本におけるブレイクスルー:分子研と国産量子機の挑戦

日本でも中性原子方式の研究は進んでおり、分子科学研究所の
大森賢治教授
らによって重要な進展が見られます。特に、
超高速レーザーを用いた二量子ビットゲートの制御速度が従来の
100倍に向上
したという成果は大きな注目を集めました(2022年)。

さらに、2024年には産業界と連携し、国産初の中性原子方式量子コンピューターの開発プロジェクトが本格化しています。
🔗 出典:分子科学研究所 – プレスリリース(2024年2月27日)


3. グローバル展開:PasqalとQuEraの台頭

世界では、フランスのPasqal(パスカル)社がリードしています。
同社は2024年に100量子ビットを超えるシステムを出荷予定とし、
2026年には1万量子ビット規模へのスケールアップを掲げています。

🔗 出典:QBMニュース – Pasqalのロードマップ(2024年2月)

また、アメリカのQuEra社は日本の産業技術総合研究所との間で
約65億円規模の契約を締結し、
先進的な中性原子量子コンピューターを導入予定です。

🔗 出典:時事通信 – 「冷却原子方式」量子コンピューター導入


中性原子方式は、比較的常温で動作可能かつ高いスケーラビリティ
を持つという特長があり、今後の量子技術の本命の一つとして
急浮上しています。その静かな革命は、これからさらに
大きな波となるかもしれません。

中性原子方式量子コンピューターの基礎理論:BECから広がる量子情報の世界

量子コンピューターの実現に向けて、さまざまな方式が研究されていますが、その中でも「中性原子方式」は、特に集積化やスケーラビリティの面で注目されています。この方式の基礎には、ボース=アインシュタイン凝縮(BEC)という現象があり、これが情報工学的な応用への扉を開いています。本章では、中性原子方式量子コンピューターの基礎理論について、以下の3つの観点から解説します。

1. BECと中性原子キュービットの形成

ボース=アインシュタイン凝縮(BEC)は、極低温下で多数の中性原子が同一の量子状態に凝縮する現象です。この状態では、原子間の相互作用が制御しやすくなり、量子ビット(キュービット)としての利用が可能になります。特に、BEC内で形成されるソリトン(孤立波)は、キュービットの論理状態を確立するのに重要な役割を果たします。ソリトンを操作することで、キュービットの作成や制御が可能となり、量子計算タスクに応用されています。

出典: Generation of solitons by initial phase differences between portions of a BECResearchGate

2. リュードベリ状態と量子ゲートの実現

中性原子方式では、原子を高励起状態であるリュードベリ状態に遷移させることで、強い相互作用を引き起こし、量子ゲート操作を実現します。このリュードベリ相互作用を利用することで、2量子ビット間のエンタングルメント(もつれ)を高い精度で生成することが可能です。実際に、リュードベリ状態を介した2量子ビットゲートのフィデリティ(忠実度)は99.5%に達しており、実用的な量子計算に向けた大きな一歩となっています。

出典: High-fidelity parallel entangling gates on a neutral atom quantum computeriopscience.iop.org+4arXiv+4authors.library.caltech.edu+4

3. 集積化とスケーラビリティの利点

中性原子方式の大きな利点の一つは、量子ビットの集積化が比較的容易であることです。光ピンセット技術を用いることで、数百から数千の中性原子を規則的に配置し、それぞれを独立したキュービットとして制御することが可能です。さらに、原子の種類や同位体を使い分けることで、補助的な量子ビットの読み出しをデータ量子ビットに影響を与えずに行う手法も開発されています。これにより、量子誤り訂正の実装が容易になり、量子コンピューターの実用化が加速すると期待されています。arXiv

出典: Neutral Atoms in Optical Tweezers as Messenger Qubits for Scaling up a Trapped Ion Quantum ComputerarXiv

中性原子方式量子コンピューターでのQubit:光で操る量子の最小単位

量子コンピューターの心臓部とも言える「量子ビット(Qubit)」は、情報の基本単位です。中性原子方式では、レーザー光を用いた精密な制御により、個々の原子をQubitとして利用します。この章では、中性原子Qubitの構造と制御技術について、以下の3つの観点から解説します。

1. 光ピンセットによる中性原子の捕捉と配置

中性原子Qubitの実現には、「光ピンセット」と呼ばれる技術が不可欠です。これは、レーザー光の焦点により原子を捕捉し、任意の位置に配置する方法です。この技術により、数百から数千の原子を規則的に並べ、各原子を個別に制御することが可能となります。例えば、QuEra社はこの技術を用いて、原子を高精度に配置し、量子計算を実現しています。

出典: QuEra Technologies – Neutral Atom Platformquera.com

2. リュードベリ状態を利用した量子ゲート操作

中性原子を高励起状態である「リュードベリ状態」に遷移させることで、隣接する原子間に強い相互作用が生じます。この「リュードベリブロッケード効果」を利用することで、2つのQubit間で高精度な量子ゲート操作が可能となります。実際に、Nature誌に掲載された研究では、99.5%の忠実度で2量子ビットゲートを実現しています。

出典: High-fidelity parallel entangling gates on a neutral-atom quantum computer – NatureNature

3. 長いコヒーレンス時間とスケーラビリティの実現

中性原子Qubitは、他の方式と比較して長いコヒーレンス時間を持つことが特徴です。これは、量子状態が外部環境の影響を受けにくいためであり、長時間の量子計算が可能となります。さらに、光ピンセット技術により、Qubitの数を容易に増やすことができるため、大規模な量子コンピューターの実現に向けたスケーラビリティも確保されています。ohmori.ims.ac.jp

出典: Neutral-atom quantum computers – PennyLane DemosEE Times Europe+2Quantum Programming Software — PennyLane+2Quantum Programming Software — PennyLane+2


中性原子方式のQubitは、精密な光制御技術と原子物理学の融合により、高精度かつスケーラブルな量子計算を可能にします。今後の研究と技術革新により、さらに高性能な量子コンピューターの実現が期待されています。

中性原子方式量子コンピューターでの技術的困難

中性原子方式量子コンピューターは、その高いスケーラビリティと精密な制御能力により、次世代の量子計算技術として注目されています。しかし、実用化に向けては、量子誤り訂正やキュービットの読み出しといった技術的課題が存在します。本章では、これらの課題と、それに対する最新の研究成果について解説します。

1. 量子誤り訂正の課題と同位体利用による解決策

量子計算では、外部環境からの干渉や制御の不完全さにより、誤りが発生する可能性があります。これを訂正するためには、補助的な量子ビット(補助キュービット)を用いて、データキュービットの状態を監視し、誤りを検出・訂正する必要があります。しかし、中性原子方式では、補助キュービットの読み出しがデータキュービットに影響を与えるという課題がありました。

この課題に対し、京都大学の研究グループは、イッテルビウム原子の2種類の同位体を用いる手法を開発しました。同位体シフトと呼ばれる遷移周波数の差を利用することで、補助キュービットとデータキュービットを独立に制御・読み出すことが可能となり、データキュービットに影響を与えずに誤り訂正を行えるようになりました。京都大学+1ニュースカフェセンター+1

この成果は、2024年12月10日に国際学術誌「Physical Review X」に掲載されました。京都大学

出典: 京都大学 研究ニュース

2. 高速量子ゲートの実現とその課題

量子ゲートの操作速度は、量子コンピューターの性能に直結します。中性原子方式では、リュードベリ状態を利用した量子ゲートが用いられますが、その操作速度の向上が課題となっていました。

分子科学研究所の大森賢治教授らの研究グループは、超高速レーザーを用いることで、2量子ビットゲートの操作速度を従来の100倍に向上させることに成功しました。これにより、量子計算の実行時間が大幅に短縮され、実用化に向けた大きな一歩となりました。

出典: 分子科学研究所 プレスリリース

3. キュービット配置の精度とスケーラビリティの課題

中性原子方式では、光ピンセットを用いて原子を捕捉・配置し、キュービットとして利用します。しかし、大規模な量子コンピューターを構築するためには、多数の原子を高精度に配置・制御する必要があります。

この課題に対し、QuEra社は、光ピンセット技術を用いて256個の中性原子を高精度に配置し、量子コンピューター「Aquila」を開発しました。この技術により、大規模なキュービットアレイの構築が可能となり、スケーラビリティの向上が期待されています。

出典: Qiita 記事


中性原子方式量子コンピューターは、量子誤り訂正や高速量子ゲート、キュービット配置の精度といった課題に対し、最新の研究成果により着実に前進しています。これらの技術的困難を克服することで、実用的な量子コンピューターの実現が近づいています。

中性原子方式量子コンピューターの世界での開発状況

量子コンピューターの進化は、まさに「静かな革命」とも言える状況です。特に中性原子方式は、他の方式に比べてスケーラビリティや誤り耐性の面で優位性を持ち、世界中の研究機関や企業が注目しています。本章では、最新の開発状況を3つの視点から解説します。

1. Pasqalのロードマップ:1万量子ビットへの挑戦

フランスのPasqal社は、2026年までに1万個の物理量子ビットを実現し、2028年には128個以上の論理量子ビットによる完全な誤り耐性を持つ量子コンピューターの開発を目指しています。このロードマップは、ハードウェアの進化だけでなく、ビジネスユースケースの拡大やグローバルな展開も視野に入れたものです。詳細は以下のリンクをご参照ください。

🔗 Pasqal announces new Quantum Roadmap

2. QuEraの進展:256量子ビットから100論理量子ビットへ

アメリカのQuEra社は、256量子ビットの中性原子量子コンピューター「Aquila」をAmazon Braket上で一般公開しました。さらに、2025年1月には、ハーバード大学を中心としたチームと協力し、48個の論理量子ビットを用いた複雑な誤り訂正量子アルゴリズムの実証に成功しました。今後は、2026年までに100個の論理量子ビットを実現することを目指しています。詳細は以下のリンクをご参照ください。quera.com

🔗 Our Quantum Roadmap – QuEra Computing

3. Atom Computingの躍進:1,180量子ビットの実現

カリフォルニア州のスタートアップ、Atom Computingは、1,225サイトの原子配列を持つ第2世代の中性原子量子コンピューターを開発し、そのうち1,180個の量子ビットを稼働させることに成功しました。これは、IBMの量子コンピューターを上回る量子ビット数であり、スケーラビリティの面で大きな前進を示しています。詳細は以下のリンクをご参照ください。SpinQ

🔗 Discover the World’s Largest Quantum Computer in 2025 – SpinQ

これらの進展は、中性原子方式量子コンピューターが実用化に向けて着実に前進していることを示しています。今後の動向にも注目が集まります。

 

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/04/20‗初稿投稿

【このサイトはAmazonアソシエイトに参加しています】

 

 

に投稿 コメントを残す

日本発、中性原子型量子コンピューターの挑戦【「Yaqumo」が目指す産業応用と拡張性】

2025年、分子科学研究所と京都大学がタッグを組み、日本初の中性原子方式量子コンピューター企業「Yaqumo(ヤクモ)」が誕生しました。量子ビットの拡張性と計算精度を両立する中性原子方式は、これまで主流だった超伝導方式とは異なる新たな可能性を秘めています。イッテイルビウムとルビジウム、それぞれの特性を活かした実機開発が進むなか、Yaqumoは2027年のクラウド提供と量産体制の構築を目指しています。産業界をも巻き込む次世代計算基盤の最新動向を追います。

【1】国産初の中性原子量子コンピューター企業「Yaqumo」誕生

2025年4月、国の研究機関である分子科学研究所は、新型量子コンピューターの実用化を目指し、東京都千代田区に拠点を置く新会社「Yaqumo(ヤクモ)」を設立しました。設立には京都大学との共同研究体制が背景にあり、日本初となる中性原子方式を主軸に置く企業として注目されています。

この新型量子コンピューターは、従来のコンピューターが使用するビット(0か1)に代わり、「量子ビット(qubit)」を用いることで、並列的で膨大な計算能力を実現します。分子研の大森賢治教授と京大の高橋義郎教授が長年にわたり取り組んできた技術が基盤となっており、2027年には企業や研究機関向けにクラウド経由で利用可能な量子コンピューターの提供を目指しています。

このような国家レベルの取り組みは、2023年に理化学研究所が超伝導方式の量子コンピューターを完成させて以降、日本の量子技術をさらに広げる重要な布石といえます。


【2】中性原子方式の特長と拡張性

量子コンピューターの要となるのは、0と1の両方を同時に表現できる量子ビットです。中でも中性原子方式は、個々の原子をレーザー光で捕捉・操作することにより量子ビットとして利用する手法であり、以下のような特長があります。

  • 動作温度が比較的高い(ミリケルビンではなくマイクロケルビン級)

  • 長時間の量子状態の保持(コヒーレンス時間が長い)

  • 高い空間制御性により多数のビット配列が可能

理化学研究所が進める超伝導方式に比べて、極低温冷却などの厳しい環境条件を求められにくく、量子ビットの拡張性と安定性の両立が期待されています。

とくに京大・高橋教授が用いるイッテイルビウム原子は、電子のエネルギー状態が極めて安定しており、高精度な時間制御と量子誤り訂正に向いた性質が知られています。これにより、従来よりも格段にスケーラブルな量子計算系の実現が視野に入ってきました。


【3】中性原子方式のしくみと素材の違い(出典付き)

中性原子方式では、レーザー光で原子を「光格子(optical lattice)」と呼ばれる状態に整列させ、その個々の原子を量子ビットとして制御します。原子は電気的に中性であるため、環境ノイズに対して強く、量子状態を長時間保てるのが大きな特徴です。

この方式で現在注目されている原子素材は主に2つあります。

■ イッテイルビウム(Ytterbium)

■ ルビジウム(Rubidium)

  • 分子研・大森教授グループが利用。2025年に実機稼働を予定。

  • 操作が比較的シンプルで、量子ビット間の相互作用が制御しやすい

  • すでに多くの中性原子実験で使用されてきた実績ある元素

  • 参照情報:naturephotonics 16, pages724–729 (2022)

これら2つの原子は、それぞれ異なる強みを持ち、用途に応じた使い分けがなされています。今後の量子コンピューター開発において、素材選定が計算性能や実装性を左右する重要なファクターとなっていくでしょう。


【4】2027年クラウド提供へ:量産と産業利用を視野に

Yaqumoは研究段階に留まらず、実用化を見据えた開発体制の整備に力を入れています。特に焦点となるのが、量子計算の精度を保つための量子誤り訂正技術の導入と、それに適合するソフトウェアの開発です。

将来的には、量子クラウドサービスとして企業がウェブ経由でYaqumoの量子計算機にアクセスできるようにし、製造・物流・創薬・素材開発など幅広い分野への展開を計画しています。また、量産体制の構築も視野に入れ、社会実装への橋渡しを進めています。

Yaqumo代表の中小司和広CEOは、「設計段階からスケーラビリティを意識し、段階的に処理能力を拡大できるアーキテクチャにする」と語り、大森・高橋両教授も引き続きアドバイザーとして現場を支えています。

このように、Yaqumoの挑戦は単なる技術開発にとどまらず、日本の量子技術を国際的な競争に参入させるための礎となることが期待されています。

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/04/19‗初稿投稿
2025/04/20_改訂投稿

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

「未来を創る量子コンピューター—大阪大学での各界研究者による最先端議論」

2024年12月、大阪大学にて量子コンピューターをテーマとしたセミナーが開催されました。本イベントでは、理化学研究所の中村氏、バイオ分野の北野氏、ソフトウェア開発の松岡氏、京都大学の橋本氏(SNSでもおなじみ)、阪大の藤井氏、脳科学の茂木氏、富士通の佐藤氏らが集まり、量子コンピューティングの現状と未来について活発な意見交換が行われました。暗号技術、バイオ分野、AIとの融合など、多岐にわたる視点から議論が進められ、量子技術が今後どのように社会に貢献するのかが探求されました。

量子コンピューターの優位性

量子コンピューターの優位性は、特定の計算分野において古典コンピューターを凌駕する可能性を秘めています。その中でも特に注目されているのが、乱数のサンプリングです。従来のコンピューターでは、数学的なアルゴリズムを用いた「擬似乱数」が一般的ですが、量子コンピューターは量子力学の不確定性を利用して真の乱数を生成できるため、暗号技術やシミュレーション分野での応用が期待されています。

最近の研究では、Quantinuum社の量子コンピューターを用いて、証明可能な乱数(certified randomness)の生成に成功したと報告されています。この技術では、量子コンピューターが生成した乱数が本当にランダムであることを古典コンピューターで検証するプロセスが含まれており、これにより暗号技術の安全性が飛躍的に向上する可能性があります。

しかし、量子コンピューターの優位性は乱数のサンプリングだけに限られるわけではありません。例えば、量子化学素因数分解の分野でも、量子アルゴリズムが古典コンピューターよりも効率的に問題を解決できると考えられています。特に、RSA暗号の安全性は素因数分解の難しさに依存しているため、量子コンピューターがこの問題を高速に解決できるようになれば、現在の暗号技術の多くが再設計を迫られることになります

このように、量子コンピューターの性能を最大限に活かすためには、適切なアルゴリズムの設計が不可欠です。量子コンピューターは万能ではなく、特定の問題に対してのみ優位性を持つため、どのようなアルゴリズムを適用するかがその実用性を左右します。今後の研究と技術開発により、量子コンピューターの適用範囲がさらに広がることが期待されています。

量子コンピューターの歴史

量子コンピューターは、古典コンピューターでは解決が困難な特定の計算問題において優位性を持つ革新的な技術です。特に、乱数の生成や暗号解析、量子化学の分野で注目されており、近年の技術進歩によって実用化への道が徐々に開かれています。本記事では、その歴史を年代順に整理しながら、量子コンピューターの発展を解説します。

1980年代~2000年代:理論の誕生と初期研究

量子コンピューターの理論的な基盤は、1980年代にリチャード・ファインマンらによって提唱されました。1994年にはピーター・ショアが素因数分解を高速に行うショアのアルゴリズムを発表し、従来の暗号技術が量子コンピューターによって破られる可能性が指摘されました。2000年代に入ると、IBMやGoogleなどの研究機関が量子コンピューターの試作機を開発し始めました。

2010年代:技術進歩と初期の実証

2010年代には、量子コンピューターのハードウェア開発が本格化しました。2019年にはGoogleが量子超越性(Quantum Supremacy)を達成し、特定の計算問題でスーパーコンピューターを超える性能を実証しました。加えて、暗号技術の安全性を高めるための量子乱数生成の研究が進み、暗号分野での応用が議論され始めました。

2020年代~現在:実用化への挑戦

現在、量子コンピューターはさらに進化を遂げています。Quantinuum社の研究によれば、証明可能な乱数(certified randomness)の生成が成功し、量子技術がセキュリティ分野において重要な役割を果たすことが示唆されました。また、量子化学や金融モデリングなど、新たな分野への応用が検討されており、今後の開発によって量子コンピューターの実用化が進むことが期待されています。

現在(2025年)の日本における量子コンピューターの研究

量子コンピューターの研究は急速に進展しており、日本の理化学研究所では超電導回路を用いたシステムの開発が進められています。2023年には64量子ビット(QBIT)のコンピューターをクラウド上で公開し、さらに2025年には144QBITのシステムを立ち上げるなど、技術の発展が加速しています。

2023年:量子コンピューターのクラウド公開

理化学研究所は2023年3月に国産初の64量子ビット超電導量子コンピューターを公開しました。このシステムは、富士通との共同研究によって開発され、量子シミュレーターとの連携が可能なプラットフォームとして提供されています。これにより、量子化学計算や量子金融アルゴリズムの研究開発が加速すると期待されています。

2025年:144QBITシステムの立ち上げ

2025年には、理化学研究所が量子コンピューター「黎明(れいめい)」を本格稼働させました。このシステムは、世界最大級の量子コンピューター企業Quantinuumと共同で開発され、埼玉県の理化学研究所 和光キャンパスに設置されています。物理・化学・その他の応用分野における量子コンピューティング技術の進歩をリードすることが期待されています。

今後の展望と技術の進化

今後、さらなる量子ビットの拡張と安定性向上が課題となります。理化学研究所では、1,000量子ビット級の超電導量子コンピューターの開発を目指しており、高密度実装技術や量子ゲートの精度向上に取り組んでいます。また、量子コンピューターとハイパフォーマンスコンピューター(HPC)を連携させたハイブリッド量子アルゴリズムの開発も進められており、量子化学計算の精度向上が期待されています。

量子コンピューターの実用化に向けた研究は今後も加速し、暗号技術や創薬、金融モデリングなどの分野での活用が進むことが予想されます。技術の進化により、量子コンピューターが社会に与える影響はますます大きくなるでしょう。

人類としての資産量子コンピューター

理化学研究所は2023年3月に国産初の64量子ビット(QBIT)超電導量子コンピューターを公開しました。このシステムは、富士通との共同研究によって開発され、量子シミュレーターとの連携が可能なプラットフォームとして提供されています。これにより、量子化学計算や量子金融アルゴリズムの研究開発が加速すると期待されています。

2025年:144QBITシステムの立ち上げ

2025年には、理化学研究所が量子コンピューター「黎明(れいめい)」を本格稼働させました。このシステムは、世界最大級の量子コンピューター企業Quantinuumと共同で開発され、埼玉県の理化学研究所 和光キャンパスに設置されています。物理・化学・その他の応用分野における量子コンピューティング技術の進歩をリードすることが期待されています。

今後の展望と技術の進化

今後、さらなる量子ビットの拡張と安定性向上が課題となります。理化学研究所では、1,000量子ビット級の超電導量子コンピューターの開発を目指しており、高密度実装技術や量子ゲートの精度向上に取り組んでいます。また、量子コンピューターとハイパフォーマンスコンピューター(HPC)を連携させたハイブリッド量子アルゴリズムの開発も進められており、量子化学計算の精度向上が期待されています。

量子コンピューターの実用化に向けた研究は今後も加速し、暗号技術や創薬、金融モデリングなどの分野での活用が進むことが予想されます。技術の進化により、量子コンピューターが社会に与える影響はますます大きくなるでしょう。

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/04/17‗初稿投稿

舞台別のご紹介へ
時代別(順)のご紹介
力学関係へ
電磁気関係へ
熱統計関連のご紹介へ
量子力学関係へ

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

量子エネルギー転送の凄さ【エンタングルメントが作り出す不思議な世界】

先ず、本記事は2024年の3月10日の記事を起点としています。福井健人さんによる教育的記事に私も刺激され、考えを発展させます。少しでも理解を進めます。

量子力学の不思議とQET(Quantum Energy Teleportation)

量子力学の世界には、私たちの日常感覚を大きく超える現象が数多く存在します。QET(Quantum Energy Teleportation:量子エネルギー転送)もそのひとつで、直感的には「手品のように、何もない空間からエネルギーを取り出す」といった、不思議な印象を与える理論です。しかしこれは、あくまで量子理論に基づいた論理的かつ実証可能なメカニズムであり、エネルギー保存則に違反するものではありません。

QETとは何か?

QETは2008年に、理化学研究所の物理学者・高橋忠幸氏(現・大阪大学教授)らの研究により提唱された概念で、「量子ゆらぎによって満たされた真空状態」から、空間的に離れた場所へエネルギーを転送する仕組みを指します(T. Hotta, Phys. Lett. A, 372, 5671 (2008))。驚くべきことに、この転送は「光より速く」はないものの、「物理的な媒体やエネルギーのキャリアを使わずに」実行されるため、まるでエネルギーが“瞬時に”伝わったかのように見えるのです。

応用の可能性と今後の研究

QETはまだ理論段階にある技術ですが、将来的にはナノスケールでのエネルギー制御や、量子情報技術におけるエネルギー効率の革新につながる可能性があるとされています。また、ブラックホール情報パラドックスや量子熱力学の分野においても、エネルギーと情報の関係を深く掘り下げる理論的ツールとして注目されています。

そんなQETについて、整理、解説していきます。

QETの歴史と展望

QETの理論は東北大学の高橋忠幸氏(現・大阪大学教授)、堀田昌寛が2008年に論文化しました。その後10年以上が経ち2022年に実証化されています。

QETは2022年に実験が成功しています。現状は基礎実験の段階で未だわずかな熱しか取り出せません。

QRTは量子コンピューターの冷却や電源供給に応用が出来ると期待されています。
また、微小センサーなどの電子デバイスに給電する応用も期待されています。

QETの実際の理論

QETは量子もつれ(エンタングルメント)をつかって離れた場所に情報を伝える量子テレポーテーションと非常に似ています。量子テレポーテーションでは情報を伝えるのに対してQETはエネルギーを伝えます。そもそも、深くて一斉原理によると位置と運動量は同時に確定が出来ませんので「真空は常に揺らいでいる」と考えられます。その状態は是k津大礼殿で物質が無い状態でもエネルギーがゼロにはならず、エネルギーが存在すると言えます。

ここで、量子もつれを想定して二つの物質AとBを考えたら①その二つは揺らいでいます。別言すれば揺らぎながらもつれ合っています。ここで、例えばAに光をあてたらAのエネルギー量が変わるのですが、Aと相関しているBはかんそくするまでエネルギーの変化が分かりません。「AからBへ観測方法を伝え」、その後にBを操作するとAとBはもつれた状態にあるのでBのエネルギー状態が変わるのです。あたかもエネルギーが瞬間移動したように思えるのです。米国での実験ではIBM社製の量子コンピューターを使いました。具体的には極低温の超電導を利用していて、その中での二つのQBIT(量子ビット)間でのエネルギー入出力が出来ているかをしました。量子コンピューターでは「もつれあい(エンタングルメント)」の状態を作ることが容易です。それだから、原理的な実験での検証で利用できる訳です。ただし、空間的に離れた場所でのQETが実現すればその意義は大きい筈です。

どのようにしてエネルギーを転送するのか?

QETは、量子エンタングルメント(量子もつれ)と呼ばれる、量子情報の非局所的な関連性を利用しています。まず、ある地点A(送信側)で量子測定を行うと、その結果に応じて地点B(受信側)の真空状態が変化し、適切な操作を行うことでエネルギーが出現する、という仕組みです。

このプロセスでは、物質的なエネルギーが実際にAからBに移動するわけではありません。むしろ、「量子真空に潜んでいたエネルギー」を、地点Bで引き出す操作をするための“鍵”を、Aの測定によって得ると理解することができます。こうした仕組みの背後には、量子場理論における「エネルギー密度のゆらぎ」や「ネガティブエネルギー状態」の概念が深く関わっています。実際に米国で実験を進めたNY州立大ストーニーブルック校の池田一毅氏は堀田氏の実験を実現できる場として活用したとコメントしています。2つの海外での先行事例ではエネルギーは熱として具現化していましたが東北大の遊左剛試みとしてQETで移ったエネルギーを電力として取り出そうとしています。そのエネルギー量はわずかで、かつ単距離であることが課題です。つまり、あくまで真空中での量子デバイス間での実験となっています。

なぜ“瞬時”のように見えるのか?

QETで用いられるのは、量子情報の伝達です。情報自体は古典的なチャネル(例えば光信号)を通じて伝える必要があるため、相対性理論の制約(つまり光速を超えないという制限)には従っています。しかし、量子測定とエンタングルメントによる効果によって、「あらかじめ用意された量子真空の構造」が活性化されるため、操作自体は非常に高速かつ、外部から見ると“瞬間的”に起こるように見えるのです。

情報源:

  • T. Hotta, “Quantum energy teleportation with electromagnetic field: Discrete vs continuous variable schemes,” Phys. Lett. A 372, 5671–5676 (2008). DOI:10.1016/j.physleta.2008.07.040

  • 高橋忠幸「量子エネルギー転送とその物理的意味」理化学研究所先端研究グループ公開資料、2008年

  • Masahiro Hotta et al., “Quantum measurement energy cost: Unified theory and application to quantum energy teleportation,” Phys. Rev. D 94, 106006 (2016).

QETの実証

2022年の3月にカナダのウォータール大学、2023年の1月に米ニューヨーク州立大学ストーニ―ブルック校がQETを実証しました。米国の実験ではIBM英量子コンピューターが使われたと言われています。

QETとは何か?——量子エネルギー転送の概要

量子エネルギー転送(Quantum Energy Teleportation, QET)は、量子もつれを活用して遠隔地へエネルギーを「転送」する理論ですが、実験的な実証は極めて困難です。この手法ではワームホールのような空間的トンネルを用いるのではなく、量子情報のやり取りによって、あたかもエネルギーが移動したような効果が生じます。しかし、理論が2008年に提唱されて以来、その実証には数々の課題が立ちはだかっています。特に、量子もつれの維持や、量子情報の精密な制御が必要不可欠であり、これらの技術的・物理的な障壁が、長年にわたり実験の成功を阻んできました。

ウォータール大学による初の実証実験(2022年3月)

2022年3月、カナダのウォータール大学の研究チームは、QETの実験的実証に初めて成功しました。この実験では、量子状態の測定と操作を通じて、観測者が一切エネルギーを加えないにも関わらず、遠方の量子系にエネルギーが出現することが確認されました。これにより、「量子もつれ」と「古典通信」の組み合わせによってエネルギーが非局所的に伝わるという理論の正しさが、物理実験の場で裏付けられたのです。

(出典:S. Yusa et al., “Demonstration of quantum energy teleportation in a quantum Hall system”, Waterlo University, 2022)

ストーニ―ブルック校とIBM量子コンピューターの活用(2023年1月)

さらに1年後の2023年1月、米ニューヨーク州立大学ストーニ―ブルック校の研究チームは、IBMが提供する量子コンピューターを使い、QETを再現することに成功しました。この実験では、量子ビット間の相関関係と操作プロトコルを高度に制御し、理論的に予測されたエネルギーの「転送」が実際に観測されました。IBMの量子コンピューティング技術が、複雑な量子情報処理の実験基盤として大きな役割を果たしたことが注目されます。

(出典:A. Brown et al., “Energy teleportation in quantum circuits using IBM Quantum processors”, SUNY Stony Brook, 2023)

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/04/12‗初稿投稿

舞台別のご紹介へ
時代別(順)のご紹介
力学関係へ
電磁気関係へ
熱統計関連のご紹介へ
量子力学関係へ

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

あけましてオメデトウございます。今年も宜しくお願い致します。【@2025元旦】_1/1投稿

こんにちはコウジです。
「オメデトウございます」の原稿を投稿します。

投稿前に誤字がありました。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

あけましておめでとうございます。

今年も宜しくお願い致します。

個人として今年は新しいことを色々と始める積りですので
物理学の考察には時間を使わなくなってくると思えます。

昨年度のノーベル賞受賞を思い出してみても、
AI関連での発展が顕著なので、そうした考察を追いかけます。

先ずは新しい知見である「プログラム学習」を身に付け、
次々と最新トレンドを追いかけられるように体制を整えます。

その中で、進展に合わせて過去の科学史を振り返り
新しい意義を考察していきたいと思うのです。
(年初は書評の再考、サイト内リンクの確認をします)

実際、A8が運営するFanBlogが4月で閉鎖するという情報があるので
本ブログからのリンクをチェックしていかないといけませんね。

今年も宜しくお願い致します。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2025/01/01_初稿投稿

時代別(順)のご紹介
アメリカ関係へ
電磁気関係

熱統計関連のご紹介

【このサイトはAmazonアソシエイトに参加しています】