google-site-verification: google6492d514db4d4540.html
に投稿 コメントを残す

ポール・ランジュヴァン
【双子のパラダイスを議論しソナーを開発】-1/21改定

こんにちはコウジです。
半年ごとの既存記事見直しの作業です。
今回は中世19世紀に概念・手法を確立していった偉人を紹介します。
では、ご覧ください。内容を整理し、リンクを見直しました。
現時点での英訳も考えています。
(以下原稿です)

絵で分かるパラドックス 
【スポンサーリンク】
【1872年1月23日~1946年12月19日没】

V0028151 Paul Langevin. Photograph by Henri Manuel.
Credit: Wellcome Library, London. Wellcome Images
images@wellcome.ac.uk
http://wellcomeimages.org
Paul Langevin. Photograph by Henri Manuel.
Published: –
Copyrighted work available under Creative Commons Attribution only licence CC BY 4.0 http://creativecommons.org/licenses/by/4.0/

【引用:WikipediaCommons】

19世紀後半のフランスと20世紀の議論

「(ランジュバンの親となる)夫婦は1871年のパリ・コミューンでは
 第一線にいた。ランジュバンは1872年1月23日に生まれた。
 パリ・コミューンの敗北によって両親が打ちひしがれていた時である。
 ランジュバンは「私は1870年の戦いの直後に共和主義者の父と献身的な
 母の間で育った。両親はパリ占領とコミューンの血なまぐさい鎮圧の
 目撃者として語ることによって私の心に暴力への憎しみと
 正義への熱望を植え付けた」と言っている。 」

【以上は太田浩一「ほかほかのパン」より引用】

議論の中でランジュバンは中心に居ました。
本ブログのTOPで使っているソルベイ会議の写真でも
アインシュタインの隣に座っています。
そんなランジュバンですが、双子のパラドックス
という考え方が有名です。その特殊相対性理論における
矛盾の指摘は、初めはアインシュタインによる相対性理論
での議論で使っている「2つの慣性系での時間差」
から始まる話だったのですが、
ランジュバンが双子の例えに置き換えて
状況を分かりやすくしました。
ランジュバンはそんな時代の人です。

研究者としてのランジュバン

ランジュバンはイギリスのキャヴェンディッシュ研究所で
ジョゼフ・ジョン・トムソンのもとで学んだ後に
ソルボンヌ大のピエール・キュリーの下で学位を得ました。

上述した相対論の議論とは別に磁性に関わる物性の研究
も進めていたのです。
こんな経歴は当時の
イギリスとフランスの
物理学会における
つながりの強さも感じます。

其々の研究者を互いに評価しつつ、
イギリスで理解が進んだ電磁現象を
フランスで深めていって原子遷移に伴う
電磁波の放出を突き詰めていきます。

このように書くとイギリスでの物理学が先行していたように思えてしまうかもしれませんが、決してそうでもないと思います。イギリスでもフランスでも共に人々が物理・数学を追及していて研究課題に関して盛んに情報交換をしていたのです。

特にフランスのキューリー夫妻が扉を開いた放射性物質の研究は目覚ましく、その後の原子核物理学へと発展していくのです。一方で固体中の電子運動に起因するスピンの挙動は帯磁現象に繋がっていきます。

そうした時代にランジュバンは、当時理解が始まった導体の帯磁特性を研究していったのです。量子力学以前の物性理解でも原子、電子という言葉を使いこなして個別物質の帯磁特性を明らかにしていったのです。

それまで未分類だった特性を整理していったのです。
具体的には「常磁性・反磁性・強磁性の体系化」です。

また、磁性の研究をする一方で水晶振動子を開発して

超音波を発生させるメカを実用化しました。

 

小さな恋

マリ・キューリとの恋仲も知られていたようです。
ゴシップネタで恐縮ですが、ランジュバンには
家庭が上手くいっていなかった時期があり、
そんな時の良き相談相手がマリ・キューリでした。
無論。秘め事は当事者同士の大事な時間であって、
ゴシップ記者達が騒ぎ立てるのは無粋です。
私はこれ以上記載しません。ただ、
何十年か後に御二人の孫同士が結婚してます。

 

また超音波の研究からの発展で、
ランジュヴァンはソナーの発明でも知られています。
潜水艦の関係者なら多大な恩恵を受けている訳ですね。

テックアカデミー無料体験
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/31_初版投稿
2026/01/21‗改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
量子力学関係

力学関係のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

Discussion at the beginning of the 20th century

Langevin was at the center of the discussion. He also sits next to Einstein in the Solvay Conference photo used at the top of his blog. Langevin is famous for the idea of ​​a twin paradox. The contradiction pointed out in the special theory of relativity started with the “time difference between two inertial systems” used in Einstein’s discussion in the theory of relativity, but Langevin replaced it with the analogy of twins. I made the situation easier to understand. Langevin is a person of that era.

Langevin as a researcher

He earned a degree under Pierre Curie at the University of Sorbonne after studying under Joseph John Thomson at the Cavendish Laboratory in England. Apart from the discussion of relativity mentioned above, he was also conducting research on physical properties related to magnetism. His background also makes me feel the strength of the connection between the British and French physics societies at that time. While evaluating each researcher, he will deepen the electromagnetic phenomenon that was well understood in England in France and investigate the emission of electromagnetic waves due to atomic transition.

In particular, the research on radioactive materials that the French couple Curie opened the door to is remarkable, and it will develop into nuclear physics after that. On the other hand, the behavior of spin caused by electron motion in solids leads to magnetizing phenomenon. At that time, Langevin studied the magnetizing properties of conductors, which were beginning to be understood at that time. Even in his understanding of physical properties before quantum mechanics, he mastered the terms atoms and electrons to clarify the magnetizing properties of individual substances. He sorted out previously unclassified traits. Also, while he researched magnetism, he developed a crystal unit and put into practical use a mechanism that generates ultrasonic waves.

Little love

It seems that his love with Mari Cucumber was also known. Excuse me for the gossip story, but there was a time when Langevin wasn’t doing well, and his good counselor at that time was Mari Cucumber. Of course. The secret is the precious time between the parties, and the gossip reporters make a fuss about it. I won’t list any more. However, decades later, my two grandchildren are getting married.

Langevin is also known for his sonar invention, a development from his study of ultrasound. He’s benefiting a lot if he’s involved in submarines.

に投稿 コメントを残す

アーネスト・ラザフォード
【原子模型を提唱した原子物理学の父】-1/20改定

こんにちはコウジです。
半年ごとの既存記事見直しの作業です。
今回は中世19世紀に概念・手法を確立していった偉人を紹介します。
では、ご覧ください。内容を整理し、リンクを見直しました。
現時点での英訳も考えています。
(以下原稿です)

 

放射能の基礎知識
【スポンサーリンク】
【1871年8月30日 ~ 1937年10月19日】

【画像引用:WikipedeaCommons】

その名は正確にはアーネスト・ラザフォード_

Ernest Rutherford, 1st Baron
Rutherford of Nelson, OM, FRS,
初代のネルソン卿_ラザフォード男爵です。
実験屋の大家をご紹介します。

ラザフォードはニュージーランドに生まれ数学で
マスターの学位をとった後に、鉄の磁化の研究で
学士の資格を得ます。更に奨学金を得てイギリスの
ケンブリッジ大学に進みます。

奨学金授与の話を知った時、ラザフォードは実家で
芋掘りをしていました。「これが生涯最後の芋掘りだ!」
と叫びながら喜んだそうです。(Wikipedia情報)

そこでラザフォード
JJトムソンの指導のもとで
気体の電気伝導の研究をします。

導体ではない酸素や窒素などの「気体」中でも
高い電圧を加えた時に放電現象が生じ、
電気が流れます。雷を思い起こしてください。

そんな、電気伝導の研究を進めるうちに
ラザフォードはウランから2つの放射線である
α線とβ線が出ている事を発見します。
ラザフォードは後に透過性の非常に強い放射線が
電磁波である事を突き止め、半減期の概念を提唱します。

ラザフォードが考えた半減期

半減期の分かり易い実用例として、岩石の年代測定があります。
特定の岩石に含まれる物質から出てくる放射線量を計測すれば、
半減期の概念を使って対象岩石の形成から今迄、
どのくらい時間が経っているか推定出来るのです。

ラザフォードは更に研究を続けました。ガラス管にα線を集め、そのスペクトル分析からα線とはヘリウム原子核であると突き詰めています。そして、1911年にはガイガー・マースデンとα線の散乱実験を行いました。

有名なラザフォードの原子模型が提唱されたのです。原子には中心に原子核がありその周りを電子が運動しているというもので、現代でも使えるモデルです。長岡半太郎が提唱していたような表現法ではなく、ラザフォードは実験結果をもとに理論を展開します。

ラザフォードの実験手法

具体的には、薄い金箔に α線(ヘリウム原子核) を照射すると、ごく一部の粒子が大きく跳ね返る現象が観測されました。これは「原子の中心に非常に小さく高密度な原子核が存在する」ことを示す決定的証拠となりました。金箔を構成する内部物質と電子はそれぞれ剛体ではないのですが相互に働くクーロン力が同じ効果をもたらすのです。

ビリヤードの玉みたいな剛体と微細な粒子間の運動が同じ弾性モデルで表せる事は、感動的ともいえる事実です。

ラザフォードの人柄

その人柄もあって、ラザフォードは原子物理学の父と呼ばれています。キャンデビッシュ研究所では若い研究所員たちに「ボーイズ!」と呼びかけていたりするような人でした。

また「千の太陽より明るく(平凡社発行初版)」という作品の中で紳士的な人柄がしのばれる個所がありましたのでご紹介致します。『(P19.の要約)ラザフォードの共同研究者モズレーは1915年に戦死しています・ラジウムのイギリス政府による没収を善しとしないでマイヤーに手紙を送り「買い取りたい」と申し出ていました。それに対してマイヤーからは「目玉が飛び出るほど高い」と言われましたが英国政府と交渉をしてウィーンから英国ラジウム研で買い取る交渉をまとめました。当時の文学者や精神科学者に比べたら「とにかくマシだった。」と言えるでしょう。』。

また彼はイギリスに帰化した人ではありますが、紳士として夏の砂浜でもスーツのジャケットを脱がないスタイルも頑なに守っていたようです。そして、原子番号104の元素は今、彼を偲んでラザホージウムと呼ばれています。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/26_初回投稿
2026/01/20_改定投稿

サイトTOP
舞台別のご紹介

時代別(順)のご紹介
イギリス関係のご紹介
ケンブリッジ関連
電磁気関係
量子力学関係

熱統計関連のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

Its name is Ernest Rutherford

Its name is Ernest Rutherford, 1st Baron Rutherford of Nelson, OM, FRS, the first Sir Nelson_Rutherford. Rutherford was born in New Zealand and earned a master’s degree in mathematics before going on to Cambridge University in the United Kingdom with a scholarship. There, Rutherford studies the electrical conduction of gases under the guidance of JJ Thomson.

When a high voltage is applied to a “gas” such as oxygen or nitrogen that is not a conductor, a discharge phenomenon occurs and electricity flows. Remember thunder. While conducting research on electrical conduction, Rutherford discovers that uranium emits two types of radiation, alpha rays and beta rays. Rutherford later discovered that highly permeable radiation was electromagnetic waves and proposed the concept of half-life.

Half-life that Rutherford considered

An easy-to-understand example of half-life is rock dating. By measuring the radiation dose emitted from a substance contained in a specific rock, it is possible to estimate how long it has been since its formation using the concept of half-life.

Rutherford continued his research further. He collects alpha rays in a glass tube, and from the spectral analysis, he finds that alpha rays are helium nuclei. Then, in 1911, we conducted an alpha-scattering experiment with Geiger-Marsden. The famous Rutherford atomic model was proposed. An atom has an atomic nucleus in the center and electrons are moving around it, which is a model that can be used even in modern times. Rather than the expression that Hantaro Nagaoka advocated,

Rutherfoed’s way

Rutherford develops his theory based on his experimental results. Specifically, at this time, when he hits the gold leaf with β rays (electron rays), a trajectory corresponding to disconnection scattering is observed. The internal substances and electrons that make up the gold leaf are not rigid bodies, but the Coulomb forces that work with each other have the same effect. It is a moving fact that the motion between a rigid body like a billiard ball and fine particles can be represented by the same elastic model.

Rutherford’s personality

Due to his personality, Rutherford is called the father of atomic physics. He was the kind of person at the Candebish Institute who was calling out to young researchers “Boys!” Also, although he is a naturalized person in England, he seems to have stubbornly kept the style of not taking off his suit jacket even on the sandy beach in summer as a gentleman. And the element with atomic number 104 is now called Rutherfordium in memory of him.

に投稿 コメントを残す

本多光太郎(ほんだこうたろう)
【雑種の犬と大学に「今が大切」「つとめてやむな」】 -1・19改定

こんにちはコウジです。
半年ごとの既存記事見直しの作業です。
今回は中世19世紀に概念・手法を確立していった偉人を紹介します。
では、ご覧ください。内容を整理し、リンクを見直しました。
現時点での英訳も考えています。
(以下原稿です)

永久磁石発電機
【スポンサーリンク】
【1870年3月24日生まれ ~ 1954年2月12日没】


【画像引用:国立国会図書館】

本多光太郎について

本多光太郎は日本の鉄鋼業界での研究土壌を作り上げ、

研究者として多くの人材を育て上げた先人です。

人物としては、

彼の逸話を聞けば聞くほど人間臭い所が感じられて、

個人的に本人に会ってみたくなります。

見てみたいです。

本多光太郎はいつも古い着物を着て、

靴底が擦り切れるまで靴を履き、雑種の犬を引きながら

大学に出勤していたようです。そんな人です。

本多光太郎は子供時代は学校の成績も悪くて、大柄な割に何時も青ばなをたらしてて、「はなたらしの光さん」と呼ばれていた学校嫌いの子供でした。そんな本多光太郎が東大に進学して理学系の物理学科を卒業したそうです。

今は理物と物工(りぶつ、と、ぶっこう)があるのでしょうが、当時はどうだったのでしょうか。その後に本多光太郎はドイツとイギリスに留学します。帰国後、東北大学で教授を務め理化学研究所で研究を進める中で有名な「KS鋼」を発明します。

本多光太郎は金属に対しての材料物性学の研究を世界に先駆けて始めていました。より性能の優れた材料を作り上げる為に
所謂(いわゆる)「冶金」の過程を研究していったのです。

本多光太郎の業績

KS鋼(新KS鋼)は発明時に世界最強の永久磁石でした。

現代での硬質磁性材料に繋がる研究の端緒をつけたのです。

それまで刀などの特定目的で鍛えられてきた日本の鉄が

工業生産に耐える性能を備えて差別化出来るように

なっていくのです。この発明がなされてから益々、

各種産業で多くの日本の鉄が使われていくのです。

本多光太郎と実験

なにより、本多光太郎は無類の実験好きでした。「今日は晴れているから実験しよう」と言いながら実験を始めたり、「今日は雨だから実験しよう」と言って実験を続けたりしていました。そんな会話を始める時には周囲の人は「ぁ、本多節だ!(笑)」と感じたことでしょう

独独の朗らかな緊張感が生まれたことでしょう。また、結婚式をあげた時に本多光太郎本人が居なかったので、探しに行ったら実験室で実験をしていたという。とぼけたエピソードもあります。

全般的に身の回りの細かい事は気にかけない大雑把な人でした。そんな本多光太郎は組織を育て人を育てたことで有名です。要職を務めたり創設に携わった研究機関を羅列すると、

東北帝国大学附属鉄鋼研究所、
東北帝国大学総長、
千葉工業大学設立、
東京理科大学初代学長、
日本金属学会創設初代会長、
後の電磁研初代理事長

です。
指導している仲間に対しては毎日のように「どんな状況?」と実験の具合を尋ねていき、論文に対して細かく意見を加えていたそうです。

最後に本多光太郎の言葉を残します

「今が大切」「つとめてやむな」

私にはトーマス・マンの
「くよくよするな働け」という言葉と重なります。
各人の人生・やりがいと、つながる言葉です。
本多光太郎は仕事として、人生として「実験を
何時までも考えていた人」だったのでしょう。

〆最後に〆

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/04/05_初稿投稿
2026/01/19_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
熱統計関連のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】


(2021年10月時点での対応英訳)

About Kotaro Honda

Kotaro Honda is a pioneer who created the research soil in the Japanese steel industry and nurtured many human resources as a researcher. As a person, the more I listen to his anecdotes, the more human-like I feel, and the more I want to meet him. I wanna see.

It seems that Kotaro Honda always wore an old kimono, trousers until his soles were worn out, and went to college while pulling a hybrid dog. He is such a person.

Kotaro Honda was a child who hated school and was called “Hanatarashi no Hikari-san” because he had poor grades at school when he was a child. Kotaro Honda goes on to the University of Tokyo and graduates from the Department of Physics in Science. Nowadays, there are physical objects and craftsmen (Ributsu, and Bukko), but how was it at that time?

Works of Honda Koutarou

After that, Kotaro Honda will study abroad in Germany and England. After returning to Japan, he invented the famous “KS Steel” while working as a professor at Tohoku University and conducting research at RIKEN. Kotaro Honda was the first in the world to start research on material properties of metals. He studied the so-called “metallurgical” process in order to create better performing materials.

KS Steel (new KS Steel) was the strongest permanent magnet in the world at the time of his invention. He began his research on modern hard magnetic materials. Japanese iron, which had been trained for specific purposes such as swords, will be able to differentiate itself with the ability to withstand industrial production. Since the invention of this invention, more and more Japanese iron has been used in various industries.

Experiment with Kotaro Honda

Above all, Kotaro Honda loved experiments like no other. He started his experiment saying “it’s sunny today so let’s experiment” and continued his experiment saying “it’s raining today so let’s experiment”. Kotaro Honda wasn’t there when he had the wedding, so when he went looking for it, he was experimenting in the laboratory. There is also a blurry episode. He was a rough person who generally didn’t care about the details around him.

Engaged Organaization

Kotaro Honda is famous for raising organizations and raising people. When he lists the research institutes that have held important positions or were involved in the founding,

Tohoku Imperial University Steel Research Institute,
President of Tohoku Imperial University,
Established Chiba Institute of Technology,
First President of Tokyo University of Science,
Founding Chairman of the Japan Institute of Metals,
He was later the first deputy director of the Institute of Electromagnetics.

He asked his colleagues about the condition of the experiment on a daily basis, asking “what kind of situation?” And added detailed opinions to his treatise.

Finally, I will leave the words of Kotaro Honda.

“Now is important” “Don’t stop”

To me, it overlaps with Thomas Mann’s words, “Don’t work hard.” It is a word that connects each person’s life and rewards. Kotaro Honda must have been “a person who had been thinking about experiments forever” in his life as his job.

に投稿 コメントを残す

中村清二
【地球物理・実験物理を研究し多くの人材を育てました】1/19改定

こんにちはコウジです。
半年ごとの既存記事見直しの作業です。
今回は中世19世紀に概念・手法を確立していった偉人を紹介します。
では、ご覧ください。内容を整理し、リンクを見直しました。
現時点での英訳も考えています。
(以下原稿です)

光学ガラス三角
【スポンサーリンク】
【1869年10月28日〜1960年7月18日】

中村清二の時代のキャリア形成

中村清二は福井県に生まれ、東京帝国大学へ進学しました。
在学中は田中舘愛橘の指導を受けていますが、その後の
キャリア形成には、現代とは異なる時代背景を強く感じさせるものがあります。

1903年、中村は30代で助教授の地位にありましたが、その時期に
ドイツへ留学しています。特に興味深いのはその後で、
帰国後に博士号を取得している点です。

当時の修士課程の位置づけについては詳しく分かりませんが、
博士課程を修了する前に助教授として学生を指導し、
さらに海外留学を経験したうえで博士号を取得していたことになります。
現代の感覚からすると、時代の違いを強く感じさせる経歴です。

現在であれば、博士号を取得していない助教授、
あるいは准教授はほとんど存在しないのではないでしょうか。

【出典:wikipedia】


中村清二の研究業績

中村清二は、何よりもまず光学の研究で知られています。
量子力学が成立していく時代に関連する研究を行い、
光弾性実験やプリズムの最小偏角に関する研究などを手がけました。

また、地球物理学の分野でも重要な業績を残しています。
大正時代に三原山が噴火した際には、地球内部の物理学に
強い関心を持つようになり、火山学の確立に寄与しました。
三原山や浅間山における研究体制の整備にも大きく貢献しています。

さらに中村は、物理学教育にも情熱を注ぎました。物理の教科書を
繰り返し編纂し、とりわけ東京帝国大学の講義科目であった
「実験物理学」は、後の日本の物理学人材を育成し、学問の発展の礎を築いたといえます。

1925年には『理科年表』が刊行されますが、その際、
中村は物理部門の監修者として重要な役割を果たしました。
定年後も研究意欲は衰えず、八代海の不知火や魔鏡の研究に取り組んでいます。


中村清二の人柄と周辺人物

中村清二は、妻との間に二男二女をもうけました。また、
作家の中村正常は兄の子にあたります。中村正常は、
三原山の調査に同行したこともあり、学問的な交流があったことがうかがえます。

なお、中村正常の長女は女優の中村メイコとして知られています。

こうした多くの業績と人とのつながりを残し、中村清二は
91歳で生涯を閉じました。まさに大往生といえるでしょう。

〆最後に〆

|コスパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2022/04/02_初回投稿
2026/01/18_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(対応英訳)

Seiji Nakamura was born in Fukui prefecture and enterd into the University of Tokyo. There, he was taught by Tanakadate Aikitsu, and from there I felt the times in his future career. He was an assistant professor in his thirties in 1903, when he went to Germany to study abroad. The part where I felt the times was when I thought about it, but Nakamura got his PhD after returning to Japan. I don’t know how to treated a master’s degree at that time, but before finishing his doctoral course, he taught students as an assistant professor, studied abroad, and then got a PhD. He felt that the times were different.

Nakamura is known for his research in optics. He has been doing related work in the era when quantum mechanics was established, and he is studying photoelastic experiments and the minimum declination of prisms.

Nakamura is also conducting research in the field of geophysics. Especially when Mt. Mihara erupted in the Taisho era, he was interested in the physics inside the earth. He has established volcanology and is contributing to the development of research systems for Mt. Mihara and Mt. Asama. ..

He also repeated the work he enthusiastically put together a physics textbook. In addition, experimental physics, one of the lecture subjects at the University of Tokyo, cultivated human resources in Japan laters and laid the foundation for the development of physics. His science chronology was released in 1925, when he left his job as a supervisor in the physics department.
After retirement, Nakamura is conducting research on Shiranui and magic mirrors in the Yashiro Sea.

Personality of Seiji Nakamura, etc.
Nakamura could have a second son and a second daughter with his wife.
The writer, Masatsune Nakamura, was the son of his older brother and also accompanied him to the investigation of Mt. Mihara.
The normal eldest daughter is Meiko Nakamura, an actress.
Nakamura was called, leaving behind many of them. He is 91 years old.

に投稿 コメントを残す

100年を迎える東京大学地震研究所(ERI)が築いた地震学とこれからのAI時代

東大

本記事は11/9付の日本経済新聞を起点に記載しています。東京大学地震研究所(ERI)は2025年11月13日で設立から100年を迎えます。1925年の設立以来、関東大震災を教訓に地震予知・観測体制を築き、日本が世界の地震研究を牽引してきました。英国人ジョン・ミルン(JohnMilne)による水平振子式地震計の開発、大森房吉・丸山卓男・津村健四郎らによる地震モーメントやマグニチュード理論の確立など、その歩みは日本科学史の一大軌跡といえます。本稿では、①地震研究100年の歴史、②技術革新、③AI時代の展望という三つの章で構成し、制度と技術の系譜をたどります。


第1章:100年の歴史に刻まれた制度と人

関東大震災(1923年9月1日)を契機に、地震観測と耐震研究を体系化する必要性が高まり、1925年に東京大学地震研究所が誕生しました。以来、ERIは観測網の整備、地震計の改良、断層運動理論の発展を通じて、国際的研究機関としての地位を築きました。

1.1 設立背景と制度整備

震災後、国の学術政策と建築基準が一体化し、地震学の社会的使命が明確化。地震予知研究、気象庁・大学・国立研究所の分業体制が整いました。

1.2 ジョン・ミルン来日から地震学基盤の構築

1876年、英国から招聘されたジョン・ミルンが来日し、世界初の近代的地震観測体制を整備。1880年の横浜地震観測を皮切りに、地震波形記録・震央推定などの方法論を導入しました。

1.3 大森房吉・丸山卓男・津村健四郎らの技術革新

大森房吉(1868–1923)は「地震学の父」と呼ばれ、震源距離と時間差の関係式を導出。丸山卓男(東大地震研)は地震モーメントの理論化で国際的評価を確立。津村健四郎は地震継続時間を基にマグニチュード推定式を改良しました。

【地震研究の主要年表】

出来事関連人物・機関
1876年ジョン・ミルン来日、地震観測開始東京帝国大学
1880年日本地震学会創設ミルン・大森房吉
1923年関東大震災内務省震災予防調査会
1925年東京大学地震研究所設立初代所長 今村明恒
1960年代地震モーメント理論確立丸山卓男
2020年代AI・機械学習を導入した観測解析ERI・JAMSTEC

第2章:技術革新と地震学の転機

地震学の進化は「観測技術」「理論」「応用設計」という三段階で展開されてきました。ジョン・ミルンが水平振子式地震計を開発し、丸山卓男が地震モーメントを定義。こうした発展は、1980年代以降の地震カタログ整備や防災工学に波及しています。

2.1 観測技術の進化 — 地震計から海底観測網へ

地震計は機械式からデジタル式、さらに海底光ファイバー式へ。現在では海洋研究開発機構(JAMSTEC)が展開するDONET・S-netが、リアルタイム地震波を高精度で解析しています。

2.2 理論モデルの深化 — 地震モーメント・マグニチュードの普及

地震の規模を「モーメント」で表す考え方は、1960年代に丸山卓男氏が提唱。その後、カナダのカナメ研究者ハスキンスらとともに国際標準となり、現在のMw表記へと進化しました。

2.3 耐震・社会実装 — 地震防災・建築基準の変化

1981年の建築基準法改正により、耐震設計は「損傷制御型」に転換。ERIの研究成果が防災都市計画、ライフライン設計、自治体のハザード評価などに組み込まれました。


第3章:AI時代の地震研究と未来展望

AIとビッグデータの時代、地震研究も転換期にあります。観測データの自動解析、異常波形の自動検出、AIによる震源推定モデルなど、研究領域が広がっています。ERIでは近年、地震波動場の機械学習解析を用いて、スロー地震の検出精度を高めています。

3.1 AI/機械学習の導入例と研究成果

ERI・東北大・防災科研などが共同で開発した「AI地震波分類システム」は、地震波形を0.1秒単位で自動判別。発生直後の緊急通報制度(EEW)に応用されています。

3.2 国際共同研究・データ共有の潮流

米国USGSや欧州EPOSなどと連携し、データ形式を共通化。AIモデルによる世界規模の震源パターン分析が進んでいます。

3.3 課題と未来像 — AGI時代の地震科学

完全自律型AI(AGI)による地震予測はまだ理論段階ですが、モデル間比較(AGIモデル1号 vs 2号)を通じてリスク推定精度が向上する可能性があります。

【用語解説】

  • 地震モーメント:断層のずれ量と面積を用いて地震の規模を表す物理量。
  • AI地震波解析:機械学習を使い、ノイズと実地震波を自動で判別する技術。
  • DONET/S-net:日本が展開する海底地震観測網。リアルタイム観測を可能にする。

まとめ

東京大学地震研究所100年の歴史は、単なる学術機関の記念ではなく、地震研究が国家・社会・技術の全体を変えた軌跡そのものです。AI時代のいま、観測・理論・防災が再統合されようとしています。100年前に始まった「人命を守る科学」は、これからの100年でも進化を止めないでしょう。

参考文献:
・日本経済新聞(2024年11月9日朝刊)
・東京大学地震研究所公式サイト(ERI
・Nature / Springer / ScienceDirect 各誌掲載論文(Maruyama, T., Tsunemura, K., Kato, S., 2019–2024)

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

【スポンサーリンク】

nowkouji226@gmail.com

2025/11/13_初稿投稿

サイトTOP
時代別(順)のご紹介
17世紀生まれの物理学者
18世紀生まれの物理学者
19世紀生まれの物理学者
20世紀生まれの物理学者

に投稿 コメントを残す

学士院賞をもらった後で 【2021-08-02‗topクォーク_CP破れ 】

(以下は全て引用文章です)2021-08-02 ・

益川さんが学士院賞をもらった後で私の勤めていたE大学工学部に非常勤講師として来てもらったことがあった。

実はその前の年度に来てほしいと要請を研究会に出かけた友人のEさんにことづけしたのだが、その年度はすでに3件の非常勤講師を引き受けていて無理だから、つぎの年は優先して予定に入れておくという話だった。

そしてその約束を次の年度には果たしてくれたのであった。もっともそれは彼と小林さんがノーベル賞を受賞するずっと以前のことである。

たぶんそのころでもいつかはノーベル賞を受賞するのではないかと思われてはいたが、それでもまだ実験的なevidenceがまだだったと思う。

topクォークが発見されたのはそのあと数年してであったと思う。CPの破れの実験的検証とどちらが先だったか。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全てに返事が出来ていませんが
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/11/09_初版投稿

サイトTOP

に投稿 コメントを残す

益川さんが亡くなった 【2021-07-30‗名古屋大学_81歳】

2021-07-30・

先日、Steven Weinbergが亡くなったと書いたばかりだったが、旧知のノーベル賞物理学受賞者の益川敏英さんが亡くなったと知った。

昨夜、ドイツ語のオンラインのクラスの途中で、妻がスマホを見て、教えてくれたので、知っていたが、今日の朝日新聞に大きな写真と共に記事が出ていた。

名古屋大学の大学院生たちだった益川さんたちが大挙して広島の私たちの研究室を訪れたことはまだ昨日のように覚えている。

ほとんど私と同年の人たちであった。みんな、なかなか多士多才の人たちであり、その中でも益川さんはみんなの尊敬を集めているらしいことは分かった。

それから何回か私が名古屋の会議にでかけたときにも、友人たちと帰りにどこかに夕食に誘っ てくれた。

もう何十年もあってはいなかったが、彼は偉くなっても人柄があまり変わるというふうではなかった。それはノーベル賞をもらった後でも変わらなかったと思う。

私よりは1歳年下の81歳だったという。戦争を空襲を受けたという経験で知っている最後の世代だった。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全てに返事が出来ていませんが
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/11/09_初版投稿

サイトTOP

に投稿 コメントを残す

大栗博司さんの本を手に入れた 【2021-07-13_中西襄先生 】

2021-07-13 ・

注文していた大栗博司さんの書いた本を手に入れた。

『探求する精神』(幻冬舎新書)である。朝日新聞の書評で物理学者の須藤靖さんが激賞していた。

大栗さんには個人的な面識はないが、私たちの発行している「数学・物理通信」の送り先の一人である。大栗さんはもちろん京都大学名誉教授の中西襄先生の友人知人の一人であるから、中西先生からの推薦されたメールアドレスに加わっている。

数日はこの本で楽しむことができるであろう。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全てに返事が出来ていませんが
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/11/09_初版投稿

サイトTOP

に投稿 コメントを残す

花粉症 【2021-02-22 ‗Heisenberg_Bornに休暇】

【以下は全て転載内容】2021-02-22 ・

私も典型的な花粉症である。

毎年2月10日前後から鼻がぐずぐずして鼻汁がとても出る。今年は早めに行きつけの内科の医師に処方してもらった薬のおかげかそれほどひどくはないとはいうものの。

もっとも今年は暖かい日もあるので、いずれひどい花粉症の症状に悩まされるであろう。

40歳すぎからの花粉症とのつきあいであり、はじめは花粉症という言葉も知らなかったので、風邪にかかったと思っていた。もっとも熱は出ない風邪だが。

hey feverという語がヨーロッパにはあることをそのころ知ったのだが、これが日本での花粉症にあたるとは知らなかった。

物理学者のハイゼンベルクが若いときからアレルギーに悩まされており、1925年の5月にもひどいHeyfeverにかかった。それでついていた先生のボルンに休暇をもらってHelgoland島に逃避の旅行に出かける。

ここで、ハイゼンベルクは量子力学の端緒となるアイディアをつかんで、それをすぐに論文にまとめる。

これを読んだ先生のボルンはそこで使われた数学が奇妙であることに悩むが、それはボルンが若い大学生のとき数学で学んだマトリックスであることに気がつく。

そして、ハイゼンベルクの論文を発展させる論文を学生のヨルダンと論文を書く。その後休暇から帰ってきたハイゼンベルクと3人でいわゆる三者論文 (drei M”annerarbeit) を書く。これが行列力学と呼ばれた、量子力学のはじまりであった。

これは1925年のことである。年が明けて1926年にはド・ブロイの発想に触発されたシュレディンガーの波動力学と呼ばれた、また別の量子力学の論文が発表されることになる。

天才は数学だって必要とあれば創り出す。ハイゼンベルクは行列の算法をそれが数学としてすでにあるということを、知らずに発明したのであった。

ボルンとかシュレディンガーとかは40歳代であったが、他のハイゼンベルク、ヨルダンとか、また行列力学でも波動力学でもない独自の量子力学を発展させたイギリス人の若い学者ディラックもハイゼンベルクの一年先輩の物理学者パウリもみんな20歳代の前半の研究者であった。

それで量子力学はKnabenphysik(少年の物理学)と呼ばれた。ちなみにKnabenは雅語であり、普通の日常生活で話される言葉としてはKnabenという語は使われない。日常での若者という意味のドイツ語はJungeである。

いうならば、Knabenはゲーテの詩に出てくるような語である。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全てに返事が出来ていませんが
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/11/09_初版投稿

サイトTOP

に投稿 コメントを残す

コンプトン効果を連立方程式の問題にしたら 【2020-12-02_シルビィアの量子力学_ウラン235】

(以下は全て転載内容)2020-12-02・

以前から考えておりながら、なかなか実現しないのが高校数学の連立方程式の練習問題に、コンプトン効果のX線の波長のずれの計算をいれたらどうかと思っている。

これは朝永の『量子力学 I』(みすず書房)にこのテーマが取り上げられており、昔一生懸命計算した覚えがある。

なかなか計算ができなかったと思う。以前に購入していた『シルヴィアの量子力学』(岩波書店)があるのに日曜に気がついて、その個所だけを読んでみた。

面倒そうな式がたくさん出てはいたけれど、それほど難しい計算ではない。どうしてこの問題が難しいと思ったのかはわからない。

どうも数学では単に練習問題として出題される無味乾燥な問題が多いが、物理的にも意味のある演習問題であれば、解く人も身が入るのではなかろうかと思う。実は大学を定年退職した後の2年ほどはそういう方式のe-Learningのコンテンツをつくっていた時期があった(注1)。

このe-Learningのコンテンツは高校程度だが、理系の大学生で落ちこぼれそうになった人を救うという名目でつくっていた。だが、このe-Learningのコンテンツには三角関数が全く入っていないので、そこを何とかしたいと思いながら、まだうまく三角関数の部分が書けていない。

前につくっていた、e-Learningのコンテンツで中性子と原子核との衝突の問題を演習問題として取り上げたことがある。その問題を見て、技術者だった義弟が関心をもってくれた。これは中性子は水の原子と衝突して熱中性子になるための衝突回数だったかに関係している。現在の原発の中性子の減速材としては普通の水を使っている(注2)。

どうも原子力だとかだと今はちょっと時代遅れの技術的な問題であるが、80年前くらいはホットな問題であった。

(注1)これは私が80歳を越えていて、高校生のことを考えてはいないことの反映である。長い老後生活を楽しむために高校数学だって学んだら、興味深いのではないかという気持ちが強いからである。

現役の高校生さん、すみません。現役のときにはこういう楽しさはわからないのは仕方がない。

(注2)普通の水と普通でない水があるのかということだが、重水というのがある。これは陽子の代わりに重陽子D_{2}Oでできた水である。高速中性子の減速材としては普通の水(軽水)よりも中性子の衝突回数が少なく熱中性子になる。それで原子炉の減速材として重要視された(注3)。

第2次世界大戦中にノールウェイに重水工場があったが、ここをナチスドイツが差し押さえたというので原爆開発をし始めるのではないかという恐れをもった連合国がこの重水工場を襲撃するという映画がある。タイトルは「テレマークの要塞」だったと思う。

本当にあった話かどうかは知らない。重水は原爆の材料に直接になることはないと思うが、一般の人は原爆の材料と聞くと納得してしまうところがあるだろう。あくまで原子炉の減速材としての役割だと思う。

もっともその原子炉を動かしてプルトニウム239をつくれば、このプルトニウムは原爆の材料になる。日本でも原子炉がたくさん原発での稼働していたので、プルトニウムが蓄積している。これは原爆の材料となる。それで日本の多量のプルト二ウムの蓄積は国際的には日本は原爆をつくるのではないかと、大いに危険視されている。

(注3)ウラン235は核分裂するが、これは速度がおそい熱中性子といわれるものによる核分裂の断面積が大きい。天然のウランの99.3%はウラン238でこれは核分裂しない。だが、この多量にあるウラン238が中性子を1個吸収してプルトニウム239となると、これは高速の中性子によって核分裂する。

だから、原子炉の中にある一定の割合でプルトニウムを混ぜて高速中性子で核分裂を起こさせることが考えられた。これは普通にはプルサーマルと呼ばれている。

こうして蓄積したプルトニウムを消費しようと試みられている。ところが熱中性子による原子炉の制御に比べて高速中性子による原子炉の制御は難しいと言われており、それで原発への信用度が下がっているのが、現状である。

原発の燃料のウラン235を燃やした(化学反応で燃やす燃焼とはちがう)後の核廃棄物の半減期が数万年とかと言われているので、この核廃棄物を安全に2万年も保管するかということが問題になるのだが、これはまだまったく技術的に解決していない。

特に日本ではどうしたらいいかいいアディアがない。普通に考えられているのは核廃棄物をガラス状に焼結させて、地下深くに貯蔵することである。しかし、その2万年の間にその放射能に汚染された地下水がでて来ないという保証は誰もできない。原発はトイレ無きマンションだと言われる所以である。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全てに返事が出来ていませんが
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/11/09_初版投稿

サイトTOP

PAGE TOP