に投稿 コメントを残す

A・J・フレネル
【1788年5月10日-4/29改訂】

パリの夕暮れ

こんにちはコウジです。「フレネル」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1788年5月10日 ~ 1827年7月14日】


【スポンサーリンク】

フレネルとナポレオン

その名はオーギュスタン・ジャン・フレネル;
Augustin Jean Fresnelです。

フランスのノルマンディー地方で
建築家の父のもとに生まれます。
ナポレオン時代に生きた人で、
ナポレオンの運命で人生を大きな影響を受けました。
物理学者としてナポレオンに関わった
ヴォルタとは対照的です。
ヴォルタはナポレオンに好かれていて
伯爵の栄誉を受けています。

それに対してフレネルはナポレオンの
敵方についているのです。先ず、
フレネルは国立土木学校を卒業後に
色々な地方の地方の現場に赴任して
建設の仕事の経験を重ねます。

その傍らで関心のあった
光学関係の知見を得ていきます。
1815年におけるナポレオン・ボナパルトの
エルバ島脱出の際には国王勢の味方
となりましたが、その為にナポレオン施政下では
軟禁生活を余儀なくされます。
私見(しけん:私の考え)では、
この時の時間の過ごし方が少しニュートン
似ている気がしてしまいます。

実際にニュートンはペスト流行時に
学術交流できない時間を活用して
プリンキピアに繋がる思索の時間を作り、
まとめ上げました。

フレネルはナポレオン施政時の軟禁生活の
時間を使って光学の研究を進め、
波動性による考え方を確立して
回析現象を示したのです。

ナポレオンの百日天下が終わり、ルイ18世が再び即位すると
フレネルは復職しパリにて技師としての仕事を再開しました。

フレネルと光 

パリでの仕事としてフレネルは生活の為の仕事をし乍ら光学の研究を続けました。クリスティアーン・ホイヘンスやトマス・ヤングらが考えていた光の伝番についての当時の考えは縦波だろうと考えられていました。つまり、光は波動(波)として考えられますが、光は音波と同様に媒質(実は真空でも伝わります)を伝わる時は「縦波」であると考えられていたのです。それに対してフレネルは、偏光の説明を突き詰めて、光の波動説を実証したうえで、光が横波であると考えたのです。
『ここでの「縦波」や「横波」は進行方向に対してそれぞれ「平行」が「垂直」であるかに対応します。』

こうしたフレネルの光学理論は、複屈折現象などを上手く説明しました。またフレネルは、地球のような移動体での光路差について研究していきました。それはマイケルソン・モーレーの実験に繋がり、特殊相対論に示唆を与えたと言われています。

フレネルは光学理論をまとめあげ、1823年に「反射が偏光に与える諸変形の法則に関する論文」として発しました。この功績は広く称えられ、、フランス科学アカデミーの会員に選ばれたほか、物理学の世界で次々と認められました。

最後にフレネルはとても病弱でした。残念な事に結核を患い39歳で若くして亡くなってます。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/10/05_初版投稿
2022/04/29_改定投稿

旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
電磁気関係
量子力学関係

力学関係のご紹介

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

Fresnel and Napoleon

Its name is Augustin Jean Fresnel. Born to an architect’s father in the Normandy region of France. A man who lived during the Napoleonic era, Napoleon’s fate greatly influenced his life. First, after graduating from the National Civil Engineering School, Fresnel will be assigned to various local sites to gain experience in construction work. Beside him, he gains optics insights that he was interested in. He became an ally of the royal family when

Napoleon Bonaparte escaped from Elba Island in 1815, which forced him to live under house arrest under Napoleon’s administration. In my opinion, the way I spend my time at this time is a bit like Newton. In fact, Newton made use of the time when academic exchange was not possible during the plague epidemic to create and organize a time for thinking that would lead to Principia. Fresnel used his time under house arrest during Napoleon’s administration to study optics, establishing a wave-based mindset and showing the phenomenon of diffraction.

When Napoleon’s Hundred Days ended and Louis XVIII reigned, Fresnel returned to work and resumed his work as his engineer in Paris.

Fresnel and light

As his work in Paris, Fresnel continued his optics research while working for a living. It was thought that the thoughts of Christiaan Huygens and Thomas Young on the transmission of light at that time would be longitudinal waves. In other words, light can be thought of as a wave, but when it travels through a medium (actually, it can also be transmitted in a vacuum) like sound waves, it was thought to be a “longitudinal wave.”

Fresnel, on the other hand, scrutinized the explanation of polarized light, demonstrated the wave theory of light, and thought that light was a transverse wave.
“The” longitudinal wave “and” transverse wave “here correspond to whether” parallel “is” vertical “with respect to the traveling direction. 』\

Fresnel’s optical theory explained the birefringence phenomenon well. Fresnel has also studied optical path lengths in mobile objects such as the Earth. It is said that it led to Michelson-Morley’s experiment and gave suggestions to special relativity.

Fresnel summarized the theory of optics and published it in 1823 as “A Paper on the Laws of Deformation of Reflection on Polarized Lights”. This achievement was widely praised, he was elected a member of the French Academy of Sciences and was recognized one after another in the world of physics.

Finally Fresnel was very sick. He unfortunately suffered from tuberculosis and died at the young age of 39.

に投稿 コメントを残す

ハンス・エルステッド
【1777年8月14日生まれ-4/29改訂】

デンマーク

こんにちはコウジです。「エルステッド」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1777年8月14日生まれ ~ 1851年3月9日没】


【スポンサーリンク】

デンマーク黄金時代の
リーダーエルステッド

ハンス・クリスティアン・エルステッド

; Hans Christian Ørsted

磁場の単位としてその名を残している人です。

ガウスと同じ年に生まれています。

ガウスやエルステッドの時代は電磁気学が

未開の時代だったとも言えます。

得られている知識が未だ断片的で、

全体像が見えていない状態で

手探りの把握を一つ一つ、数学的な

式化を含めて、ぐいぐい進めていたのです。

また、会社名としても名を残しています。

デンマーク黄金時代と呼ばれる時代があり

その時代のリーダーでした。

エルステッドは「思考実験」の概念を

打ち出した人だと言われています。正に

パラダイムシフトを起こした人です。

コペンハーゲンで活躍していました。

其処は後に量子力学が出来ていく上で

重要な議論が交わされる場になります。

また、エルステッドは

童話作家のアンデルセンとは親友です。

また、エルステッドの兄弟はデンマーク

首相を務めています。

こうった「こぼれ話」が豪華な人です。

 エルステッドの業績

物理学者としての業績として大きいのは

電流が磁場を作っていることの発見です。

それは1820年4月の出来事でした。電流近傍の

方位磁針は北でない方向を向いたのです。

そこから数年の内にビオ・サバールの法則、

アンペールの法則に繋がります。

 

エルステッドが物理学と深く関わる

きっかけとなったのはドイツのリッター

という物理学者との出会いでした。

エルステッド独自のカント哲学に

育まれた思想は後の物理学にはっきりした

方向性を与えたと思います。

エルステッドは多才な人物で、

博士論文ではカント哲学を扱っています。

他に美学と物理学でも学生時代に

賞を受けています。電流と磁場の関係も

カント哲学での思想、自然の単一性

が発想の根底にあったと言われています。

晩年は詩集を出版しています。

気球から始まった文章でした。


【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/04_初稿投稿
2022/04/29_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
デンマーク関係
電磁気学の纏め

【このサイトはAmazonアソシエイトに参加しています】

【2021年8月時点での対応英訳】

 About Oersted

Hans Christian Ørsted

That person is the one who has left its name as a unit of Magnetic field. He was born in the same year as Gauss.

It can be said that the era of Gauss and Oersted was an era when electromagnetics was undeveloped. The knowledge gained was still fragmented, and I was groping for each and every one of them, including mathematical formulation, without seeing the whole picture. In addition, the name remains as the company name. There was an era called the Danish Golden Age, and Oersted was the leader of that era.

Oersted is said to have come up with the concept of a “thought experiment.” He is exactly the person who caused the paradigm shift. He was active in Copenhagen.

It will be a place where important discussions will be held later in the development of quantum mechanics.

Oersted is also a close friend of the fairy tale writer Andersen. In addition, Oersted’s brother is the Prime Minister of Denmark. Such a “spill story” is a gorgeous person.

 Job of Oersted

A major achievement of his work as a physicist is his discovery that electric current creates a magnetic field. It was an event in April 1820. The compass near the current pointed in a direction other than north. Within a few years, it will lead to Biot-Savart’s law and Ampere’s law.

It was the encounter with a physicist named Ritter in Germany that inspired Oersted to become deeply involved in physics.
I think that the ideas nurtured by Oersted’s original Kant philosophy gave a clear direction to later physics.

Oersted is a versatile person, and his dissertation deals with Kant’s philosophy. He has also received awards in his school days in aesthetics and physics. It is said that the relationship between electric current and magnetic field was based on the idea of ​​Kant’s philosophy and the unity of nature.

Oersted published a collection of poems in his later years. He was a sentence that started with a balloon.

 

に投稿 コメントを残す

南部 陽一郎
【1921年1月18日生まれ4/28改訂】

東大

こんにちはコウジです。「南部 陽一郎」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1921年1月18日生まれ ~ 2015年7月5日没】


【スポンサーリンク】

 戦時下の南部陽一郎

南部 陽一郎は第二次世界戦時に

研究を志しました。所が、時は戦時中。

彼の頭脳は武器製造に貢献できる

と判断されて陸軍のレーダー研に配属されました。

戦時下ではどんな研究をしていたんでしょうね。

そして、どんな気持ちだったのでしょうね。

戦争の前後で東京帝国大学で研究を進めます。

戦後、南部 陽一郎は

朝永 振一郎のグループで研究を続けます。

そして物質を構成する原子を考えていき、

今に続く素粒子論を完成させていきます。

南部陽一郎と自発的対称性

 南部陽一郎の新規性は真空概念の考え直しでしょう。

「特定の対称性をもった物理系がエネルギー

で色々な状態を考えた時に的に、より

安定な真空状態に自発的に落ち着く」のです。

BCS理論でのクーパ対生成はこの考え方

に従っています。電子対生成が安定なのです。

中間子をひもとき、素粒子間の総合作用を考え、その形成に関して実験事実と、つじつまの合う理論を展開していきます。そうした研究を重ね南部陽一郎は「自発的対称性の破れ」でノーベル賞を受賞しています。南部陽一郎の話の組み立てとしては、強磁性体の自発磁化状態(外部からの磁場無しで内部磁気モーメントを揃えている状態)が温度上昇に伴い磁化を失う状態を考え、ラグラジアンを巧みに使い素粒子に適用しているのです。また彼は量子色力学や紐理論でも成果を上げています。

そういえば、

南部洋一郎は私が学生時代に使っていた教科書の著者でした。その時点で米国の国籍を得ていた記憶
があり、研究者に対しての日本での待遇に疑問を抱いたものです。私は理論物理学の研究室に所属して居ましたが、卒業後も研究を続けて研究者として身を立てている仲間は今では数えるほどしかいません。多くは私のように、民間の会社に所属して物理学とは全く関係のない業務に従事しています。

少子化という流れもありますが名誉職としての教授に対して日本社会の扱いは低いとも感じていました。狭き門である事に加えて扱いが低いのです。

それだから

南部 陽一郎がアメリカに帰化した気持ちは

少しは理解出来る気がするのです。

以上、間違い・ご意見は
以下アドレス迄お願いします。
適時、返信改定をします。

全く新しい英会話スクール「アクエス」

【スポンサーリンク】

nowkouji226@gmail.com

2020/09/10_初版投稿
2022/02/28_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

【2021年11月時点での対応英訳】

Yoichiro Nambu during the war

Yoichiro Nambu aspired to his research during World War II. However, the time is during the war. Judging that his brain could contribute to the manufacture of weapons, he was assigned to the Army’s Radar Lab. What kind of research did he do during the war? And what was your feeling? Before and after the war, he pursued research at the University of Tokyo. After the war, Yoichiro Nambu continued his research with Shinichiro Tomonaga’s group. And he thinks about the atoms that make up matter, and completes the theory of elementary particles that continues to this day.

Spontaneous symmetry with Yoichiro Nambu

Yoichiro Nambu’s novelty would be a rethinking of the vacuum concept. ・ “When a physical system with a specific symmetry considers various states with energy, it spontaneously settles into a more stable vacuum state.” Cooper pair production in BCS theory follows this idea. The electron pair generation is stable.

We will consider the overall action between elementary particles when using mesons, and develop a theory that is consistent with experimental facts regarding the formation of mesons. After repeating such research, Yoichiro Nambu won the Nobel Prize for “spontaneous symmetry breaking”. As for the construction of Yoichiro Nanbu’s story, considering the state in which the spontaneous magnetization state of the ferromagnet (the state in which the internal magnetic moments are aligned without an external magnetic field) loses magnetization as the temperature rises, the Lagradian is skillfully used. It is applied to particles. He has also been successful in quantum chromodynamics and string theory.

by the way,

Yoichiro Nanbu was the author of the textbook I used when I was a student. I remember he had American citizenship at that time
I was skeptical about the treatment of researchers in Japan. I belonged to the laboratory of theoretical physics, but now there are only a few colleagues who continue their research after graduation and become researchers. Many, like me, belong to a private company and engage in work that has nothing to do with physics.

Although there is a trend toward a declining birthrate, I also felt that the treatment of Japanese society was low for professors as honorary positions. In addition to being a narrow gate, it is not easy to handle.

that is why

I feel that I can understand the feeling that Yoichiro Nambu was naturalized in the United States.

に投稿 コメントを残す

竹内均
【1920年7月2日生まれ‐4/28改訂】

東大

こんにちはコウジです。「竹内均」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1920年7月2日生まれ ~ 2004年4月20日没】


【スポンサーリンク】

 竹内均のメガネ

私の中での竹内均さんのイメージは

特徴的な眼鏡かけたTVコメンテーターです。

実際、文筆活動中もあんな感じだったそうです。

沢山本を出していますが、作業はテープレコーダ

への録音一辺倒です。文章に起こす秘書さんが居て

一緒に作業します。独特の書き方ですね。

それでもお人柄から悪い印象は持ちません。人から好かれる性格ですね。竹内均は自分に厳しくて子供に優しい人だったと言われています。独特の喋り口調が印象的で通り易い声で聴きやすいリズムで人に語りかけていました。子供向けの伝記を沢山、監修してい居て「キューリー夫人伝」とか「エジソン伝」とかの表紙に小さく竹内均の名前が入っていたりしました。そんな啓蒙活動を考え続けて初代NEWTON編集長として日本でも一般向け教育書を作っていきます。

 民衆と竹内均

物理学の理解には個人の勉強も必要ですが、学問の性質上、万物を人がどう考えるか(モデル化していき理解するか)という論点が欠かせません。個人が理解するという考え方と同時に日本人が、そして人類が理解していくというプロセスが欠かせません。大衆にも理解出来る物理モデルが作れた時に理論は出来上がるのです。ギブスの文章を書くときに協調しましたが「数学者と物理学者の視点は異なる」のです。数学は論理として完結しているモデルであれば現実と対応が付かないでも問題がないです。そんなものです。物理学は絶えず現実と対応する理論を作らないと意味がありません。竹内均はそういった民衆との対話をとても大事にしていました。

 竹内均と地球物理学

竹内均の業績を考えていくと寺田寅彦の系譜です。具体的には直接の講義・指導を受けていない孫弟子にあたります。地球物理学に関心を持って、特にプレートテクトニクス理論をを広く広めています。実際に地面が少しずつ動いていく様子を伝える際に物理学者として地球の内部構造や境界面での様子を伝えたのです。深い知見を持って伝えたのです。

そして何より、

竹内均さんの独特の「優しい言葉」で伝えたのです。

効果がものすごい高い英会話「アクエス」
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/07/04_初版投稿
2022/04/28_原稿改定

舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Hitoshi Takeuchi’s glasses

The image of Hitoshi Takeuchi in me is

It is a commentator with characteristic glasses.

In fact, he was like that during his writing activities.

I have published a lot of books, but the work is a tape recorder

It’s all about recording to. There is a secretary who wakes up in the text

Work together It’s a unique way of writing.

 

Still, I don’t have a bad impression from my personality. It’s a personality that people like. Hitoshi Takeuchi is said to have been a strict and child-friendly person. His unique speaking tone was impressive, and he spoke to people with an easy-to-listen voice and an easy-to-listen rhythm. I supervised a lot of biographies for children, and there was a small name of Hitoshi Takeuchi on the cover of “Mrs. Curie’s biography” and “Edison’s biography”. Continuing to think about such enlightenment activities, as the first editor-in-chief of NEWTON, I will make educational books for the general public in Japan as well.

People and Hitoshi Takeuchi

Understanding physics requires individual study, but due to the nature of scholarship, the issue of how people think of everything (modeling and understanding) is indispensable. At the same time as the idea of ​​individual understanding, the process of understanding by the Japanese and humankind is indispensable. The theory is completed when a physical model that can be understood by the general public is created. I collaborated when writing Gibbs’ writing, but “the perspectives of mathematicians and physicists are different.” If mathematics is a model that is complete as logic, there is no problem even if it does not correspond to reality. That’s it. Physics is meaningless without constantly creating a theory that corresponds to reality. Hitoshi Takeuchi cherished such dialogue with the people.

Hitoshi Takeuchi and Geophysics

Considering Hitoshi Takeuchi’s achievements, it is the genealogy of Torahiko Terada. Specifically, he is his grandchild who has not received direct lectures or guidance. He has an interest in geophysics and is particularly widespread in plate tectonics theory. As a physicist, he told us about the internal structure and boundaries of the Earth when he actually told us how the ground was moving little by little. He conveyed it with deep knowledge. And above all, I conveyed it with Hitoshi Takeuchi’s unique “gentle words.”

に投稿 コメントを残す

ヨハン・C・F・ガウス
【1777年4月30日生まれ‐4/28改訂】

deutuland

こんにちはコウジです。「ガウス」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1777年4月30日生まれ ~ 1855年2月23日没】


【スポンサーリンク】

ドイツ生まれのガウス

ドイツのガウスは18世紀の数学者にして、物理学者にして、

天文学者です。ガウスの業績として大きいのはガウス分布、

ガウス関数、ガウスの最小自乗法、ガウスの法則等です。

物理というより数学で仕事を残しています。 

物理では磁束密度の単位に名を残しています。

数学で出てくるガウス分布はガウスの考察した関数

で表されていて、現代でも統計データの処理

で多用されます。実際にサンプル数が多くなると

この分布での表現が適していて「データの中心値」

を真ん中にしてグラフが綺麗な左右対称の山型となります。

山の頂上と裾野の「形」がガウス分布特有の形になります。

 

また、地球磁気の研究に関連した話として、

フーリエ級数展開に関しての研究を進め、

高速な計算方法を開発しました。特に、

データ数を2倍し続ける場合についてを議論を構築

していますが、それは後の時代に使われる

高速信号処理器の中での作動原理と本質的に同じものでした。

200年以上前に数学的なデシャブー現象があったのです。

ガウスの法則の導出

電磁気学の世界で出てくる「ガウスの法則とは

電荷量が取り囲む曲面から計算される。

といった有名な法則です。より細かくは

電束を面積分した総和が電荷密度の体積積分の総和と等しいと考えられ、その体積の内側にある電気の源を電荷と定義出来るのです。実際に電気の担い手が電荷だと考えると、地上の電位を基準として特定の等電位の導体を考えてみて、それよれり電荷密度が低い状態を正に帯電した環境、基準より電子密度が濃い状態を負に帯電した環境と考える事が出来るのです。

こういった考え方を進め、ガウスは

電気が流れていく状態を記述しました。

また、よく使われているCGS単位系の中に

ガウス単位系とも呼ばれる単位系があります。

パトロンが生活を支えたりしていたという時代背景

もありガウスは教授となる機会は無かったようですが、

デデキンドとリーマンは彼の弟子だったと言われています。

個人的にはやはり、物理学者というよりも数学者として

沢山の仕事を残してきた人ったと思います。

そして、

独逸人らしい厳密さで現象を極めたのです。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレス迄お願いします。
問題点には適時、
改定・返信をします。

nowkouji226@gmail.com

2020/09/28_初稿投稿
2022/04/28_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
ドイツ関連のご紹介へ
電磁気学関係

【このサイトはAmazonアソシエイトに参加しています】

 

【2021年8月時点での対応英訳】

Gauss of Germany 

Gauss of Germany is an 18th century mathematician, physicist and astronomer. His major achievements in Gauss are Gaussian distribution, Gaussian function, Gaussian least squares method, Gauss’s law, etc. He has left his name in physics as a unit of magnetic flux density.

The Gaussian distribution that appears in mathematics is represented by the function that Gauss considered, and is often used in the processing of statistical data even in modern times. When the number of samples actually increases

The expression in this distribution is suitable, and the graph becomes a beautiful symmetrical mountain shape with the “center value of the data” in the center. The “shape” of the top and bottom of the mountain is unique to the Gaussian distribution.
In addition, as a story related to the study of geomagnetism, Gauss proceeded with research on Fourier series expansion, and Gauss developed a high-speed calculation method. He specifically builds a debate about when he keeps doubling the number of data, which is essentially the same principle of operation in high-speed signal processors used in later times. There was a mathematical deshabu phenomenon over 200 years ago.

It is a famous law that appears in the world of electromagnetism, such as “Gauss’s law is calculated from the curved surface surrounded by the amount of electric charge.”

electrical property of surface

The sum of the surface integrals of the electric flux is considered to be equal to the sum of the volume integrals of the charge density, and the source of electricity inside that volume can be defined as the charge. Considering that the actual bearer of electricity is the electric charge, consider a conductor with a specific equipotential potential based on the electric potential on the ground. You can think of the state as a negatively charged environment. Advancing this way of thinking, Gauss described the state in which electricity is flowing.

In addition, there is a unit system called Gaussian unit system among the commonly used CGS unit systems.

Gauss did not seem to have had the opportunity to become a professor, partly because the patrons supported his life, but it is said that Dedekind and Lehman were his disciples.

Personally, I think Gauss has left a lot of work as a mathematician rather than a physicist.

And Gauss mastered the phenomenon with his unique rigor.

に投稿 コメントを残す

久保 亮五
【1920年2月15日生まれ‐4/27改訂】

東大

こんにちはコウジです。「久保亮五」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1920年2月15日生まれ ~ 1995年3月31没】


【スポンサーリンク】

物理学者久保亮五

久保亮五と同名(漢字違い)の別人が居ますが、以下記載は物理学者に関する文章で、ここでの久保亮五は統計力学で私が使った教科書の著者です。私の指導教官は久保先生の講義を受けたそうです。そんな時代の物理学者についての記載です。

久保亮五は学者肌の家で育ち、お父様の仕事で子供時代には台湾で生活しています。高校まで台湾で過ごし、帰国後に旧制高校へ入学、東大へ入学、その後に助手、助教授、教授をつとめました。

久保亮五の業績 

久保亮五の仕事で何より特筆すべきは物性論での成果です。ゴムの弾性に関する研究と、線形応答理論を使ったフーリエ変換NMRへの応用研究があげられます。

久保亮五の考えたNMRの概説を一般の人向けに記してみたいと思います。先ずフーリエ変換理論は端的には「時系列の波形を周波数を基準に考えた波形に変換して解析する技術」です。そうした「数学的に確立されているフーリエ変換」を理論的基礎として電子回路で応用しています。離散化された電気信号に対して回路上で実質的にマトリクス変換を加えます。

久保亮五とNMR 

診察で実際にNMRを使った経験のある人はその中で測定を受けている時を思い出してみてください。頭の中を調べる時などに、強磁場を人間の頭部に二次元的に与えます。その時に大きな音がしますが、その時系列でインパルス的な情報を機械的に処理して周波数応答に関する情報を得ます。

結果的に吸収スペクトルを測定することで各スピンの情報を集め、そこから最終的には断面の画像を処理します。最終的な写真で見える画像は、これらの処理の結果です。

そして今、久保亮五はこの世に居ませんが、その仕事を応用したNMRは世界中の病院で患者達の情報を集めています。きっと今、この瞬間も医療行為の中でNMRの機械が動いています。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/11_初稿投稿
2022/4/27_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介へ
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介へ
熱統計関連のご紹介へ

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Physicist Ryogo Kubo

There is another person with the same name (different Chinese characters) as Ryogo Kubo, but the following is a sentence about a physicist, and Ryogo Kubo here is the author of the textbook I used in statistical mechanics. My supervisor took a lecture. This is a description of physicists of that era. Ryogo Kubo grew up in a scholarly-skinned house and lived in Taiwan as his childhood for his father’s work. He spent his time in Taiwan until high school, and after returning to Japan he entered a high school, the University of Tokyo, and then an assistant, associate professor, and professor.

Achievements of Ryogo Kubo

The most notable thing about Ryogo Kubo’s work is the result of condensed matter theory. His research on the elasticity of rubber and his applied research to Fourier transform NMR using linear response theory can be mentioned. I would like to write an overview of NMR that Ryogo Kubo thought about for the general public. First of all, the Fourier transform theory is simply “a technology that converts a time-series waveform into a waveform that is considered based on frequency and analyzes it.” Such “mathematical established Fourier transform” is applied in electronic circuits as a theoretical basis. Substantially matrix transformation is applied on the circuit to the discretized electrical signal.

Ryogo Kubo and NMR

If you have actually used NMR in a medical examination, remember when you were taking measurements in it. A strong magnetic field is applied to the human head two-dimensionally when examining the inside of the head. There is a loud noise at that time, but the impulse-like information is mechanically processed in that time series to obtain information on the frequency response. As a result, the information of each spin is collected by measuring the absorption spectrum, and finally the image of the cross section is processed from there. The image you see in the final photo is the result of these processes.

And now, Ryogo Kubo is not in the world, but NMR, which applies his work, collects information on patients at hospitals around the world. I’m sure I’m collecting this moment as well.

に投稿 コメントを残す

アイザック・アシモフ
【1920年1月2日‐4/27改訂】

シカゴの画像

こんにちはコウジです。「アシモフ」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1920年1月2日 ~ 1992年4月6日】


【スポンサーリンク】

アシモフの人物像

今回、少し物理から離れます。アシモフは

「ロボット3原則」で有名なSF作家です。

実際のアシモフの研究分野としては

生化学なのですが、作家としての顔

の方が有名ですね。また調べてみるとアシモフ

はロシア生まれでした。リニアモーターカー

が走る今日の世界を見せてあげたいと、

個人的には考えてしまいます。また、

もはやロボットも日常的ですよね。そんな未来を

アシモフは20世紀の初めにに予見していました。

20世紀の知見で機械化が進む未来を描き、

進んだらどうなるだろうと考えますが、

好ましい方向性を指摘して大衆に問いかける。

つまり、科学の夢を投げかけていたのです。

アシモフの作家デビュー

アシモフは1938年に初めてのSF作品を雑誌に

持ちかけて認められ、1939年から作家デビュー

しています。才能を認めるアメリカっぽいですね。

この年にコロンビア大学を卒業して

大学院に進みます。

所謂、ロボット三原則などを提唱していますが、

時代は第二次大戦に向かう時代で

アシモフは学校を休学したりしています。

科学が知識を集めるスピードの速さに

アシモフは驚愕していて、社会が叡智を集結

する事を求めていました。相変わらず分断

している世界をどう見るのでしょうか。

意外な結末

そして、意外な最後なのですが、アシモフは

1992年にHIV感染が元でこの世を去ってます。

心臓バイパス手術の時に使用された

輸血血液が感染源のようです。

本当に色々と経験してきた人生だったと思います。

ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】

以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。

nowkouji226@gmail.com

2020/08/24_初回投稿
2022/04/27_改定投稿

舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Asimov’s portrait

This time, I’m a little away from physics. Asimov is a science fiction writer famous for “Three Laws of Robotics”. Biochemistry is the actual research field of Asimov, but his face as a writer is more famous. When I looked it up, Asimov was born in Russia. He personally wants to show us the world of today’s maglev trains. Also, robots are no longer commonplace. Asimov foresaw such a future in the 20th century. He envisions a future of mechanization with his knowledge of the 20th century, and wonders what will happen if it progresses, but he points out a favorable direction and asks the public. In short, he was throwing a dream of science.

Asimov’s writer debut

Asimov was recognized for his first science fiction work in a magazine in 1938, and has made his debut as a writer since 1939. He’s like America, who recognizes his talent. He graduated from Columbia University this year and went on to graduate school.

He advocates the so-called Three Laws of Robotics, but Asimov is taking a leave of absence from school in the era of World War II. Asimov was amazed at the speed at which science gathered knowledge, and he wanted society to gather wisdom. How does he see the world that is still divided?

Unexpected ending

And, surprisingly, Asimov died in 1992 due to HIV infection. He seems to be infected with the transfused blood used during heart bypass surgery. I think he really had a lot of experience in his life.

に投稿 コメントを残す

A=マリ・アンペール
【1775年1月20日生まれ4/27改訂】

パリの夕暮れ

こんにちはコウジです。「アンペール」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1775年1月20日生まれ ~ 1836年6月10日没】


【スポンサーリンク】

 アンペールの生い立ちと足跡

その名は正確にはアンドレ=マリ・アンペール_

André-Marie Ampère。フランス・リヨンに生まれます。

当時、現象整理の進んでいなかった中で

電磁気現象の理解を深め、電磁気学の

創始者の一人として考えられています。アンペールの父は法廷勤務の真面目な人だったようですが、フランス革命時に意見を述べすぎて断頭に処せられてしまいます。そしてアンペールは大変なショックを受けたと言われています。革命は色々な傷跡を残していたのですね。

アンペアはアンペールの名にちなみます。また、

アンペールの名は右ねじの法則で有名です。

(右ねじの法則をアンペールの法則という時があります)

内容としては、一般的な右方向(時計方向)に

回していく事で進むような、ねじを使った例えです。

そのねじを手に取ってみた時にネジ山のイメージ

が磁場をイメージしていて、ネジが進んでいく方向が

電流の進んでいく方向をイメージしてます。

別のイメージで例えると直流電流が流れる時に

ネジの尖った方が電気の流れる方向で

ネジ山方向が磁場の発生するイメージです。

 

 アンペールの業績

アンペールの例えはとても直観的で

分かり易いと思えます。学者が陥りがちな

「独善的」とでも言えるような分かり辛い説明

ではなく、誰に伝えても瞬時に「おおぉ。」

と感動出来る事実の伝え方ですね。

また、アンペールはこの事実を伝えるために

二本の電線を平行に使い、

電気が流れる方向を同じにしたり・反対にしたりして

その時に電線が引き合い・反発する例を示しました。

この事は電気を流した時の磁場の発生する

方向のイメージから明らかです。

電磁気学が発展していない時代に、

大衆を意識して分かり易い実験法が求められる

時代に明確な事実を示したのです。

導線の周りに発生する磁場を想像してみるとよいのです。

今でも電流の仕組みを子供に示す事が出来るような

素晴らしい実験だと思います。

目に見えない「磁場」という実在が

如何に振る舞うかイメージ出来ます。

磁場という実在がはっきり掴めていない時代に

アンペールは目に見える形で磁場を形にしたのです。

それは大きな仕事だったと言えます。後世に

そこからさらに理論は発展していくのです。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/03_初稿投稿
2022/04/27_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
電磁気学の纏め

【このサイトはAmazonアソシエイトに参加しています】

(2001年8月時点での対応英訳)

 Life of Ampere

The name is André-Marie Ampère to be exact. He is born in Lyon, France.

He gained a better understanding of electromagnetic phenomena and is considered one of the founders of electromagnetics, even though he was not well organized at the time. Ampere’s father seems to have been a serious court worker, but he was decapitated during the French Revolution by overstated his opinion. Ampere is said to have been very shocked. The revolution left a lot of scars, didn’t it?

The unit ampere of electric current is named after Ampere. Also, Ampere’s name is famous for the right-handed screw rule. (Sometimes the right-handed screw law is called Ampere’s law.) The content is an analogy using a screw that advances by turning it in the general right direction (clockwise direction).

Job of Ampere

When I pick up the screw, the image of the screw thread is the image of a magnetic field, and the direction in which the screw advances is the direction in which the current advances.

Another image is that when a direct current flows, the pointed screw is in the direction of electricity flow and the magnetic field is generated in the screw thread direction.

Ampere’s analogy seems very intuitive and straightforward. It’s not an incomprehensible explanation that scholars tend to fall into, even if it’s “self-righteous,” but it’s a way of telling the fact that you can instantly be impressed with “Oh.”

Ampere also used two wires in parallel to convey this fact, and showed an example in which the wires attracted and repelled when the directions of electricity flow were the same or opposite.

This fact is clear from the image of the direction in which the magnetic field is generated when electricity is applied.

In an era when electromagnetics was not well developed, Ampere showed clear facts in an era when publicly conscious and easy-to-understand experimental methods were required.

Imagine the magnetic field that occurs around a conductor.

I think it’s still a wonderful experiment that can show children how the electric current works.

You can imagine how the invisible “magnetic field” actually behaves.

Ampere visibly shaped the magnetic field in an era when the reality of the magnetic field was not clearly understood. It was a big job. The theory develops further from there in posterity.

に投稿 コメントを残す

R・P・ファインマン
【1918年5月11日-4/27改訂】

プリンストン大学キャンパス内

こんにちはコウジです。「ファインマン」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1918年5月11日 ~1988年2月15日】


【スポンサーリンク】

アメリカのファインマン

有名な教科書の著者で、私が学生時代から

その著書は日本で使われていました。

世界中でその教科書は使われています。

またファインマンは量子電磁気学の業績で

朝永 振一郎と共にノーベル

を受賞しています。。

具体的に、ファインマンの名を聞いて真っ先に

思い出す業績は経路積分です。

数学的な定式化が驚異的なのです。
【参考_Wikipedeiaの記載:経路積分

その発想はとてもユニークだとも言えます。

経路積分の考え方

二つの経路を初めに考えて、其々からの寄与を考えていく時に拡張が出来て二つ、三つ、四つ、、、無限大の経路。と経路を無限大に広げていくのです。もう少し具体的にファインマンの考えを紹介しますと、ダブルスリットの実験を拡張した場合に何も無い空間を考える事になっていくという考え方なのです。この経路に関するファインマンの考え方には数学的な難点も指摘されているようですが物理の世界では非常に面白い考えであり、考え進めていきたい視点です。また、素粒子の反応を模式化したファインマンダイアグラムは視覚的に、直感的に秀逸です。本当に天才の技に見えました。

業績の話が先行しましたが、最後に生い立ち,人つながりの話を致します。ファインマンはユダヤ人故に苦労を強いられています。ユダヤ人枠で大学に入れなかったりした時代もありましたがMITやプリンストン大学で研究を進めます。電気力学の量子論についてのゼミをプリンストン大学で行うことになった時には、ゼミの話を聞きつけてユージン・ウィグナー、ヘンリー・ノリス・ラッセル、フォン・ノイマンE・パウリアインシュタインが参加していたそうです。そして、ファインマンはアインシュタインと共に原爆開発の計画であるマンハッタン計画に参画しています。その中で、率直に意見を述べたメモが
没後の2018年にサザビースで落札されています。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。

nowkouji226@gmail.com

2020/09/01_初版投稿
2022/04/27_改定投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

American Feynman

He is the author of a well-known textbook, and his book has been available in Japan since I was a student. The textbook is used all over the world. He has won the Nobel Prize with Shinichiro Tomonaga for his achievements in quantum electrodynamics. .. Specifically, the first achievement that comes to mind when I hear Feynman’s name is path integral.

The mathematical formulation is amazing.
[Reference_Wikipedeia description: Path integral]

Concept of path integral

Two, three, four, … infinite routes that can be expanded when considering the two routes first and then the contributions from each. And expand the route to infinity. To introduce Feynman’s idea a little more concretely, the idea is that if we expand the double-slit experiment, we will think of an empty space. It seems that Feynman’s way of thinking about this path has some mathematical difficulties, but it is a very interesting idea in the world of physics, and I would like to continue thinking about it. In addition, the Feynman diagram, which models the reaction of elementary particles, is visually and intuitively excellent. It really looked like a genius.

I talked about achievements first, but at the end I will talk about how I grew up and how people connect. Feynman is struggling because he is Jewish. There was a time when he couldn’t enter university because of the Jewish quota, but he pursued research at MIT and Princeton University. When it was decided to hold a seminar on quantum theory of electromechanics at Princeton University, Eugene Wigner, Henry Norris Russell, von Neumann, E. Pauli, and Einstein were attending the seminar. is. Feynman and Einstein are participating in the Manhattan Project, a plan to develop the atomic bomb.
Among them, a memo that frankly expressed his opinion
It was sold at Sotheby’s in 2018 after his death.

に投稿 コメントを残す

engrand

こんにちはコウジです。「ヤング」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【 1773年6月13日生まれ ~ 1829年5月10没】