google-site-verification: google6492d514db4d4540.html
に投稿 コメントを残す

ジョン・A・フレミング
【マクスウェルの弟子は真空管を発明しました】-12/28改定

こんにちはコウジです。
半年ごとの既存記事見直しの作業です。
今回は中世19世紀に概念・手法を確立していった偉人を紹介します。
では、ご覧ください。内容を整理し、リンクを見直しました。
現時点での英訳も考えています。
(以下原稿です)

ミルスペック真空管
【スポンサーリンク】

ジョン・A・フレミング【1849年11月29日 ~ 1945年4月18日】

マクスウェル仕込みのフレミング

まず、イギリスに生まれたフレミングはケンブリッジで

マクスウェルの師事を受けました。フレミング曰く、

マクスウェルの講義は

「逆説的で暗示的な言い方」(Wikipediaより引用)

を含んでいて非常に分かり辛くて不明瞭であったそうです。

当然、そんな講義は学生に不人気で時には

講義を聴いていたのはフレミング一人の時もあったそうです。

物理屋さんにありがちな、とぼけた類のエピソードですね。

酷いと言えば酷い話です。こんな人達。でも、大事。

 

フレミングの業績

フレミングは左手の法則で有名です。簡単に言えば

「左手で直交3軸を作った時に、長い指から・
電(でん)・磁(じ)・力(りょく)です。

より、細かく説明すると磁場中に電気が流れていると

その電気導線に対して力が生じます。

フレミングは「左手の法則」でよく知られています。
モーターの回転原理を、**電流(親指)・磁場(人差し指)・力(中指)**の三方向で直感的に示す整理法です。
一方で「F = q(v × B)」は、磁場中を運動する荷電粒子に働く力(ローレンツ力)を表す物理式で、左手の法則とは関連しますが、厳密には別の概念です。
読み物としては高校で習う式を無理に並べるより、「電流と磁場が交わると力が生まれる」という直感を重視した方が理解がスムーズかもしれません。

電(でん)・磁(じ)・力(りょく)をそれぞれ
q(でん)・B(じ)・F(りょく)で考えて

荷電粒子の速度をvとすると、

外積:×を使ってF=q(v×B) です。

高校レベルの天下り的な覚え方ですが、
現象として実験事実に即していると考えると
非常に洗練された結果であるとも言えますね。

フレミングは実験で自然界から事実をひき出しています。

また、真空管の発明者としても有名です。
今日の電子工学の始まりだとも言われています。
工学の世界で色々な発明を重ねました。そんなフレミングは
子供にこそ恵まれませんでしたが2度の結婚をして、
アメリカテレビジョン学会の初代会長を務めたりしながら
余生を過ごしました。原稿改定の際に気付いたのですが、
晩年ナイトの叙されています。更には
IEEE(アイ・トリプル・イィ)の前身団体で
評価を受けています。
そんな昔話でした。

 

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2020/09/23_初稿投稿
2025/12/28_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連
電磁気関係

AIでの考察(参考)

(2021年9月時点での対応英訳)

Fleming prepared by Maxwell

First, born in England, Fleming studied at Maxwell in Cambridge. According to Fleming, lecture of Maxwell’s lecture was very confusing and unclear, including “paradoxical and suggestive language” (quoted from Wikipedia). Naturally, such lectures were quite unpopular with students, and it seems that Fleming was the only one who sometimes listened to the lectures. It’s a kind of blurry episode that is common in physicists. It is a surely terrible story.

Fleming’s achievements

Fleming is famous for his left-hand rule. Simply put, “When you make three orthogonal axes with your left hand, it is from a long finger, electricity, magnetism, and force. To explain it in more detail, electricity flows in the magnetic field. If so, a force will be generated on the electric conductor.

Considering electricity, magnetism, and force in q (electrivity), B (magnetism), and F (force), respectively, and letting the velocity of the charged particle be v, the outer product: F = q (v × B) using ×. It’s an AMAKUDARI way of remembering at the high school level, but it can be said that it is a very sophisticated result considering that it is in line with the experimental facts as a phenomenon.

Fleming is also famous as the inventor of vacuum tubes. He is said to be the beginning of today’s electronics. He made various inventions in the engineering world. Fleming wasn’t blessed with children, but he got married twice and spent the rest of his life as the first president of the American Television Society.

に投稿 コメントを残す

皆知っている発明家T・A・エジソン
【実は「99%の汗と1%の才能」の人】-12/27改定

こんにちはコウジです。
半年ごとの既存記事見直しの作業です。
今回は中世19世紀に概念・手法を確立していった偉人を紹介します。
では、ご覧ください。内容を整理し、リンクを見直しました。
現時点での英訳も考えています。
(以下原稿です)

世界の伝記_エジソン
【スポンサーリンク】

Thomas Edison2.jpg”
1900年頃のスタジオ撮影写真
Public Domain:WikipediaCommons

アメリカ育ちのエジソン

エジソンはアメリカの発明家です。彼の逸話を聞くと、

閃きの喜びとか達成時の感動が沸き起こります。

エジソンの発明品は蓄音器、電灯、活動写真と

多岐にわたります。研究所はニュージャージの

メンロパークにありました。その街は

今では有名な発明家であったエジソンにちなんで

街の名前がエジソンと改名されている程です。

また、個人的な話になり恐縮ですが、

初めて私が買ったCDが

ボン・ジョビの「New Jersey」でした。

何となく私が想像してた同州の楽しそうで

何かを生み出す活気のある雰囲気は

エジソンが研究所を構え、活動する中で

生まれた部分もあったのですね。きっと。

そんなエジソンは幼少時代から苦労を重ねています。
彼が残した有名の言葉を改めて書き下します。

「天才は99%の汗と1%の才能(で出来ている)」

睡眠時間を削り、時に発想に浸り現実を忘れ
次から次へと発明を繰り返しました。図書館に籠り
独学で色々なことを学び正規の教育を受けずに
試行錯誤を繰り返します。例えば算数で「1+1=2」
と教わっても「二つの粘土を混ぜた時に一つになるのに
何故この場合は1ではなく2なのか??」という視点
を持ち反論しています。こんな話が語りつかれている
自体がいかにもアメリカ的なのかな?と思いますが、
思考の柔軟性を保ち続ける為には
必要な吟味であるとも言えます。

 

発明家エジソン

その後、投票記録機や株式相場表示機を発明し、
ベルが発明した電話については感度を大幅に高める
カーボン送話器 を発明して改良しました。
さらに蓄音機、白熱電球など、次々と実用的な技術を世に送り出しました。

蓄音機を世間に広めた時は

「機械の中に人が居るわけがない!」と

驚きの反論を受けたほどです。

晩年は会社経営から身を引き、

霊界との交信が出来るか、といった

関心を持ち試行錯誤していました。

多くを残して84歳で亡くなっています。

まさに語り継がれ続けている偉人です。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/17_初版投稿
2025/12/27_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関連のご紹介へ
力学関係
電磁気関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年9月時点での対応英訳)

Edison raised in the United States

Edison is an American inventor. Listening to his anecdotes gives rise to the joy of inspiration and the excitement of achieving it. Edison’s inventions range from gramophones, lamps, and activity photographs. His laboratory was in Menlo Park, New Jersey. Personally, I’m sorry to say that the first CD I bought was Bon Jovi’s “New Jersey.” Somehow, the lively atmosphere that I imagined in the state that seems to be fun and creates something was born while Edison set up a research institute and was active. surely. Edison has been struggling since he was a child. He rewrites his famous words he left behind.

“Genius is 99% sweat and 1% talent (made of)”

He cut down on his sleep, sometimes immersing himself in ideas, forgetting reality, and repeating his inventions one after another. He stays in the library, learns various things by himself, and repeats trial and error without receiving formal education. For example, even if I was taught “1 + 1 = 2” in mathematics, I argue with the perspective of “Why is it 2 instead of 1 in this case when two clays are mixed and become one?” Is it really American that such a story is told? However, it can be said that it is a necessary examination to maintain the flexibility of thinking.

Inventor Edison
He then continues his invention with voting machines, stock quotes, telephones, gramophones, incandescent light bulbs. When he spread the gramophone to the world, he was surprised to hear that “there is no one in the machine!” In his later years, he withdrew from company management and was interested in communicating with the spirit world through trial and error. He died at the age of 84, leaving much behind. He is a great man who has been handed down.

に投稿 コメントを残す

100年を迎える東京大学地震研究所(ERI)が築いた地震学とこれからのAI時代

東大

本記事は11/9付の日本経済新聞を起点に記載しています。東京大学地震研究所(ERI)は2025年11月13日で設立から100年を迎えます。1925年の設立以来、関東大震災を教訓に地震予知・観測体制を築き、日本が世界の地震研究を牽引してきました。英国人ジョン・ミルン(JohnMilne)による水平振子式地震計の開発、大森房吉・丸山卓男・津村健四郎らによる地震モーメントやマグニチュード理論の確立など、その歩みは日本科学史の一大軌跡といえます。本稿では、①地震研究100年の歴史、②技術革新、③AI時代の展望という三つの章で構成し、制度と技術の系譜をたどります。


第1章:100年の歴史に刻まれた制度と人

関東大震災(1923年9月1日)を契機に、地震観測と耐震研究を体系化する必要性が高まり、1925年に東京大学地震研究所が誕生しました。以来、ERIは観測網の整備、地震計の改良、断層運動理論の発展を通じて、国際的研究機関としての地位を築きました。

1.1 設立背景と制度整備

震災後、国の学術政策と建築基準が一体化し、地震学の社会的使命が明確化。地震予知研究、気象庁・大学・国立研究所の分業体制が整いました。

1.2 ジョン・ミルン来日から地震学基盤の構築

1876年、英国から招聘されたジョン・ミルンが来日し、世界初の近代的地震観測体制を整備。1880年の横浜地震観測を皮切りに、地震波形記録・震央推定などの方法論を導入しました。

1.3 大森房吉・丸山卓男・津村健四郎らの技術革新

大森房吉(1868–1923)は「地震学の父」と呼ばれ、震源距離と時間差の関係式を導出。丸山卓男(東大地震研)は地震モーメントの理論化で国際的評価を確立。津村健四郎は地震継続時間を基にマグニチュード推定式を改良しました。

【地震研究の主要年表】

出来事関連人物・機関
1876年ジョン・ミルン来日、地震観測開始東京帝国大学
1880年日本地震学会創設ミルン・大森房吉
1923年関東大震災内務省震災予防調査会
1925年東京大学地震研究所設立初代所長 今村明恒
1960年代地震モーメント理論確立丸山卓男
2020年代AI・機械学習を導入した観測解析ERI・JAMSTEC

第2章:技術革新と地震学の転機

地震学の進化は「観測技術」「理論」「応用設計」という三段階で展開されてきました。ジョン・ミルンが水平振子式地震計を開発し、丸山卓男が地震モーメントを定義。こうした発展は、1980年代以降の地震カタログ整備や防災工学に波及しています。

2.1 観測技術の進化 — 地震計から海底観測網へ

地震計は機械式からデジタル式、さらに海底光ファイバー式へ。現在では海洋研究開発機構(JAMSTEC)が展開するDONET・S-netが、リアルタイム地震波を高精度で解析しています。

2.2 理論モデルの深化 — 地震モーメント・マグニチュードの普及

地震の規模を「モーメント」で表す考え方は、1960年代に丸山卓男氏が提唱。その後、カナダのカナメ研究者ハスキンスらとともに国際標準となり、現在のMw表記へと進化しました。

2.3 耐震・社会実装 — 地震防災・建築基準の変化

1981年の建築基準法改正により、耐震設計は「損傷制御型」に転換。ERIの研究成果が防災都市計画、ライフライン設計、自治体のハザード評価などに組み込まれました。


第3章:AI時代の地震研究と未来展望

AIとビッグデータの時代、地震研究も転換期にあります。観測データの自動解析、異常波形の自動検出、AIによる震源推定モデルなど、研究領域が広がっています。ERIでは近年、地震波動場の機械学習解析を用いて、スロー地震の検出精度を高めています。

3.1 AI/機械学習の導入例と研究成果

ERI・東北大・防災科研などが共同で開発した「AI地震波分類システム」は、地震波形を0.1秒単位で自動判別。発生直後の緊急通報制度(EEW)に応用されています。

3.2 国際共同研究・データ共有の潮流

米国USGSや欧州EPOSなどと連携し、データ形式を共通化。AIモデルによる世界規模の震源パターン分析が進んでいます。

3.3 課題と未来像 — AGI時代の地震科学

完全自律型AI(AGI)による地震予測はまだ理論段階ですが、モデル間比較(AGIモデル1号 vs 2号)を通じてリスク推定精度が向上する可能性があります。

【用語解説】

  • 地震モーメント:断層のずれ量と面積を用いて地震の規模を表す物理量。
  • AI地震波解析:機械学習を使い、ノイズと実地震波を自動で判別する技術。
  • DONET/S-net:日本が展開する海底地震観測網。リアルタイム観測を可能にする。

まとめ

東京大学地震研究所100年の歴史は、単なる学術機関の記念ではなく、地震研究が国家・社会・技術の全体を変えた軌跡そのものです。AI時代のいま、観測・理論・防災が再統合されようとしています。100年前に始まった「人命を守る科学」は、これからの100年でも進化を止めないでしょう。

参考文献:
・日本経済新聞(2024年11月9日朝刊)
・東京大学地震研究所公式サイト(ERI
・Nature / Springer / ScienceDirect 各誌掲載論文(Maruyama, T., Tsunemura, K., Kato, S., 2019–2024)

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

【スポンサーリンク】

nowkouji226@gmail.com

2025/11/13_初稿投稿

サイトTOP
時代別(順)のご紹介
17世紀生まれの物理学者
18世紀生まれの物理学者
19世紀生まれの物理学者
20世紀生まれの物理学者

に投稿 コメントを残す

学士院賞をもらった後で 【2021-08-02‗topクォーク_CP破れ 】

(以下は全て引用文章です)2021-08-02 ・

益川さんが学士院賞をもらった後で私の勤めていたE大学工学部に非常勤講師として来てもらったことがあった。

実はその前の年度に来てほしいと要請を研究会に出かけた友人のEさんにことづけしたのだが、その年度はすでに3件の非常勤講師を引き受けていて無理だから、つぎの年は優先して予定に入れておくという話だった。

そしてその約束を次の年度には果たしてくれたのであった。もっともそれは彼と小林さんがノーベル賞を受賞するずっと以前のことである。

たぶんそのころでもいつかはノーベル賞を受賞するのではないかと思われてはいたが、それでもまだ実験的なevidenceがまだだったと思う。

topクォークが発見されたのはそのあと数年してであったと思う。CPの破れの実験的検証とどちらが先だったか。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全てに返事が出来ていませんが
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/11/09_初版投稿

サイトTOP

に投稿 コメントを残す

益川さんが亡くなった 【2021-07-30‗名古屋大学_81歳】

2021-07-30・

先日、Steven Weinbergが亡くなったと書いたばかりだったが、旧知のノーベル賞物理学受賞者の益川敏英さんが亡くなったと知った。

昨夜、ドイツ語のオンラインのクラスの途中で、妻がスマホを見て、教えてくれたので、知っていたが、今日の朝日新聞に大きな写真と共に記事が出ていた。

名古屋大学の大学院生たちだった益川さんたちが大挙して広島の私たちの研究室を訪れたことはまだ昨日のように覚えている。

ほとんど私と同年の人たちであった。みんな、なかなか多士多才の人たちであり、その中でも益川さんはみんなの尊敬を集めているらしいことは分かった。

それから何回か私が名古屋の会議にでかけたときにも、友人たちと帰りにどこかに夕食に誘っ てくれた。

もう何十年もあってはいなかったが、彼は偉くなっても人柄があまり変わるというふうではなかった。それはノーベル賞をもらった後でも変わらなかったと思う。

私よりは1歳年下の81歳だったという。戦争を空襲を受けたという経験で知っている最後の世代だった。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全てに返事が出来ていませんが
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/11/09_初版投稿

サイトTOP

に投稿 コメントを残す

大栗博司さんの本を手に入れた 【2021-07-13_中西襄先生 】

2021-07-13 ・

注文していた大栗博司さんの書いた本を手に入れた。

『探求する精神』(幻冬舎新書)である。朝日新聞の書評で物理学者の須藤靖さんが激賞していた。

大栗さんには個人的な面識はないが、私たちの発行している「数学・物理通信」の送り先の一人である。大栗さんはもちろん京都大学名誉教授の中西襄先生の友人知人の一人であるから、中西先生からの推薦されたメールアドレスに加わっている。

数日はこの本で楽しむことができるであろう。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全てに返事が出来ていませんが
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/11/09_初版投稿

サイトTOP

に投稿 コメントを残す

花粉症 【2021-02-22 ‗Heisenberg_Bornに休暇】

【以下は全て転載内容】2021-02-22 ・

私も典型的な花粉症である。

毎年2月10日前後から鼻がぐずぐずして鼻汁がとても出る。今年は早めに行きつけの内科の医師に処方してもらった薬のおかげかそれほどひどくはないとはいうものの。

もっとも今年は暖かい日もあるので、いずれひどい花粉症の症状に悩まされるであろう。

40歳すぎからの花粉症とのつきあいであり、はじめは花粉症という言葉も知らなかったので、風邪にかかったと思っていた。もっとも熱は出ない風邪だが。

hey feverという語がヨーロッパにはあることをそのころ知ったのだが、これが日本での花粉症にあたるとは知らなかった。

物理学者のハイゼンベルクが若いときからアレルギーに悩まされており、1925年の5月にもひどいHeyfeverにかかった。それでついていた先生のボルンに休暇をもらってHelgoland島に逃避の旅行に出かける。

ここで、ハイゼンベルクは量子力学の端緒となるアイディアをつかんで、それをすぐに論文にまとめる。

これを読んだ先生のボルンはそこで使われた数学が奇妙であることに悩むが、それはボルンが若い大学生のとき数学で学んだマトリックスであることに気がつく。

そして、ハイゼンベルクの論文を発展させる論文を学生のヨルダンと論文を書く。その後休暇から帰ってきたハイゼンベルクと3人でいわゆる三者論文 (drei M”annerarbeit) を書く。これが行列力学と呼ばれた、量子力学のはじまりであった。

これは1925年のことである。年が明けて1926年にはド・ブロイの発想に触発されたシュレディンガーの波動力学と呼ばれた、また別の量子力学の論文が発表されることになる。

天才は数学だって必要とあれば創り出す。ハイゼンベルクは行列の算法をそれが数学としてすでにあるということを、知らずに発明したのであった。

ボルンとかシュレディンガーとかは40歳代であったが、他のハイゼンベルク、ヨルダンとか、また行列力学でも波動力学でもない独自の量子力学を発展させたイギリス人の若い学者ディラックもハイゼンベルクの一年先輩の物理学者パウリもみんな20歳代の前半の研究者であった。

それで量子力学はKnabenphysik(少年の物理学)と呼ばれた。ちなみにKnabenは雅語であり、普通の日常生活で話される言葉としてはKnabenという語は使われない。日常での若者という意味のドイツ語はJungeである。

いうならば、Knabenはゲーテの詩に出てくるような語である。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全てに返事が出来ていませんが
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/11/09_初版投稿

サイトTOP

に投稿 コメントを残す

コンプトン効果を連立方程式の問題にしたら 【2020-12-02_シルビィアの量子力学_ウラン235】

(以下は全て転載内容)2020-12-02・

以前から考えておりながら、なかなか実現しないのが高校数学の連立方程式の練習問題に、コンプトン効果のX線の波長のずれの計算をいれたらどうかと思っている。

これは朝永の『量子力学 I』(みすず書房)にこのテーマが取り上げられており、昔一生懸命計算した覚えがある。

なかなか計算ができなかったと思う。以前に購入していた『シルヴィアの量子力学』(岩波書店)があるのに日曜に気がついて、その個所だけを読んでみた。

面倒そうな式がたくさん出てはいたけれど、それほど難しい計算ではない。どうしてこの問題が難しいと思ったのかはわからない。

どうも数学では単に練習問題として出題される無味乾燥な問題が多いが、物理的にも意味のある演習問題であれば、解く人も身が入るのではなかろうかと思う。実は大学を定年退職した後の2年ほどはそういう方式のe-Learningのコンテンツをつくっていた時期があった(注1)。

このe-Learningのコンテンツは高校程度だが、理系の大学生で落ちこぼれそうになった人を救うという名目でつくっていた。だが、このe-Learningのコンテンツには三角関数が全く入っていないので、そこを何とかしたいと思いながら、まだうまく三角関数の部分が書けていない。

前につくっていた、e-Learningのコンテンツで中性子と原子核との衝突の問題を演習問題として取り上げたことがある。その問題を見て、技術者だった義弟が関心をもってくれた。これは中性子は水の原子と衝突して熱中性子になるための衝突回数だったかに関係している。現在の原発の中性子の減速材としては普通の水を使っている(注2)。

どうも原子力だとかだと今はちょっと時代遅れの技術的な問題であるが、80年前くらいはホットな問題であった。

(注1)これは私が80歳を越えていて、高校生のことを考えてはいないことの反映である。長い老後生活を楽しむために高校数学だって学んだら、興味深いのではないかという気持ちが強いからである。

現役の高校生さん、すみません。現役のときにはこういう楽しさはわからないのは仕方がない。

(注2)普通の水と普通でない水があるのかということだが、重水というのがある。これは陽子の代わりに重陽子D_{2}Oでできた水である。高速中性子の減速材としては普通の水(軽水)よりも中性子の衝突回数が少なく熱中性子になる。それで原子炉の減速材として重要視された(注3)。

第2次世界大戦中にノールウェイに重水工場があったが、ここをナチスドイツが差し押さえたというので原爆開発をし始めるのではないかという恐れをもった連合国がこの重水工場を襲撃するという映画がある。タイトルは「テレマークの要塞」だったと思う。

本当にあった話かどうかは知らない。重水は原爆の材料に直接になることはないと思うが、一般の人は原爆の材料と聞くと納得してしまうところがあるだろう。あくまで原子炉の減速材としての役割だと思う。

もっともその原子炉を動かしてプルトニウム239をつくれば、このプルトニウムは原爆の材料になる。日本でも原子炉がたくさん原発での稼働していたので、プルトニウムが蓄積している。これは原爆の材料となる。それで日本の多量のプルト二ウムの蓄積は国際的には日本は原爆をつくるのではないかと、大いに危険視されている。

(注3)ウラン235は核分裂するが、これは速度がおそい熱中性子といわれるものによる核分裂の断面積が大きい。天然のウランの99.3%はウラン238でこれは核分裂しない。だが、この多量にあるウラン238が中性子を1個吸収してプルトニウム239となると、これは高速の中性子によって核分裂する。

だから、原子炉の中にある一定の割合でプルトニウムを混ぜて高速中性子で核分裂を起こさせることが考えられた。これは普通にはプルサーマルと呼ばれている。

こうして蓄積したプルトニウムを消費しようと試みられている。ところが熱中性子による原子炉の制御に比べて高速中性子による原子炉の制御は難しいと言われており、それで原発への信用度が下がっているのが、現状である。

原発の燃料のウラン235を燃やした(化学反応で燃やす燃焼とはちがう)後の核廃棄物の半減期が数万年とかと言われているので、この核廃棄物を安全に2万年も保管するかということが問題になるのだが、これはまだまったく技術的に解決していない。

特に日本ではどうしたらいいかいいアディアがない。普通に考えられているのは核廃棄物をガラス状に焼結させて、地下深くに貯蔵することである。しかし、その2万年の間にその放射能に汚染された地下水がでて来ないという保証は誰もできない。原発はトイレ無きマンションだと言われる所以である。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全てに返事が出来ていませんが
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/11/09_初版投稿

サイトTOP

に投稿 コメントを残す

小説『カード師』 【2020-06-09‗二重スリット_外村彰】

2020-06-09・

小説『カード師』は朝日新聞に現在連載中の新聞小説である。作者は中村文則さん。

カード師の私の体験を書いている小説だが、ある人の遺書を私が読んでいるというところらしい。

らしいとしか言えないのは私にはちょっと面倒な設定であるので、途中から読むのを諦めたからである。

ところが今日は光とは電子とかの波と粒子の2重性の話が出てくる。これは量子力学をまじめに学ぶ人は一度は聞くテーマである。

いわゆる二重スリットの話といえば、ああ、あの話なのと分かるくらい有名な話である。もっとも一般の人にこの話がどのくらいわかるかはわからない。

朝永振一郎さんのエッセイにこれを簡明に説明したエッセイがあった。「光子の裁判」というタイトルだったか。

光は波と思われていたが、これが粒子性をもつものであることは光電効果かとかCompton効果からわかってきた。それで20世紀初頭にこの光の2重性の解釈に物理学者は苦しむことになる。

古典物理学的に言うと粒子であるものは波動であるとはいえないし、波動であるものは粒子であるとはいえない。だが、量子力学では光とか電子はその両者の性質をもつものとしてとらえる。

それはどういう実験的観測をするかによる。粒子としての位置を測定すると、それは粒子性を示すし、光の運動量をきっちり定めようとする実験をすると波動性が得られる。だったかな?

光は波動でも粒子でもない、両方の性質を併せ持つものであるという理解である。これは古典物理学の範疇ではその両方の特性をあわせもつことなどできないが、量子力学ではそれが可能である。いわゆる弁証的統合的理解が必要である。

いわゆる、2重スリットでは2重スリットのところで光の位置を観測しないかぎり波として振る舞う。ここを通過した後で光を粒子として観測したときにはその過去が変えられるという風に小説では書いてあったが、2重スリットのところでは何の観測もしていないならば、それは波であったのか粒子であったのかは判定することが出来ないという風に考えると理解している。

この話は何十年も量子力学の講義をした来た私にもわからない。

私のいまの理解では波としての性質は確率波として理解しており、1個1個は粒子性をもっているのではないかと思っていたが、それも私の思い込みで観測しないときには光が粒子性をもっていたか波動性をもっていたかは何も確定的にいうことができないというのが公式の見解であろう。

こういう事実を目に見えるように実験してくれたのが亡くなった、外村彰さんであった(注)。

光の粒子は一個一個粒子のようにスクリーン(または写真フィルム)上にやってくるが、それが長時間露光されていると、波動的なふるまいの光の干渉縞が観測される。

(注) 外村彰 『目で見る美しい 量子力学』(サイエンス社)は量子力学のテクストとしてはあまり数式の多くない写真の多いすばらしいテクストである。

特に66-67ぺージの写真が今回の内容と関係している。この本の価格も2,800円とリーゾナブルである。

に投稿 コメントを残す

C. N. Yangの方は 【2020-03-03‗97歳_清華大学】

(以下全て転載内容)2020-03-03・

昨日F. J. Dysonが95歳で亡くったというニュースを書いた。一方、C. N. Yang(楊振寧)の方は現在97歳でまだ生きておられるらしい。

彼は若いときに中国国籍からアメリカ国籍をとったが、2005年にまた中国国籍を再度取得したとインターネットに書いてあった。

奥さんをなくされてか、54歳も年の離れた大学院生と再婚したと話題になったとあった。

Yangには何度か国際会議で見かけたり、大学院時代に当時在学していたH大学のコロキュウム室で会ったことがある。

小さな黒板に散乱論のセミナーの期日が書いてあったので、scattering theoryのセミナーをしているだねとO教授とY助教授にいわれていた(注)。

このときにはイギリス人のKemmerも一緒に来られていたと思う。Yangはきりりとひきしまった顔の人であった。

その後、1年後か2年後に大学院をおえてK大学の研究所で非常勤講師を数か月したが、ここで出会った女性の秘書さんがえらくこのYangさんのファンだと言われていたのが、さもありなんと思った。

Yangは勤勉な研究者であり、hard workerという定評がある。これはアメリカの物理学会というか、物理学者の世界ではよく知られた事実であったらしい。ベンジャミンフランクリンが大好きで、C.N. Franklin Yangという名前をつけておられる。

彼のお父さんは数学者であり、若いときにはアメリカに留学された方であったとか聞いた。

中国が中華人民共和国になった後も清華大学に勤められていたとかで、Yangはときどき人民共和国に帰省したりしており、どちらかといえば、中華民国よりも中華人民共和国寄りであると聞いたことがある。

これは共同研究者で、ノーベル賞の共同受賞者でもあった、T. D. Lee(李政道)が中華民国寄りであるのと対照的であるとか聞いていた。

(注)この訪問後にYangの自著の小さな本を研究室の図書に寄贈するために送ってこられた。こういう細かな配慮がYangが好かれる原因の一つであるのかもしれない。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全てに返事が出来ていませんが
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/11/09_初版投稿

サイトTOP

PAGE TOP