2025年9月15日2025年9月6日に投稿 投稿者 元)新人監督 — コメントを残す江崎玲於奈【トンネル効果を応用してポテンシャル障壁を突破】 こんにちはコウジです。 「江崎玲於奈」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)トンネル効果 【スポンサーリンク】 【1925年3月12日生まれ ~ 【ご存命中】 】概説江崎玲於奈は先の世界大戦時代の物理学者です。 2025年の3月に100歳になられるはずです。電子デバイスを発明してスゥエーデンのグスタフ国王から ノーベル賞を受けています。そして、 ノーベル賞受賞50周年でインタビュー受けていたりします。量子力学を深く理解して、その原理を応用した トンネル効果を応用したデバイスを作り出しています。因みに、このグスタフ国王って面白い人で、 結婚式の披露宴にABBAを呼んだら新曲の ダンシング・クィーンを披露してくれて、 それが世界的な大ヒットになったという逸話なんかがあります。その国王が26歳で初めてノーベル賞を手渡した一人が 江崎玲於奈だったのです。別の一人はブライアン・ジョゼフソン でした。1973年、江崎玲於奈48歳の時でした。そこで彼は国王に『自然科学の成果を称える式典では 「人種や差別無く」違った国から人々が集まってくるのだ』 と喜びを伝えました。江崎玲於奈の業績デバイス工学においてミクロの性格を応用することは とても重要です。対象としているデバイスの中で量子的な 性格が顕著に表れる部分を応用すると従来の考えでは 予測できなかったような機能が使えるようになったのです。具体的にはゲルマニウムを対象として考えた時に、 そのPN接合幅に注目します。そこにおける伝導電子の波動的側面が伝導率に関わり、 接合幅を薄くしていった時に量子効果が表れたのです。 接合幅を薄くしていった時に、、、、 (ポテンシャルを考えた時に) 通過できない筈の場所を電子が 通過するイメージです。実空間で想像して、「ポテンシャルの壁」を何故か 通過してしまう実験系を考えてみて下さい。 まさに量子的な効果なのです。晩年の江崎玲於奈江崎玲於奈は学者という立場で活躍した後、 筑波大学等で教育者として活躍しています。第2の人生をしっかり歩んでいて、 とても尊敬出来ます。更に語りたい部分はありますが、江崎玲於奈氏はご存命中なのでここまでと致します。更新のたびに幾つかのサイトでご存命であると確認していますが、少しでも長生きして頂きたいです。書き足したい気持ちはありますが、半面で今は少しでも静かに長生きして頂きたいと思っています。2025年9月時点で100歳。 最高齡の日本人ノーベル賞受賞者 としてご存命中です!!〆最後に〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近は全て返信出来てませんが 必要箇所は適時、改定をします。nowkouji226@gmail.com2020/08/27_初版投稿 2025/09/15_改定投稿サイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 日本関連のご紹介 東大関連のご紹介 熱統計関連のご紹介へ 量子力学関係へ AIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】(2021年11月時点での対応英訳)OverviewLeo Esaki was a physicist from the previous World War era. She invented the electronic device and received the Nobel Prize from King Gustav of Sweden. She has a deep understanding of quantum mechanics and is creating devices that apply the tunnel effect that applies that principle. By the way, there is an anecdote that King Gustav was an interesting person, and when he invited ABBA to a wedding reception, he performed a new song, Dancing Queen, which became a big hit worldwide. Leo Esaki was the first person to hand over the Nobel Prize at the age of 26. Another was Brian Josephson. In 1973, Leo Esaki was 48 years old. So he rejoiced to the King, “At ceremonies celebrating the achievements of the natural sciences, people come from different countries” without race or discrimination. “Achievements of Leo EsakiIt is very important to apply the micro character in device engineering. By applying the part of the target device where the quantum character appears prominently, it became possible to use functions that could not be predicted by conventional thinking. Specifically, when considering germanium, pay attention to its PN junction width. The wave-like aspect of the conduction electron there is related to the conductivity, and the quantum effect appears when the junction width is narrowed. It is an image of electrons passing through places that should not be able to pass when considering the potential. Imagine in real space and think of a system that somehow passes through the “potential wall”. It’s just a quantum effect.Leo Esaki in her later yearsAfter Leo Esaki was active as a scholar, she is active as an educator at the University of Tsukuba. She has a solid second life and she is very respectable. There is something I would like to talk about, but since Leo Esaki is still alive, I will end here. She wants to add more, but on the other hand she wants her to live a little quieter and longer. FacebookXBlueskyHatenaCopy
2025年9月14日2025年9月4日に投稿 投稿者 元)新人監督 — コメントを残す中嶋 貞雄【日本で超電導現象の土台を作っていた人|低温電子物性】‐3/14改訂 こんにちはコウジです。 「中嶋 貞雄」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)超伝導 【スポンサーリンク】 【1923年6月4日生まれ ~ 2008年12月14日没】 物理学者の中嶋貞雄映画監督で似た名前の方が居ますが 映画監督の方は貞夫と書きます。 物理学者の中嶋さんは貞雄と書きます。 中嶋貞雄は私が昔使っていた量子力学での 教科書の著者でした。(発行元は岩波書店)東京大学を卒業後に名古屋大で教授を務め、 東大物性研の所長を務めています。 超伝導現象の理論化に先鞭をつけた方です。超電導の議論史の中で有名な エピソードがありますのでご紹介します。 バーディンと中嶋貞夫中嶋貞雄は低温物理の物性に関わる研究をしていきました。 そんな中で名古屋で会議が開かれ、くりこみ理論を応用した 低温電子物性の議論をします。その話にアメリカのバーディーン が着目し、講演内容のコピーを中嶋に求めました。その時点ではカメリー・オネスの発見した超伝導現象は 実験的に示されていましたが理論的な説明はなされてません。 バーディーンはそれを作ろうとしていたのです。個別電子のモデルはありましたがその電子が 集団励起していく姿は誰も想像していませんでした。中嶋はきっと研究の方向性に自信を持った事でしょう。 半導体の大家と一緒に現象を追求したのです。 後に名古屋駅でバーディンにコピーを渡します。バーディンは帰国後に英訳し、共同研究者であるクーパー・ シュリーファーと共に考察を進め、クーパー対のアイディア を盛り込み、BCS理論を完成させます。日本でなくアメリカ で生まれた事が残念ですが、そうした議論の端緒は 日本でも芽生えていたのです。 科学技術と我々私は科学技術は人類が共有する財産だと思っています。 それだから、コピーを届けた中嶋貞雄の行為は素晴らしい と感じています。これからの若い研究者達も知を共有して 育んで欲しいと思います。そうした行為が、 最後には日本の発展に繋がっていくと信じています。 そして、世界人類の発展に繋がっていくと信じています。最後は信念とか、 宗教っぽい話になりましたが 感動・情熱から繋がる話 ではないでしょうか。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては適時、 返信・改定をします。nowkouji226@gmail.com2020/12/19_初版投稿 2025/09/14_改定投稿サイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 日本関連のご紹介へ 東大関連のご紹介へ 熱統計関連のご紹介へ 量子力学関係のご紹介へAIでの考察(参考)(2021年11月時点での対応英訳)Physicist Sadao NakajimaThere is a movie director with a similar name, but I write that as Sadao. This is written as Sadao. Sadao Nakajima was the author of a textbook on quantum mechanics that I used to use. (Published by Iwanami Shoten) He is a professor at Nagoya University after graduating from the University of Tokyo, and is the director of the Institute for Solid State Physics of the University of Tokyo. He was a pioneer in theorizing superconducting phenomena. I would like to introduce a famous episode in the history of superconductivity discussions.Birdin and Sadao NakajimaSadao Nakajima has been conducting research related to the physical properties of low temperature physics. Under such circumstances, a conference will be held in Nagoya to discuss low-temperature electronic properties applying the renormalization theory. Bardeen of the United States paid attention to the story and asked Nakajima for a copy of the lecture. At that time, the superconducting phenomenon discovered by Kamerlingh Ones was experimentally shown, but no theoretical explanation was given. Bardeen was trying to make it.Nakajima must have been convinced of the direction of his research. He later gives a copy to Birdin at Nagoya Station. After returning to Japan, Bardeen will translate it into English, discuss it with his collaborator Cooper Schriefer, incorporate ideas for Cooper vs., and complete the BCS theory. It’s a pity that I was born in the United States instead of Japan, but the beginning of such discussions was also budding in Japan.Science and technology and usI think science and technology are a property shared by humankind. Therefore, I feel that Sadao Nakajima’s act of delivering the copy was correct. I hope that young researchers in the future will share their knowledge and nurture them. I believe that such actions will eventually lead to the development of Japan. And I believe that it will lead to the development of humankind in the world.At the end, it was a belief or a religion-like story, but I think it is a story that connects with emotion and passion.〆FacebookXBlueskyHatenaCopy
2025年9月12日2025年9月2日に投稿 投稿者 元)新人監督 — コメントを残す南部 陽一郎【自発的対称性の破れを使って素粒子を研究|大戦時はレーダー研所属】-9/12改訂 こんにちはコウジです。 「南部 陽一郎」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)対称性の破れ 【スポンサーリンク】 【1921年1月18日生まれ ~ 2015年7月5日没】 戦時下の南部陽一郎南部 陽一郎は第二次世界戦時に理学を志しました。 まさに時は戦時中。彼の頭脳は武器製造に貢献できる と判断されて陸軍のレーダー研に配属されました。戦時下ではどんな研究をしていたんでしょうね。 そして、どんな気持ちだったのでしょうね。戦争の前後で東京帝国大学で研究を進めます。 戦後、南部 陽一郎は朝永 振一郎のグループで研究を続けます。 そして物質を構成する原子を考えていき、 今に続く素粒子論を完成させていきます。南部陽一郎と自発的対称性 南部陽一郎の新規性は真空概念の再考でしょう。「特定の対称性をもった物理系がエネルギーで色々な状態を考えた時に的に、より安定な真空状態に自発的に落ち着く」のです。BCS理論でのクーパ対生成はこの考え方に従っています。電子対の生成が「安定」です。中間子をひもとき、素粒子間の総合作用を考え、 その形成に関して実験事実と、つじつまの合う 理論を展開していきます。そうした研究を重ね南部陽一郎は「自発的対称性の破れ」で ノーベル賞を受賞しています。南部陽一郎の話の組み立てとしては、 強磁性体の自発磁化状態(外部からの磁場無しで 内部磁気モーメントを揃えている状態)が温度上昇に伴い 磁化を失う状態を考え、ラグラジアンを巧みに使い 素粒子に適用しているのです。また彼は量子色力学や紐理論でも成果を上げています。そういえば、南部洋一郎は私が学生時代に使っていた教科書の著者でした。 その時点で米国の国籍を得ていた記憶があり、 研究者に対しての日本での待遇に疑問を抱いたものです。私は理論物理学の研究室に所属して居ましたが、 卒業後も研究を続けて研究者として身を立てている仲間は 今では数えるほどしかいません。多くは私のように、 民間の会社に所属して物理学とは全く関係のない業務に従事しています。少子化という流れもありますが名誉職としての教授に対して 日本社会の扱いは低いとも感じていました。 狭き門である事に加えて扱いが低いのです。 そして、南部陽一郎のような優秀な頭脳は どんどん海外に流出していきます。 それだから南部 陽一郎がアメリカに帰化した気持ちは少しは理解出来る気がするのです。〆以上、間違い・ご意見は 以下アドレス迄お願いします。 適時、返信改定をします。【スポンサーリンク】nowkouji226@gmail.com2020/09/10_初版投稿 2025/09/12_改定投稿サイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 日本関連のご紹介 東大関連のご紹介 量子力学関係へ AIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】【2021年11月時点での対応英訳】Yoichiro Nambu during the warYoichiro Nambu aspired to his research during World War II. However, the time is during the war. Judging that his brain could contribute to the manufacture of weapons, he was assigned to the Army’s Radar Lab. What kind of research did he do during the war? And what was your feeling? Before and after the war, he pursued research at the University of Tokyo. After the war, Yoichiro Nambu continued his research with Shinichiro Tomonaga’s group. And he thinks about the atoms that make up matter, and completes the theory of elementary particles that continues to this day.Spontaneous symmetry with Yoichiro NambuYoichiro Nambu’s novelty would be a rethinking of the vacuum concept. ・ “When a physical system with a specific symmetry considers various states with energy, it spontaneously settles into a more stable vacuum state.” Cooper pair production in BCS theory follows this idea. The electron pair generation is stable.We will consider the overall action between elementary particles when using mesons, and develop a theory that is consistent with experimental facts regarding the formation of mesons. After repeating such research, Yoichiro Nambu won the Nobel Prize for “spontaneous symmetry breaking”. As for the construction of Yoichiro Nanbu’s story, considering the state in which the spontaneous magnetization state of the ferromagnet (the state in which the internal magnetic moments are aligned without an external magnetic field) loses magnetization as the temperature rises, the Lagradian is skillfully used. It is applied to particles. He has also been successful in quantum chromodynamics and string theory.by the way,Yoichiro Nanbu was the author of the textbook I used when I was a student. I remember he had American citizenship at that time I was skeptical about the treatment of researchers in Japan. I belonged to the laboratory of theoretical physics, but now there are only a few colleagues who continue their research after graduation and become researchers. Many, like me, belong to a private company and engage in work that has nothing to do with physics.Although there is a trend toward a declining birthrate, I also felt that the treatment of Japanese society was low for professors as honorary positions. In addition to being a narrow gate, it is not easy to handle.that is whyI feel that I can understand the feeling that Yoichiro Nambu was naturalized in the United States. FacebookXBlueskyHatenaCopy
2025年9月11日2025年9月1日に投稿 投稿者 元)新人監督 — コメントを残す竹内均(ひとし)【科学の啓蒙活動を続けた初代Newton編集長】-9/11改訂 こんにちはコウジです。 「竹内均(ひとし)」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)FacebookXBlueskyHatenaCopy
2025年9月10日2025年8月31日に投稿 投稿者 元)新人監督 — コメントを残す久保 亮五【線形応答理論を使ったフーリエ変換NMR理論を展開】‐9/9改訂こんにちはコウジです。 「久保 亮五」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)デジタルフーリエ変換 【スポンサーリンク】 【1920年2月15日生まれ ~ 1995年3月31没】物理学者久保亮五久保亮五と同名(漢字違い)の別人が居ますが、 以下記載は物理学者に関する文章で、ここでの 久保亮五は統計力学で私が使った教科書の著者です。私の指導教官は久保先生の講義を受けていたそうです。 そんな時代の物理学者についての記載です。久保亮五は学者肌の家で育ち、中国文学者であった お父様の仕事で子供時代には台湾で生活しています。 高校まで台湾で過ごし、帰国後に旧制高校へ入学、 東大へ入学、その後に助手、助教授、教授をつとめました。久保亮五の業績 なにより先ず1957年に日本物理学会誌で発表した久保公式です。 原子や分子のミクロな現象を上手く説明します。その発表以降、 なんと12000回を超える引用が世界の物理学会でなされています。 (日経新聞2024年5月4日の記事「成果に名を刻んだ日本人」会員限定) 平衡状態にある物理量のハミルトニアンを用いて 密度行列と摂動を考える事で、時間発展をする 物理量のハミルトニアンが表現できるのです。その他に久保亮五の仕事で何より特筆すべきは 物性論での成果です。ゴムの弾性に関する研究と、 線形応答理論を使ったフーリエ変換NMRへの応用研究 があげられます。その他のコンピューターシュミレーション でも久保亮五が確立したモデルは有効です。単純に「実験屋さん」とか「理論屋さん」と区別出来ません。 どちらも深く兼ね備えている研究を久保亮五はしたのです。 試料の純度が実験結果に大きく関わるような実験を 沢山の試行錯誤を重ねて一つ一つ成し遂げてきたのです。久保亮五の基礎理論を構築したNMRの概説を 一般の人向けに記してみたいと思います。 先ずフーリエ変換理論は端的には 「時系列の波形を周波数を基準に考えた 波形に変換して解析する技術」です。そうした「数学的に確立されているフーリエ変換」 を理論的基礎として電子回路で応用されています。 離散化された電気信号に対して回路上で 実質的にマトリクス変換を加えます。久保亮五とNMR 診察で実際にNMRを使った経験のある人はNMRの中で 測定を受けている時を思い出してみてください。 (Credit:Pixabay) 頭の中を調べる時などに、強磁場を人間の頭部に 二次元的に与えます。その時に大きな音がしますが、 音がしている時に「時系列でインパルス的な情報」 を機械的に処理して「周波数応答に関する情報」を得ます。作業として、吸収スペクトルを測定することで 各スピンの情報を集め、そこから最終的には 断面の画像を処理します。 (Credit:Pixabay) 最終的な写真で見える画像は、 これらの処理の結果です。そして今、久保亮五はこの世に居ませんが、 その仕事を応用したNMRは世界中の病院で 患者達の情報を集めています。きっと今、 この瞬間も医療行為の中 NMRの機械が動いています。【参考:東大理学部での退官当時の広報】〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近全て返事が出来ていませんが 全て読んでいます。 適時、改定をします。nowkouji226@gmail.com2020/10/11_初稿投稿 2025/09/09‗改定投稿サイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 日本関連のご紹介 東大関連のご紹介 力学関係のご紹介へ 熱統計関連のご紹介へAIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】(2021年11月時点での対応英訳)Physicist Ryogo KuboThere is another person with the same name (different Chinese characters) as Ryogo Kubo, but the following is a sentence about a physicist, and Ryogo Kubo here is the author of the textbook I used in statistical mechanics. My supervisor took a lecture. This is a description of physicists of that era. Ryogo Kubo grew up in a scholarly-skinned house and lived in Taiwan as his childhood for his father’s work. He spent his time in Taiwan until high school, and after returning to Japan he entered a high school, the University of Tokyo, and then an assistant, associate professor, and professor.Achievements of Ryogo KuboThe most notable thing about Ryogo Kubo’s work is the result of condensed matter theory. His research on the elasticity of rubber and his applied research to Fourier transform NMR using linear response theory can be mentioned. I would like to write an overview of NMR that Ryogo Kubo thought about for the general public. First of all, the Fourier transform theory is simply “a technology that converts a time-series waveform into a waveform that is considered based on frequency and analyzes it.” Such “mathematical established Fourier transform” is applied in electronic circuits as a theoretical basis. Substantially matrix transformation is applied on the circuit to the discretized electrical signal.Ryogo Kubo and NMRIf you have actually used NMR in a medical examination, remember when you were taking measurements in it. A strong magnetic field is applied to the human head two-dimensionally when examining the inside of the head. There is a loud noise at that time, but the impulse-like information is mechanically processed in that time series to obtain information on the frequency response. As a result, the information of each spin is collected by measuring the absorption spectrum, and finally the image of the cross section is processed from there. The image you see in the final photo is the result of these processes.And now, Ryogo Kubo is not in the world, but NMR, which applies his work, collects information on patients at hospitals around the world. I’m sure I’m collecting this moment as well.〆FacebookXBlueskyHatenaCopy
2025年9月9日2025年8月30日に投稿 投稿者 元)新人監督 — コメントを残すアイザック・アシモフ【「ロボット3原則」で有名なSF作家】‐9/9改訂 こんにちはコウジです。 「アシモフ」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)ロボット戦士 【スポンサーリンク】 【1920年1月2日 ~ 1992年4月6日】アシモフの人物像今回、少し物理から離れます。アシモフは「ロボット3原則」で有名なSF作家です。具体的に3原則とは、第1条:ロボットは人間に危害を与えてはならない。 また、その危険を看過することによって人間に危害を及ぼしてはならない.第2条:ロボットは人間に与えられた命令に服従しなければならない。第3条:ロボットは前掲第1条及び第2条に反する恐れがない限り、 自己を守らなければならない。となります。悪い人が善人を攻撃しなさいと命じたらどうなるか? と考えていくと議論のネタになるのですが、 そうした考察を現代の我々は当然していかなければ いけない段階に来ています。 鉄腕アトムも色々と悩んでいましたよね。最近のウクライナ紛争ではドローンが強力な兵器となり、 白兵戦での戦局に影響を与えています。平和利用として地雷探査ロボが活躍していますが、 殺傷能力を持ったロボットが戦う日も想定できます。 ロボットの動きは性格で素早いので殺傷能力が どこまで期待できるのでしょう。怖いことです。何故ならロボットに殺されていく貧しい国の人々が 想像出来るからです。尚更無念な死が現実として 迫ってきているのです。 過去に、人類は核兵器を具現化して 暗黒の歴史を作りました。悲劇は繰返しありません。ロボットのもう一つの懸念は判断です。 今やAIで判断が進み、更に進化していけば 人間が初期設定を誤る時点でロボット群が 人間に不利益を働くかもしれません。 ロボットに悪意が無くとも不利益を働きます。 実際のアシモフの研究分野としては生化学なのですが、 作家としての顔の方が有名ですね。また調べてみるとアシモフはロシア生まれでした。 リニアモーターカーが走る今日の世界を見せてあげたいと、 個人的には考えてしまいます。また、もはやロボットも日常的ですよね。そんな未来をアシモフは20世紀の初めにに予見していました。20世紀の知見で機械化が進む未来を描き、進んだら どうなるだろうと考えますが、好ましい方向性を指摘して 大衆に問いかける。つまり、科学の夢を投げかけていたのです。アシモフの作家デビューアシモフは1938年に初めてのSF作品を雑誌に持ちかけて認められ、 1939年から作家デビューしています。才能を認めるアメリカっぽいですね。 この年にコロンビア大学を卒業して大学院に進みます。所謂、ロボット三原則などを提唱していますが、 時代は第二次大戦に向かう時代で アシモフは学校を休学したりしています。科学が知識を集めるスピードの速さにアシモフは驚愕していて、 社会が叡智を集結する事を求めていました。 相変わらず分断している世界をどう見るのでしょうか。意外な結末そして、意外な最後なのですが、アシモフは1992年にHIV感染が元でこの世を去ってます。心臓バイパス手術の時に使用された 輸血血液が感染源のようです。本当に色々と経験されてきた人生だったと思います。〆【スポンサーリンク】〆以上、間違い・ご意見は 次のアドレスまでお願いします。 最近は返信出来ていませんが 全てのメールを読んでいます。 適時返信のうえ改定を致しします。nowkouji226@gmail.com2020/08/24_初回投稿 2025/09/09_改定投稿舞台別のご紹介へ 時代別(順)のご紹介 アメリカ関連のご紹介へ【このサイトはAmazonアソシエイトに参加しています】(2021年11月時点での対応英訳)Asimov’s portraitThis time, I’m a little away from physics. Asimov is a science fiction writer famous for “Three Laws of Robotics”. Biochemistry is the actual research field of Asimov, but his face as a writer is more famous. When I looked it up, Asimov was born in Russia. He personally wants to show us the world of today’s maglev trains. Also, robots are no longer commonplace. Asimov foresaw such a future in the 20th century. He envisions a future of mechanization with his knowledge of the 20th century, and wonders what will happen if it progresses, but he points out a favorable direction and asks the public. In short, he was throwing a dream of science.Asimov’s writer debutAsimov was recognized for his first science fiction work in a magazine in 1938, and has made his debut as a writer since 1939. He’s like America, who recognizes his talent. He graduated from Columbia University this year and went on to graduate school.He advocates the so-called Three Laws of Robotics, but Asimov is taking a leave of absence from school in the era of World War II. Asimov was amazed at the speed at which science gathered knowledge, and he wanted society to gather wisdom. How does he see the world that is still divided?Unexpected endingAnd, surprisingly, Asimov died in 1992 due to HIV infection. He seems to be infected with the transfused blood used during heart bypass surgery. I think he really had a lot of experience in his life.FacebookXBlueskyHatenaCopy
2025年9月8日2025年8月28日に投稿 投稿者 元)新人監督 — コメントを残すR・P・ファインマン【天才|経路積分やファインマンダイヤグラムを考案】-9/8改訂 こんにちはコウジです。 「ファインマン」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)経路積分 【スポンサーリンク】 【1918年5月11日 ~1988年2月15日】アメリカのファインマン有名な教科書の著者で、私が学生時代からその著書は 日本で使われていました。世界中でその教科書は使われています。 またファインマンは量子電磁気学の業績で 朝永 振一郎と共にノーベル賞を受賞しています。。具体的に、ファインマンの名を聞いて 真っ先に思い出す業績は経路積分です。 数学的な定式化が驚異的なのです。 【参考_Wikipedeiaの記載:経路積分】その発想はとてもユニークだとも言えます。経路積分の考え方二つの経路を初めに考えて、其々からの寄与を 考えていく時に拡張が出来て二つ、三つ、四つ、、、 そして無限大の経路。と経路を 無限大に広げていくのです。もう少し具体的にファインマンの考えを紹介しますと、 「ダブルスリットの実験を拡張した場合に、 無限の経路を想定すると何も無い空間 を考える事になっていく」という考え方なのです。この経路に関するファインマンの考え方には数学的な難点 も指摘されているようですが物理の世界では非常に面白い 考えであり、進めて考えていきたい視点です。また、素粒子の反応を模式化したファインマンダイアグラムは 視覚的に、直感的に秀逸です。本当に天才の技に見えました。業績の話が先行しましたが、最後に 生い立ち,人つながりの話を致します。ファインマンはユダヤ系なので苦労を強いられています。 ユダヤ人枠で大学に入れなかったりした時代もありました。 後にMITやプリンストン大学で研究を進めます。電気力学の量子論についてのゼミをプリンストン大学で 行うことになった時には、ゼミの話を聞きつけて ユージン・ウィグナー、ヘンリー・ノリス・ラッセル、 フォン・ノイマン、E・パウリ、アインシュタイン が参加していたそうです。天才大集合ですね。そして、ファインマンはアインシュタインと共に 原爆開発の計画であるマンハッタン計画に参画しています。その中で、率直に意見を述べたメモが 没後の2018年にサザビースで落札されています。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては適時、 返信・改定をします。nowkouji226@gmail.com2020/09/01_初版投稿 2025/09/08_改定投稿サイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 アメリカ関係のご紹介へ 電磁気関係へ 量子力学関係へAIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】(2021年11月時点での対応英訳)American FeynmanHe is the author of a well-known textbook, and his book has been available in Japan since I was a student. The textbook is used all over the world. He has won the Nobel Prize with Shinichiro Tomonaga for his achievements in quantum electrodynamics. .. Specifically, the first achievement that comes to mind when I hear Feynman’s name is path integral.The mathematical formulation is amazing. [Reference_Wikipedeia description: Path integral]Concept of path integralTwo, three, four, … infinite routes that can be expanded when considering the two routes first and then the contributions from each. And expand the route to infinity. To introduce Feynman’s idea a little more concretely, the idea is that if we expand the double-slit experiment, we will think of an empty space. It seems that Feynman’s way of thinking about this path has some mathematical difficulties, but it is a very interesting idea in the world of physics, and I would like to continue thinking about it. In addition, the Feynman diagram, which models the reaction of elementary particles, is visually and intuitively excellent. It really looked like a genius.I talked about achievements first, but at the end I will talk about how I grew up and how people connect. Feynman is struggling because he is Jewish. There was a time when he couldn’t enter university because of the Jewish quota, but he pursued research at MIT and Princeton University. When it was decided to hold a seminar on quantum theory of electromechanics at Princeton University, Eugene Wigner, Henry Norris Russell, von Neumann, E. Pauli, and Einstein were attending the seminar. is. Feynman and Einstein are participating in the Manhattan Project, a plan to develop the atomic bomb. Among them, a memo that frankly expressed his opinion It was sold at Sotheby’s in 2018 after his death.〆FacebookXBlueskyHatenaCopy
2025年9月6日2025年8月27日に投稿 投稿者 元)新人監督 — コメントを残す矢野 健太郎【数々の数学書を監修|「解法のテクニック」の著者】‐9/6改訂 こんにちはコウジです。 「矢野 健太郎」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)解法のテクニック 【スポンサーリンク】 【1912年3月1日生まれ ~ 1993年12月25日没】矢野健太郎の多彩な活躍矢野健太郎は私が使っていた数学の教科書の著者でした。 同名の方で漫画家の「矢野健太郎」と サッカー選手の「矢野健太郎」が居ますが、 本稿は数学者の矢野健太郎に関する原稿です。因みに、名前の「矢野」に関するエピソードとして 有名なものがあります。外人との雑談をする中で 「矢野」って英語でいえばどんな表現? と聞かれた時に、当意即妙で矢野さんは 次のように答えました。「矢」=「Vector」、「野(野原)」=「Field」。だから「矢野」って「ベクトル場」ですね。そう答えたそうです。当然、外人は大喜び。専門は幾何学関係か解析学関係だったかと。彫刻家の子として生まれ東京帝大で学びます。矢野健太郎とパリ大学矢野健太郎の小学生時代にアインシュタインが来日し 健太郎は刺激を受けました。また、 帝大の山内恭彦先生から物理学の理解には 代数幾何学が必要だと教えを受けました。物理現象のモデル化の有用性を感じた筈です。 その後、矢野はカルタン先生の下で学ぶべく パリ大学へ留学します。パリ大学で纏めた博士論文は 射影接続空間に関する論文でした。この頃から統一場理論にも関心を持ちます。 矢野健太郎とアインシュタイン戦後にはプリンストン高等研究所で微分幾何学の研究 をしていき、同時期に在席していたアインシュタインと交流 を持ちます。奥様と一緒にアインシュタインが写った写真は 大事にしていて、家宝としたそうです。矢野健太郎の業績矢野健太郎の著作は多岐に渡り、受験参考書の定番だった(今でも定番)「解法のテクニック」は矢野健太郎の著作です。また、アイザックアシモフ、ポアンカレ、アインシュタイン の書物を日本に紹介する際に監修をしたりしました。更に、 矢野健太郎は微分幾何学において「Bochner–Yano 定理」を提唱しました。この定理は、ボッホナーと共同で、負のリッチ曲率をもつコンパクトリーマン多様体の等長群が有限であることを明らかにした重要な成果です ウィキペディア1_ウィキペディア2他には、東京大学、東京工業大学名誉教授のほか、東京慈恵会医科大学、新潟大学、 プリンストン高等研究所、ローマ大学、イタリア国立高等数学研究所、 アムステルダム数学研究所、サウサンプトン大学、香港大学、ワシントン大学、 リヴァプール大学、ブラウン大学、アバディーン大学など、 非常に多彩な研究機関で国際的に活躍しました ウィキペディア。国際数学者会議(1954年アムステルダム)で招待講演を 行ったことも記録されています ウィキペディア。また、主な著作として、以下のようなものがあります ウィキペディア:Les espaces à connexion projective et la géométrie projective des “paths”(1938年、博士論文)Geometry of Structural Forms(1947年、日本語)Groups of Transformations in Generalized Spaces(1949年)Curvature and Betti Numbers(Bochnerとの共著、1953年)The Theory of Lie Derivatives and its Applications(再版あり)Differential geometry on complex and almost complex spaces(1965年)Integral formulas in Riemannian Geometry(1970年)Tangent and cotangent bundles: differential geometry(石平との共著、1973年)Anti-invariant submanifolds, CR Submanifolds…, Structures on Manifolds(今野・小林との共著、1970~80年代)私や皆さんが知った情報も矢野健太郎 の仕事かも知れませんね。そんな、矢野健太郎はバイオリンが好きな静かな人でした。安らかな印象を持ち続けたいと思います。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 この頃は全て返信できていませんが 頂いたメールは全て見ています。 適時、返信・改定をします。nowkouji226@gmail.com2020/11/12_初稿投稿 2025/09/06‗改定投稿サイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 日本関連のご紹介 東大関連のご紹介 力学関係のご紹介へ 量子力学関係へAIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】Various activities of Kentaro YanoKentaro Yano was the author of the textbook I was using. There is a manga artist “Kentaro Yano” and a soccer player “Kentaro Yano” who have the same name, but this article is about the mathematician Kentaro Yano. By the way, there is a famous episode about the name “Yano”. What kind of expression is “Yano” in English while chatting with foreigners? When asked, Mr. Yano was selfish “Arrow” = “Vector”, “Field (field)” = “Field”, so “Yano” is a “vector field”. I heard that he answered. Naturally, foreigners are overjoyed. Was my specialty related to geometry or analysis? He was born as a child of a sculptor and studied at the University of Tokyo.Kentaro Yano and the University of ParisKentaro Yano was inspired by Einstein’s visit to Japan when he was in elementary school. Also, Professor Yasuhiko Yamanouchi of Imperial University taught me that algebraic geometry is necessary to understand physics. It seems that he found the usefulness of modeling physical phenomena. After that, Yano will study abroad at the University of Paris to study under Professor Cartan. His dissertation he compiled was a dissertation on the projective connection space. From this time on, he was also interested in unified field theory.Kentaro Yano and EinsteinAfter the war, he studied differential geometry at the Princeton Institute for Advanced Study and interacted with Einstein, who was present at the same time. He cherished the photo of Einstein with his wife and made it a heirloom.Kentaro Yano has a wide variety of authors, and Kentaro Yano’s “Solution Technique”, which was a staple of examination reference books. He also supervised the introduction of Isaac Asimov, Poincaré and Einstein’s books to Japan. The information that I and everyone knew may be Kentaro Yano’s work. Kentaro Yano was a quiet person who liked the violin. He wants to keep a peaceful impression.〆FacebookXBlueskyHatenaCopy
2025年8月31日2025年8月3日に投稿 投稿者 元)新人監督 — コメントを残す老人の呟きから8月末抜粋_・なおし魔 【2011-04-19】・Heisenbergがノーベル賞を単独受賞した訳 【2011-05-27】・「坂田昌一の生涯」を読む 【2011-11-04】・坂田昌一の寺田寅彦批判 【2011-11-12 】・久保亮五の統計力学 【2011-11-19】・Boltzmann 因子 【2012-02-16】・Yangの新しい論文 【2012-02-17】・「素粒子論研究」終刊号 【2012-02-28 】・遠山啓と武谷三男2 【2012-03-08】・Pauliの行列の導入 【2012-03-19 】・ライフログ 【2012-04-11】・外村彰氏の死 【2012-05-03 】・四元数と線形代数 【2012-05-07】・『千の太陽よりも明るく』 【2012-07-11】なおし魔 【2011-04-19】私は「なおし魔」である。だからこのブログでも誰かからアクセスされたブログを見て、再度自分で読んで、変な表現を自分でしていたと思ったら、どしどし文章を直している。そういう意味では記録などおかまいなしである。もっとも後の時点での訂正とか付記であることをはっきりさせるために(何年何月何日付記)と書いていることもあるが、そういう付記をしないことも多い。そういう文書の訂正をした人として私と比べるととてもおこがましいが、二人のとても有名な人がいる。一人は有名な中国の革命家、毛沢東で彼は自分の書いた文書を彼の毛沢東選集か何かに収録するときに大きくは変えなかったかもしれないが、細かな修正をしたといわれる。だから、ある意味では歴史的な記録としては具合が悪いところがあるかもしれない。もう一人の方は日本人の物理学者である、朝永振一郎博士である。彼はみすず書房から出版した彼の論文集で、全部自分の書いた論文を修正をしたといわれる。そしてその論文の受理の年月日も消してしまった。このことは私は知らなかったのだが、筑波大学名誉教授の亀淵さんがどこかで書いておられた。それで朝永先生の完璧主義は貫徹をしたのだろうが、歴史的文献としての意義が失われたと書かれていた。そういった優れた人と比べるのはおこがましいのであるが、私のブログではどうもおかしな表現をしたり、また書き損じをしたり、言葉が足りなかったりとかいろいろミスが多い。それでそれとは明示をせずに修正をしたりしている。特に読んでくださる方を間違ったところへと導いてはまずいので自分で気がついたまずいところはいつでも直すことにしている。それで、よく問題にされるのが武谷三男の文章で彼は戦後「広島に原爆が落とされて、日本の軍国主義の野蛮が吹き飛ばされた」(ここでの引用表現は正確ではないことを了解してください)というようなことを書いている。そしてそのことを修正はしないで彼の著作集にそのまま収録されている。それは彼のある種の律儀さや率直さを示しているのだが、これが他の学者や評論家から原爆の悲惨さを指摘しなかったという意味で、非難の的になったりしていることである。修正をしても、またはしなくても論争の的になったり、されたりする。私はここに挙げたような有名な人物ではないし、大したことをブログで述べているわけではないので、論争に巻き込まれることもないだろうが。Heisenbergがノーベル賞を単独受賞した訳 【2011-05-27】マトリックス力学とは今では量子力学といわれている、20世紀前半に展開された原子中の電子の力学である。もちろん量子力学は原子中の電子だけを対象にする力学ではないが、誤解を恐れずこう言っておく。マトリックス力学はもちろんHeisenbergの卓抜なアイディアから始ったが、しかしその数学的な展開にはBornとJordanの貢献が大きかった。BornとJordanとのHeisenbergの論文の数学展開とその後のHeisenbergも含めた有名な三者論文で彼らはマトリックス力学を完成させた。BornはHeisenbergの先生の一人である。ところが、1932年にノーベル賞を受賞したのはHeisenberg一人で、BornとJordanははずれていた。そのことについてのBornの苦悩は大きかったことが彼の告白によってわかるのだが、BornはHeisenbergが優秀であることを自分で言い聞かせて自分を納得させたとどこかで読んだ。その後、1956年にBornは単独で量子力学の確率解釈で、ノーベル賞を受賞するのだが、ここでも政治的な意図が働いていたと、ごく最近の研究でわかったらしい。これら事情にはJordanがからんでいる。Jordanはナチドイツ下で、ナチの思想に共鳴していたのみならず、その重要な活動の一翼を担っていたらしい。それで、Heisenbergのノーベル賞受賞のときにノーベル賞の委員会はBornとの同時受賞も考えたらしいのだが、Bornにノーベル賞を与えるとJordanにもノーベル賞を与えない訳には行かなくことになるとの理由で、それを阻止するためにHeisenberg一人の受賞と決定したらしい。その後、第2次世界大戦後の1956年のBornの受賞のときにもJordanの関係しない業績に対してノーベル賞を授与することにしたらしいと、ごく最近にインターネットのサイトで読んだ。1976年にアーヘンであったニュートリノ国際会議の際にはまだJordanは存命であったが、そのときに1976年2月1日に亡くなったHeisenbergの追悼講演をJordanがした。もっともこのときの講演はドイツ語でされたので、私にはほとんどわからなかった。その後まもなくしてJordanは亡くなってしまって、もう歴史上の人物になってしまっている。ノーベル賞とナチとは受賞者において関係がある。光電効果の実験で有名なLenardもそういう学者の一人であり、賞金を投資とかに使ってはいけないとかの賞金の規約があるらしいが、それに違反して物議を醸したことがあると昔読んだ記憶がある。また、Stark効果で有名なStarkもノーベル賞の受賞者だが、彼もナチの思想の信奉者でドイツ主義運動とかに関与したとか言われる。そういうことがあったので、ノベール賞選考委員会としては慎重であったのかもしれない。・「坂田昌一の生涯」を読む 【2011-11-04】昨日、知人の西谷正さんから、彼の労作である「坂田昌一の生涯」を送ってもらった。それで今朝の4時ごろまでかけて読んだ。とはいっても470ページを越す大著であるから、これは拾い読みにしかすぎない。一言でこの本を評価することはできないし、またそれをすることは著者の西谷さんに失礼でもあるだろう。彼の多年にわたるご努力に感謝をしたい。確かに益川さんの序文にもある通り一読に値する書であり、ほとんどなんでも書いてある。これは単に坂田の生涯だけではなく、彼と関係のあった、湯川、朝永、武谷等との交流の記録でもあるだろう。私は武谷三男の伝記を書くとか、書きたいと言っているのだが、その作業は遅々として進まない。ひょっとすると鶴見俊輔さんは武谷の伝記を書く気持ちがあったかもしれないのだが、私が書きたいといっているので、我慢をして書かないでおられるのかもしれない。この書は坂田先生の物理についても述べてあり、また、社会活動についても書いてある。それもなかなか詳しく調べて描かれてある。坂田はその門下生が多くて、それらの門下生に慕われていたので、坂田自身は自分についてはあまり語らなかったが、それでも坂田について語る方は多い。それがこの伝記の深みを与えている。私個人は坂田の言説としては、「階層性の論理」とか「形の論理から物の論理へ」という主張が印象的であり、それらについてもう少し踏み込んだ考察が欲しかった気がする。しかし、これは個人的な好みであって、それだからといってこの書が極めて優れた書であることには変わりがない。・坂田昌一の寺田寅彦批判 【2011-11-12 】「小屋掛け物理学」と寺田寅彦の物理学を批判する人はいう。これは私の知る限り、原光雄とか武谷三男とかまた菅井準治とか唯物論の立場に立つ、物理学者等が言っていたことであり、坂田昌一も同じ批判をもっていたことが、西谷正さんの『坂田昌一の生涯』(鳥影社)でわかった。(ちなみに原光雄は化学者である)。これは寺田物理学の一つの側面だとは思うのだが、寺田寅彦のやった研究にはその側面に限らずもう少し範囲が広いというのが、私の現在の判断である。それは絶対正しいということではなくて私の感じなので正しいかどうかわからない。この判断は、岩波書店が寺田寅彦の科学論文の著作集を出したことがあり、そのときにそれを私は購入しなかったが、そこに出ていた論文のリストを見て思ったことであった。ただ、普通の市民に卑近な物理学として受けのよかった寺田物理学には上の方々が与えた批判は当てはまるのかもしれない。だから寺田物理学の流れを汲む、中谷宇吉郎についても二つの評価の見解がありうると思う。寺田寅彦の研究には、寺田小屋掛け物理学的な批判の当てはまる側面とそうでない側面があるという認識が必要だと思う。ロゲルギストについては私はこの別の側面があるのかはわからない。だから、これについては判断を保留しておきたい。その寺田物理学の別の側面があったかどうかということに対する、西谷さんの見解の表明は『坂田昌一の生涯』には出ていなかったと思うし、この書は坂田の伝記であり、西谷さんの見解が問われている訳ではないから、この坂田の見解に西谷さんがどう思ったかを書く必要はないのだが、個人的にはどう思われているのだろうということは知人としては関心がある。文学としての寺田寅彦全集が出たときに武谷三男も岩波書店の求めに応じて、推薦文を書いていたと思うが、彼は寺田物理学の批判と共に寺田寅彦は権力的ではなかったと、彼のいい側面の指摘もしていたように思うが、それはもう記憶が薄れてさだかではない。(2013.2.11付記) 人の目に触れる文章は記憶で書かないでちゃんとしたことを書けということをコメントをもらった。上の部分のどこがそうだったのかわからないが、最後の部分だとすれば、記憶が薄れて定かではないと書いたが、寺田が権力的ではなかったという指摘は間違いがないと思うので、そんなに無責任なことを言ったわけではない。一言お断りをしておく。これが武谷の現代論集に載っていたのか、それとも論集には載っていなかったが、寺田寅彦全集の広告のためのパンフレットに載っていたのか調べたら、わかることだが、調べていない。どうもコメントをされた人の指摘が具体的でないので、私の思い過しかもわからないが、上の文のどこかに問題があったとしても、ここは間違っていますよと指摘をすれば、すむことではないか。もし私の記憶とかが間違っていたのなら、それは失礼をしました。ということになるだけであろう。コメントも建設的にして頂きたい。それにこれはいわゆる研究論文ではない。真偽のほども読む人の判断に委ねられる。これは論文との違いであろう。論文とエッセイとの違いを心得ないでいる人のコメントはそのままでは出せない。また、自由な意見の表明もいけないという一種の言論統制だとも悪意をもってとれば、とれなくもない。そこまで意地悪く思っているわけではないけれども。・久保亮五の統計力学 【2011-11-19】久保亮五の『統計力学』というと、多分物理学を学んだ人は彼の『統計力学』(共立出版)を思い出すだろう。だが、ここではその有名な著書のことではない。金曜日に古書でダイアモンド社の「新物理学講座」というシリーズ本を購入した。その中の1冊にこの表題の書があった。この書は100ページそこそこの小冊子なので、統計力学の考え方を中心に書いたとあとがきで書いている。これの3章に気体の拡散について書いてあるが、いままで私がこういうことをなぜ統計力学の書で書かれてないのだろうと思っていたようなことが書いてある。まだ、十分に了解ができてはいないところもあるが、いままでの理解の隙間を埋めてくれるような気がしている。これに近い書き方がされていることを私が知っているのは、和田純夫さんの『熱・統計力学のききどころ』(岩波書店)の第1章のはじめのところである。それにチラッと見たことがあるのは横浜市立大学だったかに居られた都筑さんの著書に私の知りたいことが書いてあったように思う。その書の名は失念したが、森北出版から出された書であったと思う。名著として有名な朝永振一郎の『物理学とはなんだろうか』(岩波新書)の中の熱力学と統計力学の項にもあまりヴィヴィッドには書かれていないことなので、少し欲求不満を起こしそうだった。とはいうものの、「物理学とはなんだろうか」が名著であることは間違いがないが。M大学の薬学部でのリメディアル教育の数年前まで私が担当していた、物理講義でも熱力学については和田さんの本の一部を敷衍して講義をしていたが、あまり私の意図は学生には伝わらなかった。というのはたぶん、私とは熱力学とか統計力学とかでの問題意識が違ったからであろう。私は「なぜ熱は高温から低温に流れるのか」を熱力学のテーマとして取り上げようとしたのだが、これは学生にとっては当然の経験的な事実であるから、それについて説明を必要とするという考え方はなかったに違いない。もちろん、よく知られているように熱力学の範囲では、「系に何も仕事をしないと、熱は高温から低温に流れる」というのは熱力学の第2法則そのものであってその熱力学の範囲では説明できることではない。しかし、熱力学のそういう側面を正面から統計力学の専門家は取り上げないのかと思っていたが、さすがに久保先生はそのことをわかりやすく説明する必要を感じておられたことがわかった。私と同じ問題意識を物理を教えておられる方々が持っているかどうかはわからないが、高校等で熱力学や統計力学を真剣に教えようと思っておられる方には表題の書は役に立つに違いない。図書館等で見てみられることをお勧めしたい。・Boltzmann 因子 【2012-02-16】大学院生の頃だったかN教授のところへ、石原明先生だったか統計力学の専門の先生が来られて、そのときに簡単なBoltzmann 因子の導き方についてのそれほど長くはない話を聞いた気がする。しかし、その頃Boltzmann因子などにまったく関心がなかったので、まったくどのような話だったかは覚えていない。ノートをとっておくべきだったかと今ごろになって思っているが、もう遅すぎる。その後、Feynmanの講義録でBoltzmann因子とかBoltzmann分布に感心した覚えがある。そしてそのFeynmanの知見を私の講義のネタの一つにしていたとはこのブログで書いたことがある。昨日、インターネットで検索してみたら、日本語のサイトではBoltzmann因子という項目では検索にはかからなかったが、Boltzmann分布ではかなりの数のサイトがあった。だが、英語ではさすがにBoltzmann Factorという語が検索にかかった。私はこのfactorとか因子という語とか概念が大切であるという気がしている。普通にBoltzmann分布となるには正規化の定数が必要になるが、これは後から計算で決めてやればよい。大切なのはこのBoltzmann因子である。もちろん、この正規化定数を決めるためには積分するとか和をとることが必要であるが、それはある数学的な手続き(*)をとれば、比較的簡単に決められるというようなことをエッセイに書こうと思っている。(*) 被積分関数中に現れるパラメーターで微分して積分値を求める方法定年退職の前の数年、熱力学を教えることになって、それを担当したが、そのときに「Boltzmann因子が大事なのだよ」と講義した。そのことをノートに書いてあるので、それをエッセイを書いておこうとしているが、そのためにはまたFeynmanの講義録を読み返したい。だが、その気持ちがそのうちにその気が失せてしまうかもしれない。・Yangの新しい論文 【2012-02-17】C.N. Yangは1922年の生まれというからもう今年には90歳になるが、最近、物理の歴史についての論文を書いた。それがInternational Journal of Modern Physics Aの最近号に出ている。これはFermiのベータ崩壊の理論について書いたものでとても面白かった。Yangは1970年代のあるときにWignerにあって、「Fermiの一番優れた仕事(研究)は何か」と尋ねたら、即座にそれはベータ崩壊の理論だとWignerから言われた。Yangはベータ崩壊の理論がFermiの重要な業績であることには同意したが、それでもその頃にはすでにGlashow-Salam-Weinbergの電弱理論で、Fermiのベータ崩壊の理論は今から見ると過渡的な理論であったことがわかったので、Wignerの意見には心底からは同意できなかったらしい。それでそういうことを趣旨のことをWignerに言った。そうすると、そのときにWignerはこのFermiのベータ崩壊の理論は当時の物理学者たちに与えた衝撃の大きさを語った。それでこの感覚のジネレーション・ギャップを埋める話をこの論文に書いている。そしてやはりWignerのいうことが正しかったという。そのYangの言い分を正しくわかってもらうには彼の論文を読んでもらうのがよい。ここで私が下手な要約をするよりは。さらに、それに加えてYangらしさがこの論文の末尾に出ている。それはP. Jordanの業績の評価である。Jordanは量子力学に重要な寄与をしただけではなく、場の量子論にも重要な寄与をしたのに正当に評価されていないという。現在ではJordanの評価が正しくなされなかったのはJordanがナチを政治的に支持したことによるものだということが言われており、このブログでもそのことがインタネットのサイトで言われているといつか述べたことがある。科学者の政治的な立場はその業績の科学的評価にも及ぶ。しかし、Yangはそのことにはあまり賛成ではなく、評価をすべきは評価すべきだと考えたらしい。他にもYangはOppenheimerのblack holeやneutron starの研究業績を評価していることやDysonが量子電気力学の研究でノーベル賞をもらえなかったことは、ノーベル賞は3人以内という内規があるとはいえ、残念だと他のところで述べている。・「素粒子論研究」終刊号 【2012-02-28 】昨日、帰宅すると部厚い郵便物が「素粒子論研究」編集部から届いていた。やけに厚いのでなんだろうと思ってその封を開けてみたら、3冊の「素粒子論研究」終刊号119号が入っていた。夕食後にはテレビを見ないでこの3冊を読んだ。私たちが発行している『数学・物理通信』をご自分のサイトにリンクしてくださっている、名古屋大学の谷村省吾さんの書いた「ハイゼンベルク方程式はハイゼンベルクがはじめて書いたわけではない」というおもしろい題のエッセイは、実におもしろかった。実際の科学と後世の一般的な流布されていることはまったく違うことがわかる。だから、その事実を忘れないようにしようというのが谷村さんの言いたいことらしかった。先日読んだYangの論文でもその時代に生きた人たちと後世の人たちとの受け取り方のずれを問題にしていた。旧知の物理学者Kさんは素粒子論研究の編集長もされた方だが、「素粒子論研究」の65年を振り返っておられた。その中に私がまとめた『武谷三男博士の業績リスト』と『武谷三男博士の著作目録』にも言及されており、その資料の作成者としてはうれしかった。Kさんは「素粒子論研究」は最後には280部くらいの発行部数であり、素粒子論グループのメンバー数からいうとあまりメンバーから注目を集めなかったというが、それでも興味深い記事がなかったわけではないという。今後は「素粒子論研究」電子版が存続するが、冊子体の「素粒子論研究」は119号で終わりとなった。名残惜しいがしかたがあるまい。最後の編集長となった笹倉さん、事務的な業務行った野坂さん有難うございました。・遠山啓と武谷三男2 【2012-03-08】前に「遠山啓と武谷三男」という題でブログを書いたことがあるので、今回は「その2」とする。私が「日本の古本屋」古本の出品をときどきチェックしている人に武谷三男と遠山啓がいる。そのチェックに最近引っかかったのが、岩波のPR誌「図書」の遠山についての記事(2009年11月号)で、仕事場の書棚を見に行ったら、その当該号があった。それは野崎昭弘さんの「遠山啓と数学教育」というテーマのエッセイであった。これは前に多分読んだのだと思うが、読んだ記憶が残っていなかった。2009年は遠山の生誕100年であった。それで岩波書店が野崎さんにその生誕100年を記念して寄稿をお願いしたのだろう。野崎さんは生前遠山に会ったことはなかったと書いている。電話で多分雑誌「数学セミナー」の原稿を遠山さんから頼まれたらしいが、数値計算のことに関係していたので、専門ではないからと断ったと書いている。(注: 遠山さんと矢野健太郎氏とは雑誌「数学セミナー」の共同編集人であった)その後、野崎さんが数学教育協議会の委員長を引き受けたから、面識があったかと思ったがそうではなかったらしい。私は野崎さんのような有名人物ではないし、二人きりで遠山さんに会ったことはないが、松山で数教協の全国大会があったときに松山市民会館での講演を聞きに行った。講演の後で、遠山さんに質問までした。そのときの話は競争原理を教育の分野から追放しようという、遠山さんらしい主張であり、教師は「点眼鏡」をはずそうという趣旨の話であった。そのころは私はまだ数学教育にはそれほど関心がなかった。これは1978年のことではなかったかと思う。この次の年の1979年に70歳で遠山さんは意外に早く亡くなった。その後、私は1985年くらいから教育への関心が大きくなってきて、愛媛県の数学教育協議会の学習会に顔を出すようになった。もっとも熱心な出席者ではなく、気が向いて時間がとれるときという制限がある。武谷についてだが、1965年だったか私が大学院生のころにO教授から「誰が集中講義に来てほしいか」といわれて「武谷さんはどうですか」と言ったら、その意見が取り入れられて、立教大学から集中講義に来られた。「物理学の方法論」という題の講義だったが、実際にされたのは「ケプラーがどうやって火星の軌道を決めたか」という話であり、あまり方法論とはとかいうような大上段にかぶった話ではなかった。その直後くらいに、「科学入門」(勁草文庫)が出されたが、そのPRもさりげなくされたと思う。つぎに、武谷さんを見かけたのはその後1968年の夏だったか、それとも、もう秋だったかに京都大学の基礎物理学研究所に研究会か何かで来られているのを基礎研の共同利用事務室で見かけた。白いワイシャツの袖を腕まくりしており、そのアンダーシャツが長袖でいかにもアンバランスだったのを覚えている。50年くらい昔はワイシャツは長袖で夏になると、腕まくりして半袖風に折り返して着るというのが粋という感じだった。今では夏には半袖のシャツを着るのが普通になっているが。私などは武谷さんとは親子ほど歳が違うのでもう大学院を出る頃には半袖のシャツを着ていた。遠山も武谷も学校嫌いだったということは前に書いたし、文学好きであることも書いた。遠山は将棋が好きであり、将棋をよくしたらしい。一方、武谷は文学のみならず、音楽にも絵画や彫刻、演劇にもなかなか造詣が深かったらしい。伝記的な材料としては武谷は自分の小さい頃からのことや研究についても回顧録が出ており、材料に事欠かないのだが、人間的にも魅力的だとの見方は、特に女性からされていたらしい。武谷がご家族からどう思われていたかはわからないが、鶴見俊輔さんによれば武谷さんのそういう側面を非常に好んでいた人がおられることは間違いがない。ただ、物理学者の間ではその同僚たちに対して武谷が研究上で批判が厳しかったことから、かつて長期間グループを組んで研究をしていた方々からは反感があっただろうということは想像に難くなく、その点で武谷の評価はそう単純ではない(もちろん、これらの研究者の方々からは武谷に対する反感の声は直接には記録に残るように語られてはいないが)。もっとも晩年に武谷と研究を共にされたN教授とかF教授はその範疇には入らないであろう。彼の伝記を書きたいなどと私が言ったとき、哲学者の鶴見俊輔さんはいまにでもそういう武谷ファンの女性を紹介してくれそうだったが、なかなかその気になれなくて鶴見さんのご好意を無にしている。遠山と武谷は共に九州出身であり(2024.9.21注)、遠山は幼少時には朝鮮に住んでいたが、父親の死後に熊本に帰り、その後、福岡で旧制高校に行った。武谷は小学校から高校までを台湾で過ごして、大学は京都大学に入った。一方、遠山は東京大学の数学科に入ったが、ある事情で退学をして、数年後に東北大学数学科に入りなおし、そこを卒業した。二人とも東京に住んだが、権力に反骨で、体制に批判的な人生を送った。(2012.3.9 付記) 上で遠山が東大を退学したのを「ある事情」とのみ書いたが、もうその事情をここで書いてもいいだろう。その当時の東大の数学科の試験で自分の教えた通りに解答を書かないと単位を出さないという教授がおられて、そのことは先輩から聞いて遠山は知っていたのだが、思わず試験のときに自分流の解答を書いてしまったらしい。その科目は必須科目であったから、あと何年数学科に在学しても卒業できないので、その教授の定年の年に退学をしたという。退学をするときに尊敬していた高木貞治教授には「退学します」という挨拶に行ったとはどこかで読んだ。また、その合格させなかった教授のイニシャルは高木さんと同じTであることはわかっている。遠山が東大嫌いであったかどうかは知らないが、そういういきさつがある(2023.11.23 注)。ちなみに湯川秀樹博士の自伝『旅人』(朝日新聞社)に高校で、先生の教えた通りに解答しなかったために、その解答が間違っていたわけでないのにバツにされて、立体解析幾何学の点数が60点代だったことがあるという記述があった。湯川博士が数学者にならなかったのはそのせいもあるかと思われる。(2015.11.28注) 遠山は熊本県が父親の郷里だが、武谷は山口県光市が父親の郷里だという。坂田昌一の祖先の郷里は山口県の柳井市だったらしい。少なくとも坂田のお墓は柳井市にあるという。(2020.12.4付記) 個人的には光市に行ったことはないが、大学時代の親友の出身地がこの光市であり、この親友は若くして亡くなってしまったが、光市と聞くと妙に懐かしく感じる。この光市も私の出身地の今治と同じく海岸の清松白砂がいいらしい。これは若くして亡くなった親友のH君の言であった。(2023.11.23 注)上に「合格させなかった教授のイニシャルは高木さんと同じTであることはわかっている」と書いたが、これはまちがっているのかもしれない。遠山さんには坂井という教授のことを書いたエッセイがあり、この教授のご機嫌を損ねたことがこれほど祟るとは思わなかったと書いた文章がある。(2024.9.21注) 上に武谷は九州の出身と書いた。福岡県大牟田市で生まれたことは事実だが、武谷の両親は現在の山口県光市の出身である。・Pauliの行列の導入 【2012-03-19 】先週の火曜日に京都産業大学の名誉教授のSさんの講演が愛媛大学であり、彼の新しい構想の理論を聞いた。その中味の正否はすぐにはなんともいえないが、ちょっとした壮大な構想の理論であった。その話のいとぐちとして話をされたx^{2}+y^{2}+z^{2}の因数分解からPauliの行列がごく自然に導入されることが印象的だった。これはSさんの話の単にほんのいとぐちの話題にすぎなかったのだが、私自身はどういう風にPauliのスピン行列を導入するかにいままで関心をもったことはなかったので、新鮮な感じがした。これについてはいつか因数分解というテーマで数学エッセイを書いてみたいと思う。このx^[2}+y^{2}+z^{2}の因数分解ほど高尚なことではないが、私の子どもが大学の理工系学科の卒業生であるのにx^{3}-1の因数分解の公式を忘れてしまっていたという話を昨日聞いた。それで、今朝起きてから、もしこの公式を忘れてしまったら、どう対応したらいいかという数学エッセイの草稿を書いた。すぐに思いつくx^{3}-1の因数分解を求める方法は因数定理を使うことであろう。f(x)=x^{3}-1とするときx=1をf(x)に代入するとf(1)=0であるので、x-1という因数があることはすぐにわかる。したがって、x^{3}-1をx-1で代数的に割る演算を行えば、x^{3}-1=(x-1)(x^{2}+x+1)と因数分解できることはすぐにわかる。割る算を直接しなくても、x^{3}-1をx-1で割ればその商は2次式であるから、その2次式を仮定して未定係数法で決めてもよい。そのような内容を数学エッセイの草稿に書いた。しかし、私の子どもはこの因数定理を忘れていたのであろう。おいおい、高校の数学も身についていなかったのか。よく大学の理工系学部に合格したものだったな。(2012.3.21付記)Pauli行列 \sigma は物理を学んだ人は大抵知っている2行2列の行列である。京産大のSさんの話のPauli行列の話は結局x^{2}+y^{2}+z^[2}=(x \sigma_{x}+y \sigma_{y}+z \sigma_{z])^{2}となるような \sigma_{x}, \sigma_{y}, \sigma_{z} を求めることであり、\sigma_{x}^{2}=1, etcとか \sigma_{x}\sigma\{y}+\sigma\{y}+\sigma_{x}=0であるような \sigma行列を求めることであり、よく知られたPauli行列は確かにこのような関係を満たしている。かつ\sigma_{x}\sigma\{y}-\sigma\{y}-\sigma_{x}=2i \sigma_{z}のような交換関係も成り立つ。このような代数をClifford代数という。いつだったかDirac方程式に出てくる、\gamma _{\mu}等の満たす代数がClifford代数の例であると理化学辞典を調べて書いたが、Pauliの行列もCliford代数の例であることを知った。あのときに \gamma 行列以外にClifford代数の例を知りたいと書いたが、その解答はPauli行列であった。どうもClifford代数と聞くと難しいという印象をもつが、x^{2}+y^{2}+z^[2}=(x \sigma_{x}+y \sigma_{y}+z \sigma_{z])^{2}を満たすような代数だと知れば、それほど恐ろしくはなくなる。どうしてこのような数学の教え方があまりされないのであろうか。それとも私が知らないだけなのか。・ライフログ 【2012-04-11】先日、NHKのクローズアップ現代でライフログというのが流行っているという現象を取り上げていた。ほとんど時々刻々の自分の生活の記録をとる人が増えているという。「なんとせわしいことよ」と思う私は古代人であろうか。そういえば、40年以上昔に知り合った、化学者のある先生は日記をつけるのを日課としていて、いつも日記帳を携帯しており、彼が当時滞在していた、イギリスのバーミンガムから彼の家族と共に当時私たちの住んでいたマインツにやって来たときに愛用の日記帳を携えていた。とはいっても彼は別にイギリス人ではなく、日本人でそれも私の勤めていた大学の学部は違うが、先生であった。そして彼からゲッチンゲンを訪れたという話を聞いた。それはそこが量子力学発祥の地であるからということであった。そこで、彼は核分裂反応の発見者のオットー・ハーンの墓を訪れたと話してくれた。それまで私は大学工学部で8年近く量子力学を教えていたが、在独中にゲッチンゲンに行ってみようという気はあまりなかった。それがこのK先生の話を聞いて一度はそこを訪ねたいと思った。その後、今度は逆に8月の終わりに一家でバーミンガムの彼の家を訪問したが、そのときはまだゲッチンゲンには行っていなかった。ゲッチンゲンが私に親しくなかったわけではない。学生のころにロベルト・ユンクの「千の太陽よりも明るく」の翻訳が出版されて、それをはじめ妹が大学の図書館から借りて来たのだったか、それを読んで自分でもその翻訳本を手に入れて読んだ。これは本当に心躍る物語であった。いまでもこの本の翻訳を文庫で読むことができる。ユンクはジャーナリストであり、小説家でないが、多分この書が彼の最高傑作であろう。原子爆弾へと到る原子物理学の発展の人間ドラマをまた、その地ゲッチンゲンを生き生きと描いていた。私たちが実際にゲッチンゲンを訪れたのは1976年12月のクリスマスの後の雪の季節であった。そしてそのときの記念として市の中心街で買ったゲッチンゲンの市街図は鮮明だったそのオレンジの色はあせてしまっているが、私の仕事場に架かっている。・外村彰氏の死 【2012-05-03 】物理学の分野で大きな業績を上げられた外村(とのむら)さんが亡くなられたと新聞で知った。ノーベル賞候補になっていたほどの研究者で、もしもっと長生きができれば、ノーベル賞を受賞できた可能性は大きかった。彼はBohm-Aharanov効果(普通にはA-B効果という)の実験的な検証で有名である。A-B効果は磁場を感じるのは磁束密度Bではなく、ベクトルポテンシャルAであるということを理論的に主張したものであったが、その効果を実験的検証したことで知られる。有名なFeynmanの講義録にもこのAB効果の話はでてくる。日本の企業である、日立で行われたこの研究は日立で研究開発された電子線ホログラフィーの技術を用いたもので、優れたものであったらしい。日立は彼のノーベル賞受賞を後押しするために量子力学の国際会議まで主宰したが、彼の受賞には間に合わなかった。残念である。最近は日本人のノーベル受賞者がたくさん出ているが、彼もその候補の一人と言ってよかったと思う。もっとも日立からノーベル賞をもらうような研究が出たからといって、日立全体が優れた企業であり、その製品が優れたものであるかどうかは別問題として個別に検討すべきことであろうが、それでも企業イメージがとても上がることは請け合いであろう。外村さんは亡くなったが、彼は数冊の著書を遺しており、私もそれらの全部ではないが、何冊かをもっている。量子力学の本としては『目で見る美しい量子力学」(サイエンス社)というのがある。この本は量子力学の本としてはとてもめずらしく、数式は最小限度で写真とか図が多いという量子力学の書である。私もいつか量子力学の書を著すことがあれば、外村さんの写真を提供してもらいたいと考えていた(そういう機会があるかは別として)。私自身は外村さんにはついに面識はなかったが、優れた実験物理の研究者を日本は失った。・四元数と線形代数 【2012-05-07】Hamiltonが考えだした、四元数は線形代数の源をつくった。ところがHamiltonが自分の見出した非交換の代数系の発見をあまりに重要と考えすぎたために四元数にこだわりすぎて、細かな発見はあったが、大きな線形代数という流れをつくることができなかった。これはたとえば、森毅氏の「数学の歴史」にも書かれている。そのどこが線形代数に受け継がれ、非交換であることよりも重要であったことは何かを書いたものはないかと探していた。先週の土曜日に市中のジュンク堂書店に行って、カッツの「数学の歴史」を立ち読みしたら、四元数の積から出てきたスカラー積とベクトル積がむしろ重要なのであり、その他のことはあまり有用ではないということを後の数学者は悟って、それでいわゆるベクトル解析がギッブスとかヘビサイドによってつくられたのだとあった。Croweの書いた、A History of Vector Analysis (Dover)という書もあるので、それを読めばいろいろなことがわかるのであろうが、どうもやはり英語を読むのは日本語を読むほどには早く読めないので、難渋している。Stillwellの「数学の歴史」(朝倉書店)の多元数の章は四元数のことを書いてあり、私も読んではじめて知ったこともあったが、これには四元数はテンソル解析にその思想が受け継がれたと書いてあった。どの数学の歴史の書物にもHamiltonが非交換の代数系をあまりに過大に評価して、彼の後半生をその発展に尽くしたことには批判的である。それは後世から見るとそういうことが言えるのだろうが、その渦中におり、人類の歴史上ではじめて非交換の代数系を発見したHamiltonにそのことを要求することはかなり過酷な要求でもあろう。そのいきさつを詳しく知ることとか、線形代数の出てきたいきさつとか、そのどこがキーポイントであったかということを知りたいと思っている。私には出来上がった線形代数そのものよりもそういういきさつの方が関心がある。いまの数学のテキストはあまりに天下りでその理論の形成過程をダイナミックに伝えるという風ではないことが不満である。しかし、これは詳細な数学史の研究に私が関心があるということを意味してはいないから、なかなか他人からは理解してもらえないだろう。・『千の太陽よりも明るく』 【2012-07-11】ロベルト・ユンクの『千の太陽よりも明るく』(Heller als tausend Sonnen)は優れたノンフィクションである。いまは平凡社ライブラリーに入っているが、私が学生のときに読んだときは文芸春秋社から発行されていた。ロベルト・ユンクはスイスのジャーナリストだと思っていたが、ベルリン生まれであり、もとはドイツ人である。だから、ナチスに迫害を受けて、ドイツから亡命したジャーナリストである。この本はいうまでもなく、原爆の製造や開発へと向った、物理学者を主とした原子科学者の運命というか歴史を回顧した優れた読み物である。だが、それをどれくらい多くの日本人が読んでいるのかとなると心細くなる。本当は多くの人に読んでもらいたい書である。学生のときに、これを一日か二日かけて勉強をほったらかして、息も切らせず読んだ覚えがある。ところがこの書を推奨するとかいった人を書物や雑誌の中で見かけたことがない。現在の平凡社ライブラリーでも、1,600円の定価なので、そんなに価格が安い訳ではない。だが、それでも本当は多くの人に読んでほしいと願っている。最近、妻が市民劇場の演劇で「東京原子核クラブ」という理研の仁科芳雄グループに集った人たちを巡るドラマを見てきた。その内容を聞いたわけではないが、それなりに興味深い演劇であったはずだ。これは日本でも原爆をつくろうとしたグル-プがあったとか、朝永振一郎氏とその近傍の人を巡るドラマである。そういえば、『千の太陽よりも明るく』にも記述があったと思うが、2次世界大戦中にコペンハーゲンのボーアのところへドイツのハイゼンベルクが訪ねるという話がある。その議論の主題は原爆の製造を巡るものであり、2000年前後だったかに、史劇「コペンハーゲン」というドラマとなった。これは「原爆の開発を世界の戦争をしている連合国と枢軸国との両方共にしないように」とのハイゼンベルクがボーアに申し出をするためにコペンハーゲンを訪れたと言われているが、そのときナチにその意図を悟られないにようにとハイゼンベルクは表現をとても曖昧にしたので、その意図はまったく通じなかったという。ボーアはハイゼンベルクが「原爆の開発をする許可を求めに来た」と思ってしまった。戦後も家族や親族をナチスの強制収容所のガス室で亡くした、ヨーロッパからアメリカに亡命していた科学者を含めた多くの人たちはドイツに残った、これらの科学者をナチスに協力をした咎で容易に許しはしなかった。それらのうちの幾分かは単なる誤解であったのかもしれないとしても。日本ではドイツほど原爆の開発の可能性は高くなかったので、それほど問題にはならなかったが、それでもそういう日本の原爆開発の事情を書いた本も英語とかでは出版されているらしい。現在ではなかなか『千の太陽よりも明るく』は手に入りにくいかもしれないが、まだ読まれてない方にはぜひ一読をお勧めしたい。私も最近書棚から取り出してきて、再読を始めたところである。FacebookXBlueskyHatenaCopy
2025年8月6日2025年8月6日に投稿 投稿者 元)新人監督 — コメントを残すPapers about Fermi @ 2023 フェルミ 22023-02-21 13:31:17 | 物理学これは「技術と科学の歴史を考える」というタイトルの講義の後半を私が担当したときの「原爆製造と原子核物理学」というサブタイトルの講義の中の人物評伝の一部のエンリコ・フェルミの後半である。Fermiの講義録である『原子核物理学』は内容が少し古くなってきたが、原著はシカゴ大学出版局から、訳書は吉岡書店からいまも出版されており、読者に読み継がれている。日本版の訳者小林稔氏(京都大学名誉教授、故人)は訳者まえがきでつぎのように述べている。「イタリヤの生んだ鬼才Enrico Fermi教授はいうまでもなく原子核物理学の第一人者であり、人類が第二の火、すなわち、原子力を発見したのも主として彼の研究に負うものであって、彼は歴史上永久に名をとどめる数少ない物理学者の一人であることは疑いのないところである。 Fermi教授は実験及び理論の両方面に卓越した才能をもち、その業績も有名なフェルミ統計、べータ線崩壊の理論、量子電磁気学など理論的なものから、中性子衝撃による人工放射能、遅い中性子の選択吸収、さらに原子力解放の緒となった核分裂の現象、その連鎖反応など行くとして可ならざるものはなく、しかもいずれも物理学の根本問題を衝き、その自然認識の深さの非凡さは驚嘆のほかない。イタリヤにおいては僅かの放射性物質とパラフィンのみの実験室でよく世界の原子核研究に伍し、中性子の性質の探求にあざやかな業績を挙げており、アメリカに移ってからはまさに鬼に金棒、現在もシカゴ大学の大サイクロトロンを主宰し、有能な同僚や弟子たちと共に原子核研究の推進に非凡の精力を注いでいる」これはFermiが亡くなる直前に書かれた彼のプロフィールである。ここにはFermiの業績についてほとんどあますところはない。しかし、Fermiの教育上の業績についてはまったく触れられていない。この点についてはFermiの優れた弟子の一人で、ノーベル賞物理学受賞者のC. N. Yangの文章から引用しておこう。(引用はじめ)「よく知られているように、Fermiは水際立ったすばらしい講義をした。これは彼の特徴的なやり方であるが、それぞれの題目について彼はいつでも、最初のところから出発して、単純な例をとりあげ、できるだけ「形式主義」を避けた(彼はよく込み入った理論形式は「えらいお坊さま」のものだと冗談をいった)。彼の論証は非常にすっきりしているので、ちっとも努力をしていない印象を与えた。しかし、この印象はまちがっている。すっきりしているのは、注意深い準備、いろいろの異なった表現の仕方のうちでどれを選ぶかを慎重に考慮した結果のためであった。・・・週に1~2回、大学院生のために非公式の、準備なしの講義をしてくれるのがFermiの習慣だった。グループは彼の部屋に集まり、Fermi 自身か、ときには学生の誰かが、その日の討論のために特別な題目を提起した。Fermi は、綿密に見出しのついた自分のノートを探し回って、その題目に関するノートを見つけ出し、われわれに講義してくれるのだった。・・・討論は初歩的水準に保たれた。題目の本質的、実質的部分が強調された。大抵いつも、分析的でなく、直観的、幾何学的な取り組みであった」(引用終わり)(2024.3.1付記)ここにFermiの特質が述べられていて、あますところがない感じである。そういえば、これを書いたYangはまだ中国で健在なのだろうか。ひょっとして100歳を越えているか、または、100歳にとても近いかのどちらかであろう。FacebookXBlueskyHatenaCopy