に投稿 コメントを残す

ジョゼフ・ブラック
【Joseph Black_1728年4月16日 – 1799年12月6日】‐11/18改訂

こんにちはコウジです。
半年ごとの既存記事見直しの作業です。
今回は中世18世紀に概念・手法を確立していった偉人を紹介します。
では、ご覧ください。内容を整理し、リンクを見直しました。
現時点での英訳も考えています。
(以下原稿)

https://amzn.to/3JJjE36
【スポンサーリンク】
大科学実験 DVD-BOX


被写体:Joseph Black (ジョセフ・ブラック)
画像提供:Wellcome Collection
所蔵番号:V0000836 権利:Public Domain マーク(商用利用・改変可)
出典ページ:https://wellcomecollection.org/works/cc7v9b6p

ジョゼフ・ブラック(1728-1799)は、近代熱学と化学の黎明期を支えた
スコットランドの思想家・実験科学者です。彼は、固体や液体の相変化時に加えられても
温度変化を示さない「潜熱(latent heat)」の概念を打ち立て、物質ごとに異なる
「熱容量(あるいは比熱)」の違いを定量化する道を切り拓きました。また、ブラックは、
いわゆる「固定空気(fixed air)」、つまり現在の二酸化炭素(CO₂)の存在を明らかにし、
ガスを定量的に扱う手法を取り入れることで、化学実験の定量性を普及させました。

さらに、ブラックは、スコットランド啓蒙主義の中心に位置し、
デイヴィッド・ヒューム、アダム・スミス、ジェームズ・ハットンといった
思想家・科学者と交流しました。彼はヒュームの主治医を務め、
アダム・スミスの遺稿整理にも関与するなど、学問と社会思想の
交差点に立つ存在でした。この広範なネットワークが、
彼の研究と教育が社会的に共有される基盤となりました。
本稿ではまず彼の生涯と思想的文脈を振り返り、次に潜熱・熱容量・CO₂ 発見の実験と理論を詳しく見て、最後に彼の教育・交流・影響を通じて、ブラックが後世に残したものを考察します。


第一章:生涯と啓蒙主義の交錯

幼年期・家族と初期教育

ジョゼフ・ブラックは 1728年4月16日、フランス・ボルドーに生まれました。父ジョン・ブラックはスコットランド系でアイルランド(ベルファスト)出身、ワイン商人としてボルドーに拠点を構えていました。School of Chemistry+2EBSCO+2 母マーガレットもスコットランド・アバディーンシャー出身で、ワイン商人家系でした。ウィキペディア+2EBSCO+2 彼が12歳になると、ベルファストのグラマースクールへ送られ、ラテン語・ギリシャ語・古典教養の教育を受けます。undiscoveredscotland.co.uk+2EBSCO+2

その後 1744年、16歳でグラスゴー大学に入学し、最初はリベラル・アーツ(人文・基礎教養)を中心に学びました。EBSCO+3School of Chemistry+3ウィキペディア+3 ただし、講義のなかでウィリアム・カレン(William Cullen、後年の化学・医学教授)による化学・医学への講義に触れ、強く惹かれたと伝えられています。School of Chemistry+2Encyclopedia Britannica+2

医学・化学への方向転換と助教時代

ブラックはグラスゴーで医学へ進む決意をし、化学実験にも深く関わるようになります。彼は数年間、カレンの実験助手を務め、化学実験技法・観察の訓練を積みました。School of Chemistry+2Encyclopedia Britannica+2 1752年にはエディンバラ大学へ移り、医学をさらに学び、1754年には医学博士(M.D.)号を取得しました。EBSCO+3School of Chemistry+3Encyclopedia Britannica+3

博士論文では、化学物質(特にマグネシア・アルバ/炭酸マグネシウムなど)を扱った実験を含む定量的な研究を行い、後に「固定空気(fixed air)」と呼ばれるガス(現在の CO₂)を発見する基盤を築きます。EBSCO+4School of Chemistry+4Encyclopedia Britannica+4 1755年にはこの研究を「Experiments upon Magnesia Alba, Quicklime, and Some Other Alkaline Substances」としてエディンバラ哲学協会で発表し、化学に定量的手法を導入する契機となりました。Encyclopedia Britannica+3Encyclopedia Britannica+3School of Chemistry+3

グラスゴー・エディンバラ教授としての地位

1756年、ブラックはグラスゴー大学に戻り、解剖学と植物学の教授を局地的に務め、その翌年には医学教授に就任します。EBSCO+4School of Chemistry+4gla.ac.uk+4 その時期、彼は熱学・化学実験にも力を注ぎ、潜熱や比熱(heat capacity, specific heat)の概念を同時代の理論と実験の接点として発展させていきます。EBSCO+3gla.ac.uk+3Encyclopedia Britannica+3

1766年、ブラックはエディンバラ大学へ転じ、化学・医学の教授に着任。以後 30 年以上にわたって講義・研究を続け、多くの学生を育て、化学の普及に尽くしました。Royal College of Physicians of Edinburgh+4School of Chemistry+4Encyclopedia Britannica+4 彼の講義は実験指導を交えたもので、毎年 128 回にも及ぶ講義を提供し、英国・ヨーロッパ中から学生を惹きつけたといいます。gla.ac.uk+1

ブラックはスコットランド啓蒙主義の知識人たちと広く交わり、デイヴィッド・ヒューム、アダム・スミス、ジェームズ・ハットンらと思想的・学問的交流を行いました。Encyclopedia Britannica+2EBSCO+2 また、彼は晩年には化学界での理論変化(特にラヴォアジエの酸素説の導入)にも慎重に対応し、変革期の科学社会で中庸を保つ姿勢を残しました。Encyclopedia Britannica+1

1799年12月6日、エディンバラにて亡くなり、灰色修道士墓地(Greyfriars Kirkyard)に葬られました。Encyclopedia Britannica+2Encyclopedia Britannica+2


第二章:潜熱と熱容量——熱学概念の確立

潜熱(latent heat)の発見とその実験

ブラックの最も有名な功績の一つが「潜熱(latent heat)」という概念の発見です。これは、物質が相変化(氷⇄水、液体⇄蒸気など)を行う際、加えられた熱量のうち温度変化を伴わず内部で使われる「隠れた熱(latent)」を指すものです。Thoracic Key+4Physiology Journals+4Encyclopedia Britannica+4

ブラックはグラスゴー時代、冬の寒さを利用して氷の融解・水の冷却・加熱実験を繰り返し、同一の熱源を使っても溶解・蒸発に異なる時間がかかること、温度の上昇を示さずに相変化が進む現象を記録しました。Science History Institute+3gla.ac.uk+3School of Chemistry+3 例えば、氷が溶けて水になる過程では、多くの熱が吸収されるけれども温度は 0 °C 近辺で止まり、温度変化が見られないという事実をもって、ブラックはこの熱変化を温度計では測れない「潜熱」と呼びました。Thoracic Key+3Encyclopedia Britannica+3Encyclopedia Britannica+3

この発見は、蒸気機関技術において非常に重要でした。ジェームズ・ワット(James Watt)は、蒸気の凝縮時・蒸発時にかかる熱を理解する上で、ブラックの潜熱概念を参照し、効率的な蒸気機関設計に活かしました。Encyclopedia Britannica+4aps.org+4Science History Institute+4

熱容量(比熱、specific heat)の定量化

ブラックはまた、「物質ごとに温度を上げるために必要な熱量」は異なるという直感を、定量的実験で裏付けました。これは現代的には「熱容量(あるいは比熱、specific heat)」という考え方に相当します。EBSCO+4Encyclopedia Britannica+4Encyclopedia Britannica+4

彼は、水や水銀など複数の物質について、同じ熱量を加えたときの温度上昇量を比較する実験を行い、水銀は温度変化が大きいが、水は変化が小さいことを示しました。これは、物質が熱を蓄える能力、すなわち熱容量の違いを示すものです。web.lemoyne.edu+2gla.ac.uk+2 たとえば、ブラック自身の例では、水と水銀(quicksilver)の混合で、温度平衡点が異なるという実験を通じて、熱容量比の違いを定性的に示しました。web.lemoyne.edu+2gla.ac.uk+2

このような実験により、熱が単なる「温度変化」のみではないこと、物質内部での熱吸収・放出の挙動が異なることを理解する道が開け、後の熱力学理論の土台を築きました。Science History Institute+3TA Instruments+3Encyclopedia Britannica+3

CO₂(固定空気)の発見と定量化

ブラックはまた、「固定空気(fixed air)」という名で呼ばれたガス、すなわち二酸化炭素(CO₂)の発見者としても知られます。Physiology Journals+5Encyclopedia Britannica+5School of Chemistry+5

彼の博士論文やその後の研究で、ブラックはマグネシア・アルバ(magnesia alba, 炭酸マグネシウム)や石灰(quicklime, 酸化カルシウム、炭酸カルシウム含有)を加熱・酸と反応させてガスを発生させ、そのガスが燃焼を消す、不活性である、また酸と反応性を持つ性質を持つことを示しました。Thoracic Key+5School of Chemistry+5Encyclopedia Britannica+5 彼はこのガスを「固定空気」と名付け、固体に「固定されていた空気」が分離されたという意味を込めました。Science History Institute+3School of Chemistry+3Encyclopedia Britannica+3

さらにブラックはこの固定空気が燃焼を支えないこと、生命呼吸に適さないこと、肺呼気にも含まれていることを示しました。Thoracic Key+3Encyclopedia Britannica+3School of Chemistry+3 この発見はガス化学・気体論の発展に大きな刺激を与え、プリーストリー、キャベンディッシュ、ラヴォアジエらの時代の化学革命の基盤として評価されます。Encyclopedia Britannica+3Thoracic Key+3Science History Institute+3

特筆すべきは、ブラックがただガスを発見しただけでなく、それを「定量的に測る」手法を持ち込んだことです。質量測定、化学反応の収支、無機化学実験における誤差管理など、定量実験を体系化する方向性を彼が導入しました。EBSCO+3School of Chemistry+3Encyclopedia Britannica+3

これら三本柱(潜熱、熱容量、固定空気)は、ブラックを「熱化学」の初期パイオニアと位置づけさせる基盤となりました。


第三章:教育・交流・影響――科学者ブラックの顔

教育と普及:講義と実験精神

ブラックは極めて熱心な教育者でした。グラスゴー時代から講義実験を積極的に取り入れ、学生を実験に引き込む手法を採りました。Encyclopedia Britannica+3gla.ac.uk+3School of Chemistry+3 エディンバラに移ってからも、講義回数は年間 128 回程度に及び、各地から学生を惹きつけました。gla.ac.uk+1 彼の講義ノートも多く残されており、実験装置・手順・理論説明を適切に組み込んだ構成が確認できます。gla.ac.uk+1

彼の講義収入が教授職の給与とは別であったため、講義を人気あるものに保つインセンティブも働いたといいます。gla.ac.uk ブラックは、講義を通じて化学や熱学の重要性を広く伝える役割を果たしました。School of Chemistry+1

啓蒙主義との交わりと人脈

ブラックは、スコットランド啓蒙主義(Scottish Enlightenment)の中核的知識人たちと関係をもっていました。デイヴィッド・ヒューム、アダム・スミス、ジェームズ・ハットンといった思想家・科学者との交流が知られています。Encyclopedia Britannica+2EBSCO+2 彼はヒュームの主治医を務めたり、アダム・スミスの遺稿を編集したりする役割を果たしました。Encyclopedia Britannica+2EBSCO+2

ブラック自身は結婚せず、社交的・文化的活動にも関心をもち、フルート演奏をするなど芸術的素養も併せ持っていたと伝えられます。Encyclopedia Britannica+1 彼は晩年、フランクリンら著名人を迎えることもあり、交流の広さを示しています。Encyclopedia Britannica+1

また、科学界への保守性も見られ、ブラックは化学革命期の理論変化(たとえば、燃焼説や酸素理論の導入)については慎重な態度をとっていました。Encyclopedia Britannica+1 最終的には 1790 年ごろにラヴォアジエとの書簡によって酸素説を受け入れたという記録があります。Encyclopedia Britannica+1

影響と遺産:後世への架け橋

ブラックの手法と概念は、後の熱力学、化学、物理化学の基本構造を形作る礎となりました。潜熱・比熱の考え方は、19世紀以降の熱力学理論、カロリメトリ、化学熱力学等へと継承されます。Science History Institute+3TA Instruments+3Encyclopedia Britannica+3

また、彼の定量実験・質量管理・収支分析など実験化学の手法導入は、化学革命期における「量的化学」(quantitative chemistry)への転換を促しました。EBSCO+3School of Chemistry+3Encyclopedia Britannica+3

技術的には、彼と親交のあったジェームズ・ワットへの影響が大きく、潜熱理論をワットの蒸気機関改良に適用することで、蒸気効率の改善に寄与しました。School of Chemistry+3Science History Institute+3aps.org+3 この相互作用が産業革命の技術革新と結びついた点は、科学・技術史において重要視されます。Science History Institute+2Encyclopedia Britannica+2

さらに、ブラックの名は、グラスゴー大学・エディンバラ大学の化学学部建物名としても残され、スコットランドの科学教育遺産の象徴とされています。undiscoveredscotland.co.uk+2School of Chemistry+2

彼の死後、科学界は急速に進展を続けましたが、ブラックのような「概念と実験を結ぶ橋をかけた思想家」としての存在は、今日においても評価され続けています。


総括・結び

ジョゼフ・ブラックは、ただ“実験をした人”ではありません。その業績は、熱学・化学理論・実験手法・教育・知的文化のすべてをつなぐものでした。彼は、相変化における潜熱という見えにくい熱の振る舞いを明らかにし、物質ごとの熱容量の違いを定量的に捉え、気体としての CO₂ を“固定空気”という観点で発見しました。同時に、スコットランド啓蒙主義の時代背景の中で、ヒュームやスミスらと知識の往還をし、化学・物理を市民社会へと開く役割を果たしました。ブラックが残したものは、単なる理論・実験知見だけではなく、「思考の枠組み」としての科学的態度と実践の伝統です。

彼の生涯を通じて見えてくるのは、「観察・実験を重視しながらも、文化・思想と折り合う科学者像」です。ラヴォアジエ時代へと続く化学革命の橋渡し役であり、蒸気機関技術と熱力学理論の接点にも立ったブラックの足跡は、科学・技術・産業・啓蒙思想が交錯する時代の縮図でもあります。

ブラックという名を通じて、熱とは何か、物質とは何か、実験とは何かという問いが、18世紀から 19世紀へと流れる知の河の中でどのように育まれ、受け継がれてきたかを感じ取っていただければ幸いです。

テックアカデミー無料メンター相談
【スポンサーリンク】

間違い・ご意見は
以下アドレスまでお願いします。
全て読んでいます。
適時、改定・返信をします。

nowkouji226@gmail.com

2025/12/10_初稿投稿
2025/11/18_改訂投稿

纏めサイトTOP
舞台別のご紹介
力学関係
熱統計関連のご紹介

(2025年10月時点での対応英訳)

Joseph Black (1728–1799) was a Scottish thinker and experimental scientist who helped lay the foundations of modern thermodynamics and chemistry. He established the concept of latent heat, the “hidden heat” absorbed or released during the phase change of solids and liquids without a change in temperature, and he opened the way to quantifying the differences in heat capacity (or specific heat) between substances.

Black also identified what he called “fixed air,” known today as carbon dioxide (CO₂), and introduced quantitative methods to chemical experimentation, helping make laboratory chemistry a truly empirical and measurable science.

As a member of the Scottish Enlightenment, he interacted with major intellectuals such as David Hume, Adam Smith, and James Hutton, and worked at the intersection of science, philosophy, politics, and medicine. This article first reviews his life and intellectual context, then examines in detail his experiments and theories of latent heat, heat capacity, and CO₂, and finally considers his teaching, collaborations, and legacy.


Chapter I: Life and the Scottish Enlightenment

Childhood, Family, and Early Education
Joseph Black was born on April 16, 1728, in Bordeaux, France. His father, John Black, was of Scottish descent and originally from Belfast, Ireland, where he worked as a wine merchant before establishing himself in Bordeaux. His mother, Margaret, also came from a Scottish merchant family in Aberdeenshire.

At age twelve, Black was sent to a grammar school in Belfast, where he studied Latin, Greek, and classical literature.

In 1744, at sixteen, he entered the University of Glasgow, where he first pursued a liberal arts curriculum. There he encountered lectures on chemistry and medicine by William Cullen, whose work left a lasting impression on him and led him toward experimental science.

Shift to Medicine and Chemistry — Assistant to Cullen
Determined to pursue medicine, Black immersed himself in chemical experiments and served for several years as Cullen’s assistant, gaining experience in laboratory technique and observation. In 1752, he transferred to the University of Edinburgh to continue medical studies and earned his M.D. in 1754.

His doctoral dissertation included quantitative experiments on chemical substances such as magnesia alba (magnesium carbonate) and laid the groundwork for his later discovery of “fixed air” (CO₂). In 1755, he presented his findings to the Philosophical Society of Edinburgh as Experiments upon Magnesia Alba, Quicklime, and Some Other Alkaline Substances, a landmark in introducing quantitative precision to chemistry.

Professor at Glasgow and Edinburgh
In 1756, Black returned to Glasgow University, first as a lecturer in anatomy and botany, and the next year became professor of medicine. During this period he conducted his pioneering work on latent heat and specific heat, connecting experimental observations with theoretical reasoning.

In 1766, he moved to the University of Edinburgh as professor of chemistry and medicine, a position he held for more than thirty years. His annual courses—often totaling 128 lectures—attracted students from across Britain and Europe.

Black was also part of the intellectual circles of the Scottish Enlightenment, maintaining friendships and exchanges with Hume, Smith, and Hutton. In later life, he responded cautiously to the theoretical upheavals of chemistry brought about by Antoine Lavoisier’s oxygen theory, seeking a balanced stance during the period of rapid scientific transformation.

Black died in Edinburgh on December 6, 1799, and was buried in Greyfriars Kirkyard.


Chapter II: Latent Heat and Heat Capacity — Establishing Thermal Concepts

Discovery of Latent Heat
One of Black’s most famous achievements was his discovery of latent heat—the heat absorbed or released during a phase change (such as melting or evaporation) without any change in measurable temperature.

While at Glasgow, he conducted repeated experiments using winter ice and water, noting that melting ice absorbed large amounts of heat while remaining near 0 °C. Similarly, water boiling into steam required additional heat but maintained a constant temperature. Black called this unmeasurable portion of energy “latent” heat because it was hidden from the thermometer.

This concept was of immense practical significance. James Watt, who was acquainted with Black, applied the idea of latent heat to improve the efficiency of the steam engine, revolutionizing industrial technology.

Quantification of Heat Capacity (Specific Heat)
Black also demonstrated that different substances require different amounts of heat to achieve the same rise in temperature—what we now call specific heat.

Through experiments comparing the temperature changes in water, mercury, and other materials under equal heating, he showed that water warmed less than mercury for the same input of heat, meaning it had a higher heat capacity.

These results laid the groundwork for later thermodynamics, revealing that heat involves not just temperature change but also energy stored and released within matter.

Discovery and Study of “Fixed Air” (CO₂)
Black is also remembered for discovering carbon dioxide, which he termed “fixed air.”

In experiments heating and reacting magnesia alba (magnesium carbonate) and lime (calcium oxide or carbonate), he produced a gas that extinguished flames and was not breathable. He realized this gas had been “fixed” in the solid material and was released during heating or acid reaction—hence the name “fixed air.”

He further demonstrated that this gas was present in exhaled breath and could not sustain combustion or life, thus contributing fundamentally to the emerging chemistry of gases.

Equally significant was his introduction of quantitative measurement into gas studies—careful weighing, mass balance, and systematic error control—marking a decisive step toward the quantitative chemistry that would underpin modern science.

These three pillars—latent heat, heat capacity, and fixed air—secure Joseph Black’s place as one of the pioneers of thermal chemistry.


Chapter III: Education, Collaboration, and Influence

Teaching and Dissemination
Black was a devoted educator who made experimentation central to his teaching. Both at Glasgow and Edinburgh, he engaged students through demonstrations and experiments, making his lectures highly popular.

He left extensive lecture notes that show his methodical approach, integrating apparatus, procedures, and theoretical explanations. His success as a lecturer, whose fees were independent of his salary, also incentivized him to make chemistry accessible and appealing to the broader educated public.

Intellectual Networks and Enlightenment Culture
Black maintained close relationships with key figures of the Scottish Enlightenment, including Hume, Smith, and Hutton. He served as physician to Hume and helped edit the posthumous works of Smith.

Although he never married, Black led a rich social and cultural life—he was an amateur flautist and hosted prominent visitors such as Benjamin Franklin.

Scientifically, he remained cautious and moderate. Though initially skeptical of Lavoisier’s oxygen theory, he eventually accepted it around 1790, marking his openness to evidence-based change.

Legacy and Lasting Impact
Black’s ideas and methods profoundly influenced the later development of thermodynamics, chemical physics, and physical chemistry. His concepts of latent and specific heat became fundamental to calorimetry and energy theory in the 19th century.

His insistence on quantitative precision transformed chemistry from a largely qualitative craft into a numerical science.

Technologically, his friendship with James Watt was decisive: by applying Black’s theory of latent heat, Watt dramatically improved the steam engine’s efficiency—an innovation central to the Industrial Revolution.

Black’s name endures at both the University of Glasgow and the University of Edinburgh, where chemistry buildings and research institutions bear his name, symbolizing Scotland’s scientific heritage.

Even as science advanced beyond his formulations, Black remains valued as a thinker who bridged concept and experiment, combining rigorous measurement with philosophical reflection.


Conclusion

Joseph Black was far more than a laboratory scientist. His achievements unified theory, experiment, education, and intellectual culture. He revealed the hidden behavior of heat in phase change, quantified how matter stores energy, and identified carbon dioxide as a distinct gas—all while shaping a new scientific ethos grounded in measurement and observation.

Amid the Scottish Enlightenment, he engaged with philosophers such as Hume and Smith, helping to open chemistry and physics to the broader civic world.

What Black left behind was not merely a set of discoveries, but a mode of thought—a disciplined, reflective, and humane approach to science that continues to influence how we explore nature.

Through his life, we glimpse a scientist who balanced experiment with philosophy and practice with reflection—a bridge figure linking the age of Lavoisier and the Industrial Revolution.

In tracing Joseph Black’s path, we witness how the questions “What is heat? What is matter? What is an experiment?” evolved from the 18th into the 19th century, shaping the modern scientific imagination.

(以下原稿)

に投稿 コメントを残す

今後の更新方針について【①TOPICで個別人物②固定記事③投稿記事を拡充】

人物第一

先ず本稿はあくまで、このブログに対しての方針ですので
ご関心のない方は読み飛ばしてください。そんな内容です。
定期購読者の方に対してのメッセージなのです。
【ご意見を頂ければ幸いです。】
本稿は本ブログの今後の進め方を出来るだけ明確にしたい
という目的のもとに書いていきます。主題は「人物」です。

私にとって更新は目的へのステップです。
具体的には
「科学史を通じて考える事の楽しさを伝え、
少しでも各人の理解を進める手助けをして、
私自身も物理の理解を深めたい」 のです。

そんな私が愛すべき物理学者達を出来るだけ
本人に近い形で伝えていきたいと思っている
のです。人物の記載中心で地道に進めます。
そうした観点での投稿です。

固定記事の定期更新

忘れてはいけないと考えていることは
今まで伝えてきた記事の更新です。

書きっぱなしにするのではなくて内容を吟味し直す
作業を続ける事によって、色々なタイミングでの
視点から文章を見直し、補足できる内容がないか
考えていきます。

Topic記事を投稿に関連

上記の固定記事を考えてみたら、(私の観点で考えたら)
未来永劫にも更新を続ける機会を持ちたいと思います。
私が他界したらブログ自体は姪っ子か娘にあげます。

個別の物理学者に対して何時も知識をリフレッシュして
新しい情報を追加していきたいのです。その為には期毎の、
あるいは半年毎の更新が望ましいと思いつつ今に至ります。

最近読んだ本の中でエーレンファストが死の数日前に
涙ながらにディラックに語りかける場面がありました。
そうした小さな感情の場面を残す手立てが欲しいです。

また、関連事項、関連人物がどんどん出てきてくる事態は
嬉しいと言えば嬉しい状況なので盛り込みたいです。

そこで、Topic記事や書評記事を個別人物にリンクさせて
いこうと考えました。色々な記事は全て個別人物の更新時に
あわせて更新します。

具体的な更新計画

最後に(予告編的として)今後の計画を明示します。

3/20・今後の更新方針について(TOPICを個別人物に対応)
3/21・イギリス関係のリンク更新
3/22・記事の更新頻度に関して
3/23・オランダ関係のリンク更新
3/24・記事の相互リンクに対して
3/25・ドイツ関係のリンク更新
3/26・日本関係のリンク更新
3/27・フランス関係のリンク更新
3/28・Indexされな記事に対して更新
3/29・舞台別のご紹介の更新
3/30・ひも理論と現代の理解
3/31・時代順のご紹介更新

4月以降は時代別の更新再開です。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、返信・改定をします。

nowkouji226@gmail.com

2023/03/20_初回投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介

【このサイトはAmazonアソシエイトに参加しています】

 

に投稿 コメントを残す

【2021/03/18投稿_9/24改定】今後のサイト運営_特にツイッターと英訳

OJISAN

春に運営方針を決め改定を続けていますが、

ここでチェックをかけます。ご覧下さい。

【以下元原稿と追記です】 

 

春もどんどん進み暖かくなる今日この頃、季節変わりのタイミングで今後の運用方向を再度、考えてみたいと思います。内容はファンブログとSeeSaaとワードプレスで作成したブログの位置付けです。内容としては科学史に関するブログと生活の中での雑記なのです。 また、当ブログへのアクセスを増やしたいのでツイッターしてますが、4つのアカウントでフォロー制限受けてます。3/17(水)朝の時点で2日前とのフォロワー数と比べると、、、、 ①コウジ@kouji@SyvEgTqxNDfLBX_3167→3195_ ②バンドリ好き太郎@ev2Fz71Tr4x7b1k_2317→2361_ ③浩司@BLLpQ8kta98RLO9_2058→2075_ ④kouji kazeno@KazenoKouji_2147→2156_ ・合計で考えると4アカウント合計で_【9689⇒9787】 【合計で98垢/25単垢。9/15朝にまたフォロバで規制食らいましたので、こんなペースで小休止。】焦らず作業。【21/9/9追記@現時点では一万超えてます。営業マンが居るイメージでアクセス増に役立ってくれてます】

科学史のブログに関してはファンブログを全ての記事を残す書庫のような形で運用しています。それなので整理に従い、ワードプレスで作製したhtpps://wwwドメインのサイトでは固定ページに個別記事が残り、日々更新しているブログではトピック以外の記事は削除を進めています。トピック以外は一週間を目安に削除していく積りです。SeeSaaを対応したミラーサイトとして運用していましたが、最近更新を止めています。このミラーサイトは時期をみて全て英訳します。
【21/9/9追記@実際に英訳を始めていて、現在は19世紀の人物を英訳しています。外国からのアクセスも伸びています。削除も一週間を目途に進めています。トピックは整理しています。】
【22/9/24追記@トピックスの整理が進んでいて記事は年間10記事程度新規作成中_定期的に過去記事のリライトを心がけています。】

雑記はトピックスに残していますがファンブログ以外のサイトでは削除していきます。

斯様に考えて見やすいサイトを目指しますので、今後も宜しくお願い致します。

以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に関しては適時、 返信・改定をします。

nowkouji226@gmail.com

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介

2020/12/11_初稿投稿
2022/09/24_改定投稿

に投稿 コメントを残す

【Topics】Indexされない問題の実例【このサイトで発生していて2022年度からは問題点だと考えています】_9/21改訂

こんにちはコウジです。「NoIndex」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

本稿はメモです(Noindexは問題です)

以前から気になっていて明文化できていなかった問題です。

Googleサーチ・コンソールに対して検索リクエストをした際に

「URL が Google に登録されていません」というメッセージが出て

その後、数か月後ににリクエストをしてもやはり同じメッセージ

が出てしまう問題です。私は2020年10月ごろから当サイトを運営していて

ドメインパワーも、そこそこ上がってきているので、今の私が

リクエストを受け付けてもらえないのなら、最近ブログを立ち上げた

人たちは尚更、この問題に問題を感じているのではないかと予想されます。

そんな関心からの記録です。

問題は文字数でしょうか。話題なのでしょうか。

具体的なIndexされないページの例

以下に当該メッセージの出た例を記載していき、

何か共通点・法則性が出てきたら纏め直して対応案を作ります。

オレンジに色を変えた部分は改善が出来ています。

ただ、結果的に「インデックスされている」という意味で問題解決

しているだけで「何が悪くてインデックスされないか」という

問題の本質が解決できていません。

デモクリトス・2022/3/22にGoogleへ再依頼⇒4/30にOK
コペルニクス・2022/3/24にGoogleへ再依頼⇒4/30に再依頼
アイザック・バロー・2022/04/01にGoogleへ再依頼
ベルヌーィ・2022/04/06にGoogleへ再依頼
エルステッド・2022/4/19にGoogleへ再依頼
フーコー・2022/4/30にGoogleへ再依頼
メイデンホール・2022/5/10にGoogleへ再依頼
マイケルソン・2022/5/16にGoogleへ再依頼
テスラ・2022/5/21にGoogkeへ再依頼
長岡半太郎・2022/02/24にGoogleへ再依頼⇒5/28にOK
中村清二・2022/06/01にGoogleへ再依頼
ヒルベルト・2022/06/06にGoogleへ初申請
M・ボルン・2022/03/10にGoogleへ再依頼⇒6/10にOK
ピカール・2022/06/12にGoogleへ再依頼
フォン・ノイマン・2022/04/02にGoogleへ再依頼⇒7/3にOK
H.A.ベーテ・2022/7/6にGoogleへ再依頼
エドワード・テラー・2022/7/8にGoogleへ再依頼
ランダウ・2022/7/9にGoogleへ再依頼
竹内均・2022/7/20にGoogleへ再依頼
ムツゴロウ・2022/03/03にGoogleへ再依頼⇒8/5にOK
益川敏英・2022/04/24にGoogleへ再依頼⇒8/8にOK
ホーキング・2022/4/25にGoogleへ再依頼⇒8/9にOK

Indexされない問題の要因と今後の対策

今回のIndexされない問題は、数j年来今話題になっている

「Google側のアルゴリズム対応」

が主因であると思われます。生活様式。情報習得様式が

大きく変化しているなかで、グーグルが対応に追われて、

個々のインデックスの優先順をつけて処理しているだけ、と言えます。

もっと言えば(Coolに考えたら)グーグルは昔と変わらないけれども

ネット社会が変わってきていて我々リクエストする側が

問題であると考えるようになってきているとも言えます。

定量的な指標として、検索リクエストしてから検索表示されるまでの時間

が明らかに定量化できる数字で、皆さんは昨今、その数字を問題視します。

状況としては直ぐに変わらないと思えるのでGoogleを超えた所で

ツイッターやコ・ワーキングスペースでの議題とするとか、

自分のブログから発信する仕組みを作るとかしていきたい

と考えています。

 

【スポンサーリンク】

以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点に対しては適時、
改定・訂正を致します。

nowkouji226@gmail.com

2022/02/24_初回投稿
2022/09/21‗改訂投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

【トピックス】語学関係の習得に関してと、物理学会での英語コミュニケーションについて_改訂

こんにちはコウジです。「語学関係」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター(現時点での名称は「X」)使います。
2022/7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@2023/7/3】
⇒BLLpQ8kta98RLO9【8700@2024/10/30】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

英語にこだわっていた理由

このサイトでは第二外国語として

英語にこだわり、対応英訳を入れていました。

理由は明快で、日本における学術論文は英語で書き、

大学によっては物理のディスカッションも英語で行うからです。

歴史的に英語で記載するやり方が主流です。

私の英語は粗雑ですが何かを相手に伝えたいと

話し続けていることが大事なのです。そして内容修正。 

むろん、学術論文では不要な修辞語やあいさつ文は不要です。

その意味で学術論文は

英語学習の中でも特殊な文章といえるでしょう。

フランス語やドイツ語の魅力

一方で、医学ではドイツ語がつかわれ、古いお医者様は

ドイツ語でカルテを書いていました。関連機器メーカーも

ドイツ系のメーカーが強かった時代もありました。

私のブログの中での登場人物は多国にわたり、必ずしも英語で

議論をしていたか疑問に思える人々が多いです。

アルキメデス・ソクラテスの時代の人々は現地の言葉で話していて

英語で物事を考える土壌はなかったと思えます。

そこで、そんな国も人々のご紹介の際には英語の習得

に関するご紹介は意識して除いていこうと思います。

一方で文末につけている対応英訳は英語圏で

議論をする人が参照できるように残します。

別の考え方をすれば、ドイツ語やフランス語を習得できる

アフリエイトプログラムがあるといいですね。


【スポンサーリンク】

以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2022/02/09_初版投稿
2024/12/25‗原稿改訂

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係
電磁気関係

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

【2020年度11月-トピック_改訂】
量子計算機実用化の波

こんにちはコウジです。「量子コンピューター」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

以下投稿の内容は
2020/11/11の日経新聞記載の情報メインです。

現代の情報だと考えて下さい。

 

量子コンピュータが企業活動の現場で
使われ始めてきました。事例として
キューピーでは惣菜工事の生産ライン
で最適なシフトを組む為に量子コンピュータ
を活用しています。今まで数百人のスタッフに
最適な勤務シフトを与えるのは大変な作業でした。
120種以上ある惣菜の品目に対して技量の
バラツキを考慮してシフトを与え現場に割り振ります。

キューピーでは現場を熟知した管理者が
30分以上かけてシフト配置をしていましたが
量子コンピュータを活用して一秒でシフト配置
を終える事が出来ています。導入メリットとして
時間短縮だけでなく不適切な配置に対する
ミスがなくなってきているという
利点も出ています。

現在、量子コンピュータはカナダのDウェーブ社
が先行して実用化していて、最適化問題に強い
メリットを享受しています。キューピーの事例
でも従来型コンピュータでは一日かかっても
最適拍位置が出来なかったのです。

また、日本郵便は配送ルートの最適化に量子コンピューターを使い
同僚の荷物に対して埼玉県での運搬量を8%減らせることを確認しました。
全国に展開すれば100億円規模のコストダウンにつながる見通しです。
デンソーはDウェーブの量子コンピューターでの制御により
無人搬送ロボットの稼働率を80%から95%まで向上させられるとしています。

ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/11/11_初稿投稿
2022/09/18_改定投稿

舞台別のご紹介へ
時代別(順)のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

サイト立ち上げました【サイト運営方針再確認】_9/17改訂

こんにちはコウジです。「サイト立ち上げ」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

本サイト立ち上げにあたり、2020年10月17日に

FanBlogで投稿した記事を残します。

初心に帰ってそれぞれのブログでの

位置付けを確認して今後も発展させていく所存です。

以後もご覧下さい。【以下原稿です】

ご覧頂いているサイトと連動する別サイト作りました。

新サイトです:https://www.nowkouji226.com/
【本サイトURL】

このサイト(ファンブロク)は最新の個別記事を記載して、
新しいサイト(WWWサイト)では包括的な纏め・検索
がし易いように作っていくつもりです。

また、その後の実態としてFANブログと

SEESAAブログが書庫の形で運営されてます。

それぞれのブログから本ブログへのリンクを設ける事で

ブログ界隈の需要を広く集める目的もあります。

別途、ツイッターを中心としたSNSでの世界も広げ、

其処との交流も図っていきます。ご覧下さい。

 


【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/17_初稿投稿
2022/09/07_改定投稿

舞台別のご紹介へ
時代別(順)のご紹介

 

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

トピック 室温超電動 _改訂
米ロチェスター大 高圧下

こんにちはコウジです。「超電導」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

科学史の観点からトピックスをお伝えします。
現在でも続いている物理学での進展です。

米ロチェスター大学のグループが室温超電導
を実現しました。2020年10月中頃に
ネイチャーに発表してます
。突然私も当時、
2020/11/02朝の新聞読んで知って、
びっくりしたのです。
一般人はびっくり。
基礎科学での現象実現と応用科学での応用技術の
確立迄には大きな壁があるのですが先ずは第一歩。

 

267万気圧という条件下でレーザーを使い
摂氏15℃での超電導状態を実現しています。

対象試料のサイズが数十マイクロメートル
の大きさだと言う事も気になります。
圧力条件も実用化の大きな壁でしょう。
とは言え、超電導状態の解明に向けた
大きな一歩と言える気がします。

特に、超電導では
現象発言時の温度を室温に近づけたいのです。

こうした事実の積み重ねはカメリー・オネス
の実験から始まりました。
絶対零度近くでの抵抗値損失は
再現性の高い事実で、その後、

アメリカで

ジョン・バーディーン

レオン・クーパー

ロバート・シュリーファー

によるBCS理論が提唱され現在に至ります。

 

私の研究時代にはイットリウムの系(YBCOの系)や
ランタンの系(RSCOの系)の酸化物で
高温を模索していました。

別途、青山大学の先生が
別種金属で高い転移温度を実現してます。

また、最近では東北大をはじめとするグループが「揺らぎ」
の考えを使って高圧下でより常温に近い現象発現を目指しています。今でも続いている追及です。

ほぼ室温超伝導を示す高圧下ランタン水素

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/11/02_初稿投稿
2022/09/16_改定投稿

舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関係へ
電磁気関係

熱統計関連のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

【トピック】
受勲について_改訂
【イギリスの叙勲・など】

こんにちはコウジです。「叙勲」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

フランス人はエッフェル塔に名を残し、
イギリス人は勲章で名誉を称え爵位を授ける。
科学の歴史を整理していて私はそう感じます。

以下に気付く限りの叙勲を連ねますのでご参考に。


二代目コーク伯爵_
ロバート・ボイル

Sir Robert Boyle
_1627年1月25日 ~ 1691年12月31日


アイザック・ニュートン_Sir Isaac Newton

_1642年12月25日 ~ 1727年3月20日


ヴォルタ伯爵_アレッサンドロ・ジュゼッペ・

アントニオ・アナスターシオ・ヴォルタ

Il Conte Alessandro Giuseppe Antonio Anastasio Volta
_1745年2月18日 ~ 1827年3月5日(ナポレオン時代の叙勲)


マイケル・ファラデー_Michael Faraday

_1791年9月22日 ~ 1867年8月25日(叙勲を辞退)


初代ケルヴィン男爵_
ウィリアム・トムソン

William Thomson, 1st Baron Kelvin OM, GCVO, PC, PRS, PRSE
_1824年6月26日 ~ 1907年12月17日


第3代レイリー男爵_
J・W・ストラット

_John William Strutt, 3rd Baron Rayleigh
_1842年11月12日 ~ 1919年6月30日

J・A・フレミング
_Sir John Ambrose Fleming
_1849年11月29日 ~ 1945年4月18日


山川 健次郎男爵_1854年9月9日 ~ 1931年6月26日

 

J・J・トムソン_1856年12月18日~1940年8月30日


初代のネルソン卿__ラザフォード男爵_
アーネスト・ラザフォード

Ernest Rutherford, 1st Baron Rutherford of Nelson, OM, FRS,
_1871年8月30日 ~ 1937年10月19日

 

ブライアン・ハロルド・メイ_1947年7月19日~ご存命中

 

なお、ホーキング博士も大英勲章を得ていますが
爵位は受けていません。時の移り変わりでしょうか。

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/24_初回投稿
2022/09/15_改定投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係



に投稿 コメントを残す

【2021/09/18初回投稿】今後のサイトの方向性についての問題点再考

このサイトも開設からそろそろ一年が

経とうとしていますが、段々と

読みやすくなってきていると自負しています。

ただ、課題もあるのでそういった点を

まとめていきたいと思います。

まず、記事だどんどん増えてきていますが、

其々の記事で次の物が求められます。

最低限のSEOを考えていくのです。

つまり、問題点は、

①文字数は最低でも3000文字欲しい。

満たせていない投稿が実際に1/3あると思えます。

②全ての項で小見出し「H2」が欲しい。

これは1/2以上の記事が未達です。

③他から独立した記事が出来てしまう。

特にトピックに注意します。

 

以上の問題を踏まえて今後は改善をしていき、

問題の少ないブログにしていきます。

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/09/18_初稿投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介