に投稿 コメントを残す

ピーター・ゼーマン
【縮退の解放を使い、ナトリウム原子の電子特性を説明しました】-7/5改定

こんにちはコウジです。
「ゼーマン」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

宇宙と物質の起源
【スポンサーリンク】

ピーター・ゼーマン【1865年5月25日生まれ ~ 1943年10月9日没】

その名の綴りはPieter Zeeman

ゼーマンはオランダの小さな町、

ゾンネメレに生まれています。

またゼーマンはローレンツと同じ時代の理論家で

ローレンツと同時にノーベル賞を受賞してます。

当然、アインシュタインとも交流をもちます。

ゼーマンにとって幸運だったのは

ローレンツカメリー・オネスに師事した事

です。稀代の理論家と実験家の指導のもと、

ゼーマンは、そうした素晴らしい環境で育ちます。

そんなゼーマン等が出した結果がゼーマン効果です。

具体的には磁場中に置かれたナトリウム原子のスペクトル

を観察した時に、それが分裂していたのです。

ローレンツとゼーマンによってなされた説明は

ナトリウム原子の内部構造についてのものでした。

細かくは原子内部の電子が電荷を持ち、

磁場中では今で言う縮退状態からの開放される

ので(スピンの性質から)放射特性が変化するのです。

更には、その電荷の物理量が別に理論を進めていた

J・J・トムソンのそれと近しい値をとった事で

ローレンツとゼーマンの理論は説得力

をもちました。結果、

ノーベル賞が贈られます。

また、ノーベル賞受賞後

ゼーマンはアムステルダムで
研究所を運営し、そこで電磁光学
の研究を進めています。特に、
移動する媒質の中での光の伝播
に関しても研究していますが、
それは相対論の形成に有益
ローレンツアインシュタイン
も評価していたと言われています。
因みにこの3人を考えると年齢順で
ローレンツ(1853年生まれ)
ゼーマン(1865年生まれ)
アインシュタイン(1879年生まれ)
の順番です。実験事実が確立していき、
相対性理論が熟成されていくのです。

ローレンツとゼーマンの素晴らしい
点はナトリウム原子の構造を
解明した手法にあったと思います。
実験結果の積み重ね、仮設の設定、
そして全てを使った理論構築の
モデルはその後に多くの学者が活用可能で
再現可能な手法だったかと思えます。
その後に他の原子も次々と性格が
明らかにされていきます。

|コスパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
適時、返信・改定をします。

nowkouji226@gmail.com

2020/10/31_初版投稿
2025/07/05_改定投稿

舞台別のご紹介
時代別(順)のご紹介

オランダ関係の紹介へ
ライデン大学のご紹介

熱統計関連のご紹介
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年9月時点での対応英訳)

The name is spelled Pieter Zeeman.

Seeman was born in the small Dutch town of Zonnemaire. Zeeman is a theorist of the same age as Lorenz and has won the Nobel Prize at the same time as Lorenz. Naturally, he also interacts with Einstein.

Fortunately for Zeeman, he studied under Lorenz and Kamerlingh Onness. Under the guidance of rare theorists and experimenters, Zeeman grows up in a wonderful environment. The result of such Zeeman is the Zeeman effect. Specifically, when I observed the spectrum of the sodium atom placed in the magnetic field, it was split.

The explanation given by Lorenz and Zeeman was about the internal structure of the sodium atom. In detail, the electrons inside the atom have an electric charge, and in a magnetic field, they are released from the degenerate state as they are now called, so the radiation characteristics change (due to the nature of spin).

Furthermore, Lorenz and Zeeman’s

theory was convincing because the physical quantity of the electric charge took a value close to that of J.J. Thomson, who was advancing the theory separately. As a result, the Nobel Prize will be awarded.

After receiving the Nobel Prize, Zeeman runs a laboratory in Amsterdam, where he pursues research in electromagnetic optics. He is particularly studying the propagation of light in moving media, which is said to have been useful in the formation of relativity and was also appreciated by Lorenz and Einstein. By the way, considering these three people, in order of age
Lorenz (born 1853)
Zeeman (born 1865)
Einstein (born 1879)
It is the order of. Experimental facts will be established and the theory of relativity will be matured.

I think the great thing about Lorenz and Zeeman was the method of elucidating the structure of the sodium atom. It seems that the accumulation of experimental results, the setting of temporary settings, and the model of theory construction using all of them were methods that many scholars could utilize and reproduce after that. After that, the characteristics of other atoms will be revealed one after another.

に投稿 コメントを残す

ダーヴィット・ヒルベルト
【現代数学の父・高木貞治の師・そしてフォンノイマンを評価】-7/31改訂

こんにちはコウジです。
「ヒルベルト」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

数の概念
【スポンサーリンク】

ダーヴィット・ヒルベルト【1862年1月23日 ~ 1943年2月14日】

 

ヒルベルトの名前を英語でつづるとDavid Hilbertとなり
ドイツ語:でつづるとˈdaːvɪt ˈhɪlbɐtとなります。誰しもが認める
「現代数学の父」がヒルベルトです。遅ればせながら、
誰しもが認める大物をご紹介します。
ヒルベルトは当時プロイセン王国領だったケーニヒスベルク
(今はロシア領であるカリーニングラード)に生まれました。

ヒルベルトはケーニヒスベルク大学に進学し学びますが、この大学では別途、カントが(別の時代に)学び、学長を務めていたような歴史ある大学です。もともとドイツ騎士団だった人物が設置した大学で、第二次大戦後はソビエト連邦領として統治されていました。

初稿を記した2022年からウクライナとロシアの紛争が続いています。ロシアの領土を巡る経緯は非常に根深いものがあると感じさせる地方です。思えば旧東ドイツも第二次大戦後は実質的にロシアの支配下あったとも言えます。

プロイセン王国ではありますが、後の時代には他国であったような地方でヒルベルトは生まれ学びました。後に多彩な才能がヒルベルトを育てました。特にウェーバーはドイツ数学の影響をヒルベルトに与えたと言われています。

ヒルベルトの伝記(C.リード著)を読んで
博士号授与時の言葉が印象的でしたので記載します。

学部長は求めました。

「あなたの厳粛な宣誓を求めます。真の科学を雄々しく擁護し、それを発展させ、
より見事なものにすること、そしてこれを利益の追求や虚栄のためにではなく、
神の真実の光が広がるために行うこと、これをあなたの真心を込めて約束することを。」

ヒルベルトはこの言葉に対して宣誓を誓い学位を受けました。

更に、同大学でヘルマン・ミンコフスキーとアドルフ・フルヴィッツと刺激を与えあう関係を持ちます。なかんずくミンコフスキーとは「最良にして、本当の友人」と感じるような関係を築きました。

上記の伝記でヒルベルトは45歳の時に自転車に乗り始めたときのことが描かれています。
自転車は「彼(ヒルベルト)の創造活動に欠かせない付随物になかつた」と記されています。
当時のケ゚ッチンゲン大では大変自転車が流行していて、ヒルベルトは
バラの花壇の周りを八の字にクルクル周って楽しんでいたようです。

またヒルベルトは偉大な数学者を多数、指導輩出しています。教育者として非常に優れています。ヒルベルトはゲッティンゲン大学で色々な人を指導していきました。

ゲッティンゲン大学に居た一人であるヨハネス・ルートヴィヒ・フォン・ノイマン(のちのジョン・フォン・ノイマン)の論文を評価していて、ノイマンは後に原子爆弾やコンピュータの開発で特筆される業績を残します。

また、後述する「ヒルベルト空間」の名付け親はノイマンだと言われています。「三次元ユークリッド空間」を発展させていったのです。ヒルベルトは当時22歳であったノイマンをゲッティンゲン大学に招いて育てたのです。

また日本人では東大の高木貞治がドイツ留学時代ヒルベルトの指導を受けたと言われています。思い返せば恐縮ながら、私も高木貞治の教科書を使っていたので、日本で数学を志す若者もヒルベルトの影響を受けていたのです。明文化すると少し感慨深いです。

ヒルベルトの業績で大きいと思えるのは数学概念の統合計画」と言える仕事だと思えます。それは不変式論、抽象代数学、代数的整数論、積分方程式、関数解析学、幾何学の公理系の研究、一般相対性理論などで個別にあった公理を整理して応用を考えました。

また現実の現象(人間の頭の中での認識群)との相関を考えた時に、多岐に及ぶ業績を「結びつける試み」であると思えます。
ヒルベルトの「公理論と数学的な整合性の証明」に関する
一連の計画はヒルベルト・プログラムと呼ばれ、
現代で理解されています。

後にフォンノイマンも議論を続け、ヒルベルト空間と呼ぶ空間を3次元ミンコフスキー空間から発展させています。また、ヒルベルトの零点定理などに名前が残っています。

何よりヒルベルトはドイツの数学レベルを世界最高の水準へと、ひきあげた数学者達の一人でした。一流の数学者でした。そんなヒルベルトは、晩年にナチスドイツによるユダヤ人迫害を目の当たりにしています。ドイツの数学研究所からユダヤ人たちが一人一人いなくなっていく様子に心を痛めていたそうです。

また晩年(1927年頃)、上記の伝記によるとヒルベルトは人間関係で困難に直面しています。
特にAnnalenという雑誌の主筆の間での話が有名で、Vol100の表紙での人選で揉めたり、国際会議のボイコット騒ぎがあったりしました。「アインシュタインは3人の主筆の1人であったが、この論争に煩わされて、その地位を辞した」と言われています。そして言いました。「一体、この数学者同志の仲間争いは何事かね??」(アインシュタインが友人にぼやいた言葉)

〆最後に〆

|コスパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2022/04/06_初回投稿
2025/07/03_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

テックアカデミー無料体験
【スポンサーリンク】

(対応英訳)

Hilbert’s name is spelled in English as David Hilbert and German: as ˈdaːvɪt ˈhɪlbɐt. The undisputed “father of modern mathematics” is Hilbert. I will introduce the big game that everyone recognizes, though it is late. Hilbert was born in Königsberg (now Russian territory Kaliningrad), which was then the Kingdom of Prussia.

Hilbert goes on to study at the University of Königsberg, which is a historic university where Kant studied (at another time) and was the president. The university was originally set up by a man who was the Teutonic Order, and was ruled as the Soviet Union territory after World War II. In 2022, when I wrote the article, the conflict between Ukraine and Russia continued, but it is a region that makes me feel that the history of Russia’s territory is very deep-rooted. If you think about it, it can be said that the former East Germany was also under the control of Russia.

Although it is the Kingdom of Prussia, Hilbert was born and learned in a region that would have been another country in later times. Later, various talents raised Hilbert. In particular, Weber is said to have influenced Hilbert with German mathematics. In addition, he has an inspiring relationship with Hermann Minkowski and Adolf Hurwitz at the university. Above all, he had a relationship with Minkowski that made him feel “best and true friend”.

Hilbert has also produced many great mathematicians. He is very good as an educator. Hilbert taught various people at the University of Göttingen. He appreciates the paper of one of them, Johannes Ludwig von Neumann (later John von Neumann), who later made remarkable achievements in the development of atomic bombs and computers. In addition, it is said that Neumann is the godfather of “Hilbert space” described later.

He developed the “three-dimensional Euclidean space”. Hilbert invited Neumann, who was 22 at the time, to the University of Göttingen to raise him. It is said that Teiji Takagi of the University of Tokyo received guidance from Hilbert when he was studying in Germany. Looking back, I’m sorry to say that I also used Teiji Takagi’s textbook, so young people who aspired to mathematics in Japan were also influenced by Hilbert. I am a little deeply moved when it is written.

What seems to be a big achievement of Hilbert is the work that can be said to be the integration plan of mathematical concepts. It is an invariant theory, abstract algebra, algebraic integer theory, integral equations, functional analysis, research on axioms of geometry, general relativity theory, etc.

When considering the correlation with the phenomenon (recognition group in the human mind), it seems to be an “attempt to connect” a wide range of achievements. Hilbert’s program, a series of plans for proof of mathematical consistency with Hilbert’s public theory, is called the Hilbert Program and is understood today. Later, von Neumann continued his discussion, developing a space called Hilbert space from the three-dimensional Minkowski space. In addition, the name remains in Hilbert’s zero point theorem.

Above all, Hilbert was one of the mathematicians who raised the level of mathematics in Germany to the highest level in the world. He was a leading mathematician. Hilbert witnessed the persecution of Jews by Nazi Germany in his later years. He was hurt by the disappearance of each Jew from the Deutsche Mathematics Institute.

に投稿 コメントを残す

ハインリヒ・R・ヘルツ
【電磁現象の実用化の為に送受信の装置を実現した先駆者】-6/29改訂

こんにちはコウジです。
「ヘルツ」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

電磁気学入門
【スポンサーリンク】

ハインリヒ・R・ヘルツ【1857年2月22日生まれ ~ 1894年1月1日没】

独逸のヘルツ

ハインリヒ・R・ヘルツのRは
ルドルフ(Rudolf )のRです。

もともと、ヘルツは気象学に関心を持っていました。
1878年ミュンヘン工科大学では指導教官が気象学者のベゾル
でしたが、そこではさしたる業績を残していないようです。
その後の師ヘルムホルツのもとで
液体の蒸発の論文や新型の温度計に関する
論文をまとめた程度だと言われてす。

エーテルに対する理解の変遷

所で、19世紀終わり頃迄は電磁波の伝達物質としてエーテルという物質を想定していました。確かに波を伝える伝達物質、別の言葉を使うと媒質といった物があり波は伝わります。

水という媒質があり表面で波紋が伝わり、空気という媒質があって音が伝わる訳です。1881年にマイケルソンが実験でエーテルを否定したタイミングでヘルツはマクスウェルの方程式を再度考え直します。電磁波の存在を煎じ詰めて実用的なアンテナを考案しました。

現代の整理された考え方によると、電磁波は真空中であっても伝わります。例えば太陽光は大気圏に届く前に真空中を伝わってくるのです。そこにはエーテルは存在しません。エーテルの仮定は観測にかからないばかりか、地球の自転運動・公転運動に対して説明がつかないのです。

ヘルツのその他の業績 

何よりも、ヘルツが大事な「時代を担っていた一人」である
という点を強調します。その時代には実験が繰り返され、
電磁気学の分野で光と電磁波をつなぐ

理論がもやもや生み出されていたのです。
それを支える手段が模索されていたのです。

ヘルツは電磁波を発信する
装置を開発して電磁波の送受信
の実験を繰り返しました。
マクスウェルの理論を現実の生活の中の仕組みと
関連させることを考えてみると、
電波を発信する仕組みと受信する仕組みが必要です。

例えば、磁場中で帯電体が振動運動をした時に
電場と磁場が生成されて、光速度に近い
伝番をする筈です。それを観測にかけるには
「出来るだけ簡単で解析しやすい送信部と受信部」
を設計してシステムの構築をしなければいけません。
ヘルツはそうしたシステムを構築したと言えるのです。
その過程では例えば、

送受信間にガラスを置くと
電磁波が通じ難くなると確認しました。即ち、
電磁波というものがあって、それを使うと離れた
空間の間を送受信出来て、電磁波が透過しやすいもの
とし難いものがあると示したのです。大きな一歩でした。

そして、実験で人々にガウスマクスウェル
の理論を現実の世界とより近づけました。
ヘルツは周波数の単位に名を残しています。



テックアカデミー無料体験
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com
2020/10/07_初稿投稿
2025/06/29_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介
電磁気関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年9月時点での対応英訳)

Hertz of Germany

Heinrich R. Hertz’s R is Rudolf’s R.

Originally, Hertz was interested in meteorology. At the Technische Universität München in 1878, the instructor was the meteorologist Bezor, but he does not seem to have made much of a mark there. It is said that he only compiled a treatise on liquid evaporation and a new thermometer under his teacher Helmholtz after him.

At the transition of understanding of ether

Until the end of the 19th century,People had assumed The Existance,Ether  as a transmitter of electromagnetic waves. surely

There is a transmitter that transmits waves, or in other words, a medium, and waves are transmitted. There is a medium called water, and ripples are transmitted on the surface, and there is a medium called air, and sound is transmitted.

Hertz reconsiders Maxwell’s equations when Michaelson denies ether in an experiment in 1881. He devised a practical antenna by decocting the existence of electromagnetic waves.

According to modern organized thinking, electromagnetic waves are transmitted even in a vacuum. For example, sunlight travels through a vacuum before it reaches the atmosphere. There is no ether there. Not only is the assumption of ether unobservable, but it cannot explain the rotation and revolution of the earth.

Other achievements of Hertz

Separately, Hertz developed a device for transmitting electromagnetic waves and repeated experiments to send and receive electromagnetic waves.
Considering the relationship between Maxwell’s theory and the mechanism in real life, we need a mechanism to transmit and a mechanism to receive radio waves. For example, when a charged body vibrates in a magnetic field, an electric field and a magnetic field are generated, and the number should be close to the light velocity. In order to observe it, it is necessary to design a “transmitter and receiver that are as simple and easy to analyze as possible” and build a system.

It can be said that Hertz built such a system. In the process, for example, I confirmed that placing glass between transmission and reception makes it difficult for electromagnetic waves to pass through. In other words, he showed that there are electromagnetic waves that can be used to send and receive between distant spaces, making it easy for electromagnetic waves to pass through and difficult for them to pass through. It was a big step.

And in his experiments he brought Gauss Maxwell’s theory closer to the real world. Hertz has left its name in the unit of frequency.

に投稿 コメントを残す

J・J・トムソン
‗【電子の単位を明確にして同位体を示した優れた実験家】-6/28改訂

こんにちはコウジです。
「J・J・トムソン」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

電子デバイス_echo_dot
【スポンサーリンク】

J・J・トムソン【1856年12月18日生まれ~1940年8月30日没】

その名はジョゼフ・ジョン・トムソン

;Sir Joseph John Thomson。

イギリスのJJトムソンは同位体の発見者です。

指導者としてはラザフォードオッペンハイマーボルンの師でした。JJトムソンは物理学の発展に大きく貢献しました。先ずケンブリッジ大学を卒業し、4年後にキャヴェンディッシュ研究所の所長を務めます。さらに、電子の実在を形にしていった一人でもあります。電子を発見したかについては異論があるかも知れませんがいくつかの洗練された実験で、JJトムソンは電子の単位量を決めて特定原子の同位体を示しました。

トムソンによる電子の追及
【陰極線から電子線へ】

J Jトムソンの生きた時代の大きな関心は電子でした。ニュートン力学が確立され、それをもとに色々な議論が進んでいた時代に、トムソンは原子核などの束縛を受けていない所謂「自由電子」の振る舞いを明らかにしていきました。トムソンが考えていた時代、初めは陰極線と電子線という言葉さえうまく使い分けられていなかったようです。

電子が沢山放出されるような現象を作り上げて、飛んでくる電子を観測していくイメージです。電子線と呼んだ方が細いイメージです。一昔前の実験装置で「真空ガラス」で電子の流れが可視化できている姿を陰極線、最近の電子ビームで半導体加工の為に電子を飛ばす時には電子線と表現する人が多いです。物理の常識が変化して着目している点が変化しているとも言えます。

原子核の周りをまわっているような「束縛された電子」は当時でも今でも観測の対象とすることはとても難しいのです。また、JJトムソンの子供も後に、電子の波動性を証明してノーベル賞を受けています。

そして、いくつもの偉業を遂げ

J・J・トムソンの亡骸は

ニュートンの墓のすぐ近くに眠っています。

英国の生んだ偉人として。

【スポンサーリンク】

以上、間違いやご意見があれば以下アドレスまでお願いします。
時間がかかるかもしれませんが、必ずお答えします。
nowkouji226@gmail.com

2020/09/14_初回投稿
2025/06/28_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連
電磁気関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年9月時点での対応英訳)

Its name is Joseph John Thomson

[Sir Joseph John Thomson].

This JJ Thomson of England is a discoverer of  the isotopes. As a leader, he was a teacher of Rutherford, Oppenheimer, and Born, and contributed greatly to the development of physics.

At first,JJ Thomson graduated from Cambridge University and will be the director of the Cavendish Laboratory four years later. And , He is also one of the people who shaped The Reality of Electrons. There may be some disagreement about the discovery of the electron, but in some sophisticated experiments,Joseph  Thomson determined the unit amount of the electron and showed the isotope of a specific atom.

J Thomson’s pursuit of electrons

The history of  John Thomson and electronics is closely related. In an era when Newtonian Mechanics was established and various discussions were proceeding based on it, we clarified the behavior of so-called “free electrons” that are not bound by atomic nuclei. At the beginning, it seems that even the terms cathode ray and electron beam were not used properly.

It is an image of observing flying electrons by creating a phenomenon in which a lot of electrons are emitted. It is a thinner image to call it an electron beam. It is very difficult to observe “bound electrons” that seem to orbit around the nucleus even now. The child of JJ Thomson also later received the Nobel Prize for proving the wave nature of electrons.

And now, the corpse of JJ Thomson, who has achieved several feats, is sleeping in the immediate vicinity of Newton’s tomb. He was a great man born in England.

に投稿 コメントを残す

ニコラ・テスラ
【磁場の単位を残し、それを社名として名を残したアメリカの天才】‐250626改訂

こんにちはコウジです。
「テスラ」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

電気モーター(教育玩具)
【スポンサーリンク】

ニコラ・テスラ【1856年7月10日生まれ ~ 1943年1月7日没】

 発明家テスラ

テスラはオーストリア帝国に生まれ
工夫を重ね、
誘導モーターを発明します。

そのモーターを広める為に
アメリカに渡って、かのエジソン
のもとで働いていましたが独立して
高電圧の変換をして発表をしたり
回転界磁型の電動システムを実用化して
供電社会の礎を築いたりしました。

テスラとエジソン

テスラとエジソンとの間には次第に対立関係が生まれますが、2陣営の対立は送電方式の考え方の違いが大きかったようです。エジソンが直流による電力事業を考えていたのに対してテスラは交流による電力事業に利点があると考えていました。実際に交流が主流になるのです。

幸運な事にテスラは多才でした。例えば
テスラはプレゼンテーションが上手でした。

学会での発表を聞いていたジョージ・ウェスティングハウスが感銘を受け、テスラは資金供給を受け始めます。最終的にはナイアガラの滝を使った発電システムの実現に繋がり、テスラは成功を収めました。ナイヤガラの滝を眺めて誰しも壮大な景色に心を動かされると思いますが、その時の感動を事業のアイディアへ繋げていく思考がテスラならではの凄さですね。事業計画のプレゼンテーションをする時に説得力を持ちますね。後は「本当に出来るの?」と聞かれている内容を説明していく説得力も大事です。そのアイディアや説得力をテスラは持っていました。

数々の事業を成功へ導いたテスラですが、色々な別れがあり晩年は寂しい老後を送っていた様です。テスラは生涯独身でした。内向的な性格が影響しているようです。

そしてテスラの名は今、磁場の単位として使われている他に、
会社の名前として名を残しています。数トンの重さがあった
と言われる彼の発明品や設計図はFBIが写しをとった後に
母国へと返されています。

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

【スポンサーリンク】

nowkouji226@gmail.com

2020/10/16_初版投稿
2025/06/26_改定投稿

舞台別のご紹介
時代別(順)のご紹介
アメリカ関係へ
電磁気関係
オーストリア関連のご紹介
グラーツ大学関連へ

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年9月時点での対応英訳)

Inventor Tesla

Tesla was born in the Austrian Empire and invented an induction motor. After that, he traveled to the United States to spread the motor in addition, worked under Edison, but independently converted high voltage and made presentations and put into practical use a rotating field type electric system. It laid the foundation for a power supply society.

Tesla and Edison

A confrontational relationship with Edison gradually arises, but it seems that the confrontation between the two camps was largely due to the difference in the way of thinking about the power transmission method. While Edison was thinking of a DC power business, at that time, Tesla thought that an AC power business would have an advantage. In fact, exchange becomes mainstream.

Fortunately, for example Tesla was good at presenting.

George Westinghouse, who was listening to the conference presentation, was impressed and began to receive funding.

Ultimately, Tesla was successful in realizing a power generation system using Niagara Falls.

He is Tesla, who has led many businesses to success, but he seems to have had a lonely old age in his later years due to various farewells. Tesla was single all his life.

And in addition to being used as a unit of magnetic field, Tesla’s name is now left as the name of the company.

Tesla’s inventions and blueprints, which are said to have weighed several tons, have been returned to their native language after being copied by the FBI.

に投稿 コメントを残す

山川 健次郎
【後進を育てた日本物理学黎明期の先駆者・東大総長】

こんにちはコウジです。
「山川 健次郎」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

難しくない物理学
【スポンサーリンク】

山川 健次郎【1854年9月9日生まれ ~ 1931年6月26日没】

山川健次郎の人生

山川 健次郎は日本初の物理学者です。その家は会津藩の家老家で戊辰戦争では健次郎は白虎隊に所属していました。自刀していった仲間もいた中で、山川健次郎は落ち延びました。その後に米国へ国費留学を果たし、イェール大学で物理学を修めます。日本に戻り、最終的には東大総長・京大総長を務めます。

山川健次郎と辰野金吾

私の家祖が会津藩・彰義隊でしたので個人的に彼になんとなく親近感と敬意を持っていました。山川健次郎は国費留学生として イェール大学で学位を修めます。また、東京駅の設計に携わった建築家・辰野金吾とは奥様を通じて親戚関係となっています。

山川健次郎のお人柄と研究成果

山川健次郎のお人柄を表すエピソードとして
日露戦争に関するものがあります。当時、
彼は東大で総長を務めていましたが、
愛国心に満ちた健次郎は陸軍に詰め寄り、
一兵卒として従軍させろ」と担当を困らせたそうです。
個人・家族・所属国家と意識が繋がっていたのですね。
その時にはもはや、賊軍だった頃の意識は無いのでしょう。

山川健次郎の時期の物理学会は諸外国との交流を感じさせません。特にコペンハーゲン学派が中心となって次々と新しい知見をもたらしていた時代に日本の物理学は黎明期にありました。欧州よりもむしろ日本に開国を促した米国に目を向けていたのです。それが精一杯だったのでしょう。「お雇い外人」は殆ど米国人です。

そして山川の時代まで欧州は遠く、新大陸はまだ
未開の部分が今より多い時代です。
米国の独立戦争が1861年から1865年だったことも
思い返してみましょう。

後の時代に原子核内の相互作用を解き明かしていく若者達を育てていく時代だったのです。山川健次郎と同年代のカメリー・オネスローレンツは師に恵まれ論敵に恵まれて、マッハボルツマンの構築した知見の中で考えを進めていたのです。大きく異なる環境から日本の物理学はスタートしています。

山川健次郎自身の研究成果は伝えられていません。研究内容をまとめた論文も広く知られていません。あるのでしょうか。それよりも寧ろ、後輩達を育てながら次の時代への為の土壌を育んでいたと考えるべきでしょう。

また、この時代に千里眼を巡る話題が世間を騒がせていましたがそれに対して山川健次郎は批判的で冷静な立場をとっていたと伝えられています。今も昔も千里眼という不可思議な現象は「議論して解明できる内容ではない」と考える方が良いようです。

〆最後に〆

コスパ最強・テックジム|プログラミング教室の無料カウンセリング【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/09/23_初回投稿
2025/06/25_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
京大関連のご紹介
イェール大学関連のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年9月時点での対応英訳)

Yamakawa Kenjiro’s life

Kenjiro Yamakawa is Japan’s first physicist. The house was the old family of the Aizu clan, and Kenjiro belonged to Byakkotai during the Boshin War. Kenjiro Yamakawa fell asleep while he had his own sword. He then went on to study abroad in the United States and studied physics at Yale University. He will return to Japan and eventually serve as President of the University of Tokyo and President of Kyoto University.

Kenjiro Yamakawa and Kingo Tatsuno

My ancestor was the Aizu clan Shogitai, so I personally had a sense of familiarity with him. Kenjiro Yamakawa is a government-sponsored international student and he completes his degree at Yale University. He also has a relative relationship with the architect Tatsuno Kingo, who was involved in the design of Tokyo Station, through his wife.

Yamakawa Kenjiro’s personality
and research results

There is an episode about the Russo-Japanese War as an episode that shows the personality of Kenjiro Yamakawa. At that time, he was the president of the University of Tokyo, but the patriotic Kenjiro rushed to the Army and asked him to serve as a soldier. Your consciousness was connected to your individual, your family, and your nation. At that time, I wouldn’t be aware of what I was when I was a thief.

The Physical Society of Japan during Kenjiro Yamakawa’s time does not make us feel any interaction with other countries. In particular, Japanese physics was in its infancy at a time when the Copenhagen school was playing a central role in bringing in new knowledge one after another.

It was an era of nurturing young people who would unravel the interactions within the nucleus in later times. Kamerlingh Ones and Lorenz, who were of the same age as Kenjiro Yamakawa, were blessed with teachers and controversial opponents, and were advancing their thoughts based on the knowledge built by Mach and Boltzmann. Japanese physics starts from a very different environment.

Kenjiro Yamakawa’s own research results have not been reported. A paper summarizing his research is also not widely known. Is there? Rather, it should be considered that he was raising his juniors and nurturing the soil for the next era. In addition, it is said that Kenjiro Yamakawa took a critical and calm position against the topic of clairvoyance that was making a noise in this era. Even now and in the past, it seems better to think that the mysterious phenomenon of clairvoyance is “not something that can be discussed and clarified.”

に投稿 コメントを残す

アンリ・ポアンカレ
【数学・物理学・天文学で独自の領域を開拓】-6/23改訂

こんにちはコウジです。
「ポアンカレ」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

ポアンカレ予想
【スポンサーリンク】

アンリ・ポアンカレ【1854年4月29日生れ ~ 1912年7月17日没】

 ポアンカレ予測

その名を書下すと、ジュール=アンリ・ポアンカレ

(Jules-Henri Poincaré)。多様体における考察である

ポアンカレ予想で、よく知られています。また、

小さなトリビア話なのですが、J・ポアンカレは

フランス大統領の従兄弟でもありました。

 

 ポアンカレの業績と評価

ポアンカレは数学、物理学、天文学において
名を残しています。残した業績は大きいのです。
しかし、

その数学的立場には賛否両論があります。

一般の見方ならば分からない程度の賛否両論のでしょうね。

ポアンカレは第一回ソルベーユ会議にも出席していて、
マリ・キューリとの写真は色々な所で紹介されています。
どんな話をしていたのか興味深いですね。
探せるものなら議事録探して分析したいです。

ポアンカレの思考方法で独自性を見出せるでしょう。

他、ポアンカレの業績としては

位相幾何学の分野でのトポロジーの
概念形成などもあります。ヒルベルト形式主義よりも
直感に重きを置くスタイルは、いかにも数学者らしい、
とも思えますが、特定の人からみたら
意味不明に思えたりするのでしょう。また、
とある数学的な発見時に、思考過程を詳細に残し、
思考プロセスの形で心理学的側面の研究に
影響を残したとも言われています。

 

また、以下の著作は何時か時間が出来たら

読んでみたいと考えているポアンカレの著作です。

個人的な課題ですね。

・事実の選択・偶然_寺田寅彦訳_岩波書店

・科学と仮説_湯川秀樹・井上健編_中央公論

・科学の価値_田辺元 訳_一穂社

テックアカデミー無料体験
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/31_初版投稿
2025/06/24_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
力学関係のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

 

(2021年9月時点での対応英訳)

Poincare Prediction

The name is Jules-Henri Poincaré. Consideration in manifolds

Poincare conjecture, well known. Also, although it is a small trivia, J. Poincaré was also a cousin of the President of France.

Poincare’s achievements and evaluation

Poincare has made a name for himself in mathematics, physics and astronomy. The achievements he left behind are great. However, there are pros and cons to his mathematical position. Pros and cons may not be understood by the general public.

Poincaré also attended the first Solbeille conference, and his photographs with Mari Cucumber are featured in various places. It’s interesting what he was talking about. When I have time, I would like to find and analyze the minutes. You will find uniqueness in Poincare’s way of thinking.

Other achievements of Poincare include the formation of the concept of topology in the field of topology. His style, which emphasizes intuition over Hilbert formalism, seems to be a mathematician, but he may seem irrelevant to a particular person. It is also said that at the time of his mathematical discovery, he left behind his thought process in detail and influenced the study of psychological aspects of the thought process.

In addition, the following works are Poincare’s works that I would like to read when I have some time. It’s a personal issue.

 Selection of facts ・ By chance _ Translated by Torahiko Terada _ Iwanami Shoten

 Science and Hypothesis_Hideki Yukawa / Ken Inoue _Chuo Koron

Value of science_Translated by Hajime Tanabe_Ichihosha

に投稿 コメントを残す

皆が知っている発明家トーマス・A・エジソン
【実は「99%の汗と1%の才能」の人】‐6/18改訂

こんにちはコウジです。
「エジソン」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

世界の伝記_エジソン
【スポンサーリンク】

アメリカ育ちのエジソン

エジソンはアメリカの発明家です。彼の逸話を聞くと、

閃きの喜びとか達成時の感動が沸き起こります。

エジソンの発明品は蓄音器、電灯、活動写真と

多岐にわたります。研究所はニュージャージの

メンロパークにありました。その街は

今では有名な発明家であったエジソンにちなんで

街の名前がエジソンと改名されている程です。

また、個人的な話になり恐縮ですが、

初めて私が買ったCDが

ボン・ジョビの「New Jersey」でした。

何となく私が想像してた同州の楽しそうで

何かを生み出す活気のある雰囲気は

エジソンが研究所を構え、活動する中で

生まれた部分もあったのですね。きっと。

そんなエジソンは幼少時代から苦労を重ねています。
彼が残した有名の言葉を改めて書き下します。

「天才は99%の汗と1%の才能(で出来ている)」

睡眠時間を削り、時に発想に浸り現実を忘れ
次から次へと発明を繰り返しました。図書館に籠り
独学で色々なことを学び正規の教育を受けずに
試行錯誤を繰り返します。例えば、算数で「1+1=2」
と教わっても「二つの粘土を混ぜた時に一つになるのに
何故この場合は1ではなく2なのか??」という視点
を持ち反論しています。こんな話が語りつかれている
自体がいかにもアメリカ的なのかな?と思いますが、
思考の柔軟性を保ち続ける為には
必要な吟味であるとも言えます。

 

発明家エジソン

その後、投票記録の機械、株式相場表示機、

電話、蓄音機、白熱電球と発明を続けます。

蓄音機を世間に広めた時は

「機械の中に人が居るわけがない!」と

驚きの反論を受けたほどです。

晩年は会社経営から身を引き、

霊界との交信が出来るか、といった

関心を持ち試行錯誤していました。

多くを残して84歳で亡くなっています。

まさに語り継がれ続けている偉人です。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/17_初版投稿
2025/06/18_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関連のご紹介へ
力学関係
電磁気関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年9月時点での対応英訳)

Edison raised in the United States

Edison is an American inventor. Listening to his anecdotes gives rise to the joy of inspiration and the excitement of achieving it. Edison’s inventions range from gramophones, lamps, and activity photographs. His laboratory was in Menlo Park, New Jersey. Personally, I’m sorry to say that the first CD I bought was Bon Jovi’s “New Jersey.” Somehow, the lively atmosphere that I imagined in the state that seems to be fun and creates something was born while Edison set up a research institute and was active. surely. Edison has been struggling since he was a child. He rewrites his famous words he left behind.

“Genius is 99% sweat and 1% talent (made of)”

He cut down on his sleep, sometimes immersing himself in ideas, forgetting reality, and repeating his inventions one after another. He stays in the library, learns various things by himself, and repeats trial and error without receiving formal education. For example, even if I was taught “1 + 1 = 2” in mathematics, I argue with the perspective of “Why is it 2 instead of 1 in this case when two clays are mixed and become one?” Is it really American that such a story is told? However, it can be said that it is a necessary examination to maintain the flexibility of thinking.

Inventor Edison
He then continues his invention with voting machines, stock quotes, telephones, gramophones, incandescent light bulbs. When he spread the gramophone to the world, he was surprised to hear that “there is no one in the machine!” In his later years, he withdrew from company management and was interested in communicating with the spirit world through trial and error. He died at the age of 84, leaving much behind. He is a great man who has been handed down.

に投稿 コメントを残す

W・C・レントゲン
【第一回のノーベル賞受賞者・電子の蛍光現象を実用化】-5/17改訂

こんにちはコウジです。
「レントゲン」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

X線撮影技術
【スポンサーリンク】

レントゲンの発明者レントゲン

レントゲンと言えば、その人の名よりも

その名を使った装置が思い浮かぶでしょう。

以下ではレントゲンという言葉は

人の名前として使っていきます。

 

レントゲンはドイツ生まれの偉人です。
彼の時代にはハインリヒ・R・ヘルツ
によって真空放電や陰極線の議論が
なされていました。

今風に考えたら
対象は単なる粒子とか波ではなく、
2面性をもった「波動関数で記述される
電子の一団である」と言えますが。
レントゲンの時代には電子の実在は不明確でした。
数キロボルトの電圧を加えた真空管において
蛍光現象が見受けられるのが陰極線です。

一般の電流の知識からは+方向からー方向
(プラス方向からマイナス方向)へ電流が流れますが
陰極線は―方向から+方向に現象が
確認出来るのです。+と-の間に遮蔽物
を置くと遮蔽物から+方向で現象が見られません。
つまり電子はマイナス方向から出ていたのです。

レントゲンの業績

そして、レントゲンは遮蔽物の画像を研究します。

まずレントゲンは実験結果を重視してます。

X線が人体を透過した後の写真を

大衆に見せました。ネーチャやサイエンス

といった有名雑誌に投稿し、議論して

事実を明らかにしていきました。

その方法は先ず磁場に作用する

陰極線の実験を積み重ねます。

陰極、陽極、検出対象として
色々な物資を試し、X線の特性を極めて
鉛は通さずガラスは透過する
といった事実を明確にします。

説明が細かくなり恐縮ですが、
陰極線の陰極・陽極間に検出対象があり、
検出対象から放射されるのがX線です。

検出対象に蛍光物資を使った所が
レントゲンのオリジナリティですね。

また波長に着目すると波長が1pm ~ 10nm程度の
電磁波であるという事実も重要です。
そうした仕組みで磁場から力を殆ど受けない
X線を発見して、突き詰めていったのです。

 

レントゲンの人となり

その後の成果で原子が崩壊・融合する過程で

放射線が出てくる知見が集約されてくる訳ですが、

後の素粒子での議論につながる種が、

レントゲンによって沢山まかれていた訳です。

また、レントゲンを偲ばせるエピソード
を3つ、ご紹介します。

まず、レントゲンは自らの独自技術に
対して特許を申請しなかったと言われ
ています。科学の成果は万人が享受すべき
だというレントゲン独特の考えです。

また、レントゲンは第一回目の
ノーベル賞を受けていますが、
賞金に手を付けず、
全て大学に寄付しています。

そして愛妻家だったと思われます。
レントゲン自身はガンで亡くなりますが
年上だった奥様に先立たれてから
数年後の事でした。今でもよく
紹介されている写真は奥様の手を
X線が透過した姿でした。
皮膚を透過したX線が骨の形を
リアルに映し出し、その薬指には
はっきりと結婚指輪が見えます。

コスパ最強・テックジム|プログラミング教室の無料カウンセリング【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/15_初版投稿
2025/06/17_改定投稿

サイトTOPへ/
ドイツ関連のご紹介
熱統計関連のご紹介
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

X-ray inventor,Roentgen

Speaking of Roentgen in Japan, the device of that name comes to mind rather than the person’s name. In the following, Roentgen will be used as a person’s name.

In the Roentgen era, vacuum discharge and cathode rays were discussed by Heinrich R. Hertz and others. If you think about it in a modern way, it can be said that the object is not just a particle or a wave, but an electron described by a wave function with two sides. It was unclear in the X-ray era. It is the cathode ray that shows the fluorescence phenomenon in a vacuum tube to which a voltage of several kilovolts is applied. From general current knowledge, from + direction to-direction

The current flows in the (plus direction to minus direction), but the phenomenon can be confirmed in the cathode ray from the-direction to the + direction. If a shield is placed between + and-, the phenomenon will not be seen in the + direction from the shield. In other words, the electrons were coming out from the minus direction.

Roentgen’s achievements

And X-rays study images of obstructions. First of all, Roentgen attaches great importance to his experimental results. He showed the public a picture of what X-rays had passed through the human body. He posted to well-known magazines such as Nature and Science, discussed and revealed the facts. The method first accumulates experiments on cathode rays that act on a magnetic field.

He experimented with various materials such as cathodes, anodes, and objects to detect, clarifying the fact that lead does not pass and glass does.

Excuse me for the detailed explanation, but there is a detection target between the cathode and anode of the cathode ray, and X-rays are emitted from the detection target. The place where fluorescent materials are used as the detection target is the originality of X-rays.

Focusing on the wavelength, the fact that the wavelength is an electromagnetic wave of about 1pm-10nm is also important. With such a mechanism, I discovered X-rays that do not receive force from the magnetic field and pursued them.

Roentgen’s portrait

Subsequent results will bring together the knowledge that radiation is emitted in the process of atom decay and fusion, but many species that will lead to discussions on elementary particles later were sown by Roentgen.

We will also introduce some episodes that are reminiscent of X-rays. First, Roentgen is said to have not applied for a patent on his proprietary technology. It is an X-ray peculiar idea that the results of science should be enjoyed by everyone.

Roentgen has also received his first Nobel Prize, but he hasn’t touched the prize money and donated everything to the university.

And he seems to have been a beloved wife. Roentgen himself died of cancer, a few years after his older wife. The photo that is still often introduced is the X-ray transmission of his wife’s hand. X-rays that penetrate his skin realistically reflect the shape of the bone, and his ring finger clearly shows the wedding ring.

に投稿 コメントを残す

L・E・ボルツマン
【エントロピー(S=k LogW)を考えていった男の葛藤と業績】-6/16改訂

こんにちはコウジです。
「ボルツマン」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

L・E・ボルツマン【1844年2月20日 ~ 1906年9月5日】

アホでもわかるエントロピー
【スポンサーリンク】

ボルツマンの生い立ち

その名はLudwig Eduard Boltzmann。

ボルツマンはオーストリア・ウィーン出身の

物理学者にして哲学者です。

カノニカルな(統計的な)議論の他に

電磁気学や熱力学、それらを扱う

数学の研究でボルツマンは業績を残しました。

ボルツマンは芸術の都ウィーンに生まれ、

子供時代にピアニストである

A・ブルックナーからピアノを学んでいます。

 

指導者としてのボルツマンの業績としては

エーレンフェストが博士論文を書く時の

指導が挙げられます。後程もう少し言及しますが

エーレンフェストの定理にはボルツマンの

信念が込められていると言えるでしょう。また、

科学史から見てもボルツマンの原子認識の流れ

は大きな一歩だったと言えます。ここでの一歩が無ければ

素粒子やブラウン運動のイメージは

湧かなかったでしょう。

 

ボルツマンの研究業績

そんなボルツマンの墓には

S=k LogWと書かれています。

そこでいうSとはエントロピーというパラメターで

対象系の乱雑さを表します。

k(またはkBと記載します)という

パラメターを定めて

ボルツマンが定量化した概念です。

クラウジウスが使ったエントロピーを

ボルツマンが再定義した、とも言えます

「乱雑さ」は統計力学において

温度T、容積V、圧力P等と関連して

ボルツマンの関係式として定式化されました。

 

ボルツマンの研究業績の中で特に

私が関心をもつのは

原子論に関しての現象把握です。

観測に直接かからない

「原子」は色々な見方をされていました。

そんな原子に対して

ボルツマンは「乱雑さ」または

「無秩序」の度合いという

新しい物理量である「エントロピー」を使い

原子の実在に近づいていったのです。

結果として

対立する考えが物理学会で生じていて

原子モデルを使うボルツマンと、

実証主義で理論を進める

エルンスト・マッハの間で論争が続きます。

原子論モデルを大きく進めるプランクの登場まで
その後、何年間も必要なのです。
もやもやした状態は続きます。 

そして、エーレンファストの定理で
「原子」と「量子」は見事に関連が示されます。

しかし、残念なことに、、こうした全体像を
ボルツマンが見ることは出来ませんでした。

ボルツマンは晩年に精神障害に悩み

自ら命を絶つという悲しい最期を遂げています。

ここで、暫し物理学は大きな

壁に突き当たっていたように思えます。

沢山の天才達が問題の大きさに畏怖したのでしょう。

 

ボルツマンはピアノが好きでした。

花を手向ける場所がありますよね。

〆最後に〆

コスパ最強・テックジム|プログラミング教室の無料カウンセリング【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に関しては適時、
返信・改定をします。

nowkouji226@gmail.com

2020/09/05_初回投稿
2025/06/16_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
オーストリア関連のご紹介
ウィーン大関連のご紹介
熱統計関連のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年9月時点での対応英訳)

Boltzmann’s upbringing

Its name is Ludwig Eduard Boltzmann.

Boltzmann is a physicist and philosopher from Vienna, Austria. In addition to canonical (statistical) discussions, he has made significant contributions to the study of electromagnetism, thermodynamics, and the mathematics that deals with them. He was born in Vienna. As a child, he learned the piano from pianist A. Bruckner.

Boltzmann’s achievements as a mentor include teaching Ehrenfest when writing his dissertation. It can be said that Ehrenfest’s theorem contains Boltzmann’s belief. Also, from the history of science, it can be said that Boltzmann’s flow of atomic recognition was a big step. Without one step here, the image of elementary particles and Brownian motion would not have come out.

Boltzmann’s research achievements

S = k Log W is written on Boltzmann’s tomb.

S here is a parameter called entropy, which represents the disorder of the target system. It is a concept quantified by Boltzmann by defining a parameter called k (or described as kB).

It can be said that Boltzmann redefined the entropy used by Clausius. “Randomness” was formulated as Boltzmann’s relational expression in relation to temperature T, volume V, pressure P, etc. in statistical mechanics.

Among Boltzmann’s research achievements, I am particularly interested in understanding phenomena related to atomism. Atoms that are not directly observed have been viewed in various ways.

For such an atom, Boltzmann approached the existence of the atom by using “entropy”, which is a new physical quantity of “randomness” or “disorder”.

As a result, conflicting ideas have arisen at the Physical Society of Japan, and controversy continues between Boltzmann, who uses atomic models, and Ernst Mach, who pursues positivist theory. It will take many years after the advent of Planck, which greatly advances the atomist model.

And, unfortunately, Boltzmann had a sad end in his later years, suffering from a mental illness and dying himself.

Here, for a while, physics seems to have hit a big wall. Many geniuses would have been afraid of the magnitude of the problem.

Boltzmann liked the piano. He has a place to turn flowers.