に投稿 コメントを残す

平賀源内
【秩父で鉱山を開設|オランダからエレキテル等を日本人に紹介し啓蒙】‐5/10改訂

こんにちはコウジです。
「平賀源内」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

平賀源内
【スポンサーリンク】
【1728年生まれ ~ 1780年1月24日没】

平賀源内について
少し時代が古いです。平賀源内は江戸時代、
田沼意次が老中を務めていた時代で
多彩な能力を発揮しています。物理学関係に留まらない。
埼玉県秩父市で鉱山開発を行い、
炭焼き、通船の指導を行いました。 

そもそも、平賀源内は讃岐の国に生まれています。
家祖は信濃源氏の平賀氏。平賀氏は武田氏に敗れ、
一度、改姓して源内の時代に平賀姓に復姓しています。

時代考察

 

科学史の観点から平賀源内の時代を考えてみると欧米と日本の時代のずれを感じます。その「ずれ」は大きなものでニュートンがバローからルーカス職を受けたのが1664年、万有引力を定式化したのが1665年であることを思い起こせば西洋と日本の隔たりはとても大きいです。そんな時代には源内は未だ生まれていません。

加えて、平賀源内が「発明」したであろうものの独自性を考えていくと「新規性」という部分が殆ど見受けられません。内容は後述しますが、後世に残して人類の財産と出来るものは作り出せなかったのです。無論、当時の人々には目新しく、庶民に啓蒙をして意識を変えていった業績は大きいです。

だがしかし、「数学」なりの学問体系を整えてはいません。足し算引き算が出来ても「微分。積分」それなあに?って有様でした。教育制度が大きく異なる事情があるのですが、結果は大きく異なるのです。日本ではその後、
数理学の学問体系は数百年間未開のままでした。

平賀源内の業績

 

平賀源内が手掛けた分野は医学、薬学、漢学、

浄瑠璃プロデュース、鉱山の採掘、金属精錬、

オランダ語、細工物の販売、

油絵、俳句と多岐にわたりました。

その一つが「発明」で平賀源内は物理現象の啓蒙に一役買っているのです。所謂、エレキテルの紹介ですね。エレキテルは不思議な箱で内部にガラスによる摩擦起電部と蓄電部を持っています。じつのところ、平賀源内が発明したというよりオランダ製の物を平賀源内が紹介した訳ですが江戸時代の庶民達には摩訶不思議な魔法に見えたでしょうね。

なにより、平賀源内の現象理解は現在の学問体系

とは大きく異なっていたようです。

念の為にコメントしておくと、新しい考えを作り出して発表して他の国の人に内容を問いかけたりする動きは見受けられません。鎖国の時代ですからね。平賀源内の時代から百年以上後に海外の学問理解を学び、自ら論文を書いていき、世界に内容を問いかけるのです。そこまでの道のりは、まだまだ長いのです。平賀源内はそんな時代の先人でした。

そして、
文化的な功績も、そこかしこに残しています。
有名な言葉遊びで「源内が作者であろう」と言われ
ている句があります。それを最後にご紹介します。

「京都三条糸屋の娘 姉は十八・妹は十五
諸国大名弓矢で殺す 糸屋の娘は目で殺す 」

以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2020/09/18_初稿投稿
2025/05/10_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年8月時点での対応英訳)

about GENNAI

It’s a little old story. Hiraga Gennai is demonstrating a variety of abilities during the Edo period and when Tanuma Okitsugu was a senior citizen. It goes beyond physics.

In the first place, Hiraga Gennai was born in Sanuki Province.

His ancestor is Mr. Hiraga of Shinano Genji Family. Mr. Hiraga was defeated by Mr. Takeda, and once changed his name to Hiraga in the Gennai era.

If you think about the times in Hiraga Gennai from the perspective of the history of science, you can feel the difference between the times of Europe, America and Japan. The “deviation” is large, and the gap between the West and Japan is very large, recalling that Newton received the Lucas job from Barrow in 1664 and formulated universal gravitation in 1665. In addition, when considering the uniqueness of what Hiraga Gennai would have “invented,” there is almost no “novelty.” I will explain the contents later, but I could not create something that could be left as a property of humankind for posterity. Of course, it was new to the people at that time, and although it was a great achievement to educate the common people and change their consciousness, it has not prepared an academic system like “mathematics”. Even if addition and subtraction are possible, “differentiation. Integral” What is it? It was like that. There are circumstances where the education system is very different, but the results are very different. In Japan, the academic system of mathematics has remained undeveloped for hundreds of years since then.

Work of GENNAI

Hiraga Gennai’s fields ranged from medicine, pharmacy, Chinese studies, joruri production, mine mining, metal refining, Dutch, craft sales, oil paintings, and haiku.

One of them is “invention”, and Hiraga Gennai plays a role in enlightening physical phenomena. This is the introduction of so-called Elekiter.

Elekiter is a mysterious box that has a glass triboelectric generator and a power storage unit inside. As a matter of fact, Hiraga Gennai introduced a Dutch product rather than an invention by Hiraga Gennai, but it seemed like a mysterious magic to the common people in the Edo period.

Above all, it seems that the understanding of phenomena in Hiraga Gennai was very different from the current academic system.

If you comment just in case, there is no movement to create and announce new ideas and ask people from other countries about the content. More than 100 years after the time of Hiraga Gennai, he learned to understand foreign scholarship, wrote a treatise himself, and asked the world about the content. The road to that point is still long. Hiraga Gennai was a pioneer of that era.

に投稿 コメントを残す

L・オイラー
【失明して単眼の巨人(サイクロプス)と呼ばれ|自然対数を定式化】‐5/9改訂

こんにちはコウジです。
「L・オイラー」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

数学大辞典

【スポンサーリンク】
【1707年4月15日生まれ ~ 1783年9月18日没】

L・オイラーのLはレオンハルトのLです。

オイラーの業績 

スイスのオイラーは当時の18世紀の数学界の中心人物でした。その後の世に数学が厳密になっていく一方で、モデルが洗練されていくのですが、それを使いこなす為の基礎を固めたのです。その活動範囲は多岐にわたります。他の人が見つけたと思っていた業績が、実はオイラーの仕事の焼き直しだったりした事が多々あったそうです。後に出てくるガウスと合わせて数学界の二大巨人であると言われているのです。加えて、

オイラーは右目を失明していたので

「単眼の巨人(サイクロプス)」

と数学界で呼ばれていたそうです。

まさに怪人ですね。同時に

天文物理学でも業績を残しています。物理学で使う数学手法も残しました。オイラーが定式化した自然対数と三角関数の関係は私自身も何度も何度も、繰り返し使いました。

オイラーの人生 

さて、オイラーの人生における転機は大学時代に師となるベルヌーイがその才能を見出したタイミングでした。神学の道を目指していたオイラーの両親をベルヌーイが説得してオイラーは数学の道を選びます。

 

オイラーは招かれて外国で数年過ごしたりしながら研究を続けましたが、視力が低下していき遂には失明してしまいます。それでもオイラーは精力的に論文執筆の活動を続けました。頭の中で計算式を操り、口頭で協力者に内容を伝え、文章に起こしてもらい、論文を次々と完成させたのです。

そんな困難の中、

オイラーは晩年の研究を続けていました。

まさに人生をかけた研究だったのです。

〆最後に〆



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2020/09/26_初稿投稿
2025/05/09_改定投稿

舞台別の纏め
時代別(順)のご紹介
スイス関係のご紹介

量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

【2021年8月時点での対応英訳】

L. Euler’s L is Leonhard’s L.

Job of Euler

Euler in Switzerland became the center of the 18th century mathematics world at the time, laying the foundation for mastering sophisticated models while mathematics became more rigorous in later generations. The range of activities is wide-ranging. In many cases, the achievement that others thought they had found was actually a rehash of Euler’s work. He is said to be one of the two giants in mathematics, along with Gauss, who will appear later. father,

Euler was blind in his right eye, so he was called “monocular giant (cyclopes)” in the mathematical world. It’s just a monster. He also has a track record in astrophysics.

Euler also left behind the mathematical techniques used in physics. I myself used the relationship between the natural logarithm and trigonometric functions formulated by Euler over and over again.

LIFE of  Euler

Now, the turning point in Euler’s life was when his teacher Bernoulli discovered his talent during his college days.

Bernoulli convinces Euler’s parents who were aiming for the theological path, and Euler chooses the path of mathematics.

Euler was invited to spend several years abroad and continued his research, but his eyesight deteriorated and he eventually lost his eyesight.

Still Euler is energetically

He continued his treatise writing activities.

Euler manipulated the formulas in his head, verbally communicated to his collaborators, had them transcribed, and completed his treatises one after another.

In the midst of such difficulties, Euler continued his studies in his later years. I think it was a study that took his life.

に投稿 コメントを残す

ベンジャミン・フランクリン
【米国建国の父|外交官|物理学者|天文学者】‐5/8改訂

こんにちはコウジです。
「ベンジャミン・フランクリン」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

フランクリン自伝
【スポンサーリンク】
【1706年1月17日生れ-1790年4月17日没】

 米国建国の父ベンジャミン

その名はベンジャミンフランクリン

:Benjamin Franklin,_

グレゴリオ暦1706年1月17日の生まれですが、

ユリウス暦では1705年1月6日にあたります。

そんな両方の暦を使う時代に生まれた人でした。

フランクリンは政治家として、外交官として、著述家として、物理学者として、また気象学者として活躍します。後述する13徳を実践する謙虚な人であって努力家です。それに加えて実務家です。フランクリンの残した「フランクリン自伝」はアメリカのロング・ベストセラーの一つとなっていて今でも100ドル札には肖像人物としてベンジャミンフランクリンが使われています。(2021年3月調の時の紙幣で確認)広くアメリカ人に愛され続けています。

 フランクリンの業績の例

フランクリンの業績として有名な物は凧を使った雷の実験です。フランクリンはライデン瓶の実験がされていると聞きつけ電気に興味を持ちました。1752年に雷鳴り響く嵐の日に凧をあげました。その時、地上側の凧糸の先にワイヤーで接続したライデン瓶を連動させることでその時の上空の帯電状態を示す作業をしました。

非常に直接的な実験ですがその電圧が数億ボルト(流れる電流が数十万アンペア超)とも言われる現象に対してベンジャミンフランクリンが、どの程度の理解をもって納得しながら実験の設定を行ったかについては、大きな問題を感じます。そう言った意味で物凄く怖い実験計画だったのでしょう。

実際に21世紀になってから、アイドルのコンサートでの落雷事故があった事は記憶に新しいでしょう。フランクリンの時代に検証実験を試みて多数の死者が出た事実もある事から「絶対に真似をしてはいけない」実験であると言えます。その実験を行ったフランクリンの勇気は手放しで賞賛出来ない部分がありますが、それを踏まえて考えてみても、アメリカの人々に尊敬される偉人なのです。

フランクリンのスタンス

フランクリンの偉業は他にも続き、避雷針、燃焼効率の

高いストーブ、遠近両用眼鏡を次々と発明しました。

そして、フランクリンはその発明に対して

特許はとらないで社会に還元しました。

アメリカ独立宣言の起草にも加わっていたと言われます。

フランクリンのストーブ

フランクリンは、
「フランクリンストーブ」または「ペンシルバニア暖炉」

として知られているより効率的な暖房ストーブ
を設計しました。
このストーブは、
火事の危険性を最小にしていて、

それを家庭暖房の空間を温めている際に、
より少ない燃料を使って、
より多くの熱を提供しました。

フランクリンの13徳

自らの自律心でコツコツと独学で事を成し遂げてきた

フランクリンは13徳と呼ばれる戒律を実践していたと言われます。

最後にご紹介させて下さい。

13徳(Wikipedeaより引用)週に一つずつ各徳目に身を捧げました

◆節制 :
飽くほど食うなかれ。
酔うまで飲むなかれ。

◆沈黙 :
自他に益なきことを語るなかれ。

駄弁を弄するなかれ。

◆規律:
物はすべて所を定めて置くべし。

仕事はすべて時を定めてなすべし。

◆決断 :
なすべきをなさんと決心すべし。

決心したることは必ず実行すべし。

◆節約:
自他に益なきことに金銭を費やすなかれ。

すなわち、浪費するなかれ。

◆勤勉:
時間を空費するなかれ。

つねに何か益あることに従うべし。
無用の行いはすべて断つべし。

◆誠実:
詐りを用いて人を害するなかれ。

心事は無邪気に公正に保つべし。
口に出だすこともまた然るべし。

◆正義:
他人の利益を傷つけ、あるいは与うべきを

与えずして人に損害を及ぼすべからず。

◆中庸:
極端を避くべし。たとえ不法を受け、

憤りに値すと思うとも、激怒を慎むべし。

◆清潔:
身体、衣服、住居に不潔を黙認すべからず。

◆平静:
小事、日常茶飯事、

または避けがたき出来事に平静を失うなかれ。

◆純潔:
性交はもっぱら健康ないし子孫のためにのみ行い、

これにふけりて頭脳を鈍らせ、身体を弱め、又は自他の平安
ないし信用を傷つけてはいけない。

◆謙譲:
イエスおよびソクラテスに見習うべし。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/04/02_初稿投稿
2025/05/08_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係へ

電磁気関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年8月時点での対応英訳)-

American great Franklin

His name is Benjamin Franklin, _ Gregorian was born on January 17, 1706, but in the Julian calendar died on January 6, 1705. He lived in an era when he explained using both calendars. Franklin is active as a politician, diplomat, writer, physicist, and meteorologist. He is a humble and hard worker who practices the 13 virtues described below. He is also a practitioner. Franklin’s “Franklin Autobiography” has become one of America’s longest-selling books, and Benjamin Franklin is still used as a portrait on the $ 100 bill. (Surveyed in March 2021) He continues to be widely loved by Americans.

 Job of Franklin

One of Franklin’s most famous achievements is the experiment of lightning with a kite. Franklin was interested in electricity when he heard that Leyden jars were being tested. He flew a kite in 1752 on a thunderous stormy day. At that time, he worked to show the state of charge in the sky at that time by interlocking a Leyden jar connected with a wire to the tip of the kite string on the ground side. It is a very direct experiment, but about how Benjamin Franklin convinced him to set up the experiment with respect to the phenomenon that the voltage is said to be hundreds of millions of volts (current flowing over hundreds of thousands of amperes). Feels a big problem. It will be fresh in my memory that there was a lightning strike at an idol concert in the 21st century. It can be said that it is an experiment that “never imitate” because there is a fact that a large number of people died when trying a verification experiment in Franklin’s time. Franklin’s courage to carry out the experiment has some parts that cannot be praised, but even if you think about it, it is certain that he is a great man who is respected by people.

Franklin’s feat continued, and he invented lightning rods, combustion-efficient stoves, and bifocals.

And Franklin gave back to society without his patent for his invention.

Thirteen Virtues

He is said to have been involved in the drafting of the United States Declaration of Independence.

Franklin, who has accomplished things by himself with his own autonomy, is said to have practiced a commandment called 13 virtues.

Let me introduce you at the end.

[13 virtues (quoted from Wikipedea, devoted to each virtue once a week)]

  1. ◆Temperance. Eat not to dullness; drink not to elevation.
  2. ◆Silence. Speak not but what may benefit others or yourself; avoid trifling conversation.
  3. ◆Order. Let all your things have their places; let each part of your business have its time.
  4. ◆Resolution. Resolve to perform what you ought; perform without fail what you resolve.
  5. ◆Frugality. Make no expense but to do good to others or yourself; i.e., waste nothing.
  6. ◆Industry. Lose no time; be always employ’d in something useful; cut off all unnecessary actions.
  7. ◆Sincerity. Use no hurtful deceit; think innocently and justly, and, if you speak, speak accordingly.
  8. ◆Justice. Wrong none by doing injuries, or omitting the benefits that are your duty.
  9. ◆Moderation. Avoid extremes; forbear resenting injuries so much as you think they deserve.
  10. ◆Cleanliness. Tolerate no uncleanliness in body, clothes, or habitation.
  11. ◆Tranquility. Be not disturbed at trifles, or at accidents common or unavoidable.
  12. ◆Chastity. Rarely use venery but for health or offspring, never to dullness,
    weakness, or the injury of your own or another’s peace or reputation.
  13. ◆Humility. Imitate Jesus and Socrates.

(I quoted these from Wikiledia.)

に投稿 コメントを残す

ダニエル・ベルヌーイ
【数学を駆使して「流体力学」を発展_確立統計の基礎】‐5/7改訂

こんにちはコウジです。
「ベルヌーイ」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

ベルヌーイ肖像画
【スポンサーリンク】
【1700年2月8日生まれ ~ 1782年3月17日没】

 ベルヌーイ一族

ダニエル・ベルヌーイ(Daniel Bernoulli)
の名前で
ダニエルって大事です。
科学史に詳しい人ならピンと来るのですが、
ベルヌーイ一族は沢山、
科学史に出てきます。

3世代で8人が著名人です。


先ず、今回取り上げたダニエルはスイスに生まれ3兄弟で、全て物理学者・数学者です。また、ダニエルの父の世代にも何人かの学者が居るようで、ダニエルの叔父の仕事を父が引継ぐ場面もあったようです。

ダニエルは、18世紀のスイスの数学者および物理学者で、ダニエルの業績は流体力学、確率論、統計学、および数学のさまざまな分野にまたがっています。以下に、ベルヌーイに関する主要な業績と貢献について詳しく説明します。

ベルヌーイの定理:

ダニエル・ベルヌーイの最も有名な業績は、流体力学に関するもので、彼の名前を冠した「ベルヌーイの定理」です。この定理は、流体の速度、圧力、高さの変化が密接に関連していることを示しています。ベルヌーイの定理は、流体の運動やエネルギー保存の法則に関する重要な原理の一つとなっており、現代でも航空工学や流体力学の基本的な理論の一部として広く使用され続けています。

統計学への貢献:

ダニエル・ベルヌーイは、確率論および統計学の先駆者としても知られています。彼は「ベルヌーイ試行」として知られる試行に関する理論を発展させ、確率論の基本的な概念を研究しました。これは後に統計学の発展に大きな影響を与えました。

複利の発明:

ベルヌーイは金融数学においても重要な貢献をしました。彼は複利に関する数学的な原理を発展させ、これが投資や金融取引における複利計算の基盤となりました。そのため、彼は現代の金融数学においても重要な人物と見なされています。

家族の数学の伝統:

ダニエル・ベルヌーイはベルヌーイ家の一員で、その家族は数学と科学において多くの著名な人物を輩出しました。彼の兄弟や親戚たちも数学や物理学において重要な業績を持ち、ベルヌーイ家は18世紀のヨーロッパにおいて数学と科学の中心的存在となりました。

ダニエルの業績は数学、物理学、統計学、および金融数学の複数の分野にまたがっており、彼の貢献は現代の科学と数学の基盤を築く上で非常に重要です。

 

 ダニエルベルヌーイとその父

また、こんな事もありました。

1734年のパリ・アカデミー大賞で父のヨハンと息子のダニエルが同時に賞を受賞した事が父の名誉を傷つけダニエルはベルヌーイ家から出入り禁止の扱いを受けます。

父は死ぬまでダニエルを恨んでいました。有名なダニエルの流体力学に関する著作でヨハンによる盗用もあったようです。家名が重い故に、ヨハンは名誉で目がくらみ、良識を忘れています。

そんな事もありましたが、ダニエルは研究を続け、パリ・アカデミー大賞の受賞も10回になったようです。何よりニュートン力学と数学を考え合わせ「流体力学」を発展させました。非粘性流体に対する「ベルヌーイの法則」は有益で、変形する物体にニュートン力学の適用範囲を広めています。

そうした仕事は船舶の運航等に大変、役立ちました。

 

 



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/30_初回投稿
2025/05/07_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
スイス関係のご紹介
フランス関連のご紹介
力学関係のご紹介

【このサイトはAmazonアソシエイトに参加しています】

(2021年8月時点での対応英文)

Daniel is important in the name of Daniel Bernoulli. If you are familiar with the history of science, it will come to you, but there are many Bernoulli families in the history of science. Eight people are celebrities in three generations.

First of all, Daniel, who was born in Switzerland, has three brothers, all of whom are physicists and mathematicians.

Also, it seems that there are some scholars in Daniel’s father’s generation, and there was a scene where his father took over the work of Daniel’s uncle.

Also, there was such a thing.

The simultaneous award of his father Johann and his son Daniel at the 1734 Paris Academy Awards hurts his father’s honor and Daniel is banned from the Bernoulli family.

His father had a grudge against Daniel until his death. It seems that there was plagiarism by Johann in the famous work on fluid dynamics of Daniel. Because of his heavy family name, Johann is dazzled by honor and forgets good sense.

However, Daniel continued his research and seems to have won the Paris Academy Awards 10 times. Above all, he developed “fluid mechanics” by considering Newtonian mechanics and mathematics.

“Bernoulli’s principle” for non-viscous fluids is useful and extends Newtonian mechanics to deforming objects.

Such work was very useful for the operation of ships.

に投稿 コメントを残す

コリン・マクローリン
【ニュートンが紹介した人|一般関数の級数展開】

⁻5/6改訂

こんにちはコウジです。
「マクローリン」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

優しく学べる基礎数学
【スポンサーリンク】
【1698年2月 ~ 1746年6月14日】

 マクローリンについて

マクローリンの名を耳にするのは

数学の講義ではないでしょうか。

物理学者というよりも数学者ですが

一昔前の物理学と数学は境目があいまいでした。

その名を全て記すとコリン・マクローリン

(Colin Maclaurin)です。

Wikipedeaで「マクローリン」という言葉だけで検索したら
ロボットアニメが出てきたりしますが(@2023/5)、
「マクローリン展開」で検索すると一発です。
  

マクローリンの業績について

クローリンは特に彼の名にちなんだ展開で有名です。
その内容は「0を中心としたテイラー展開」であって、
とても特別な場合なのですが
その有益性は非常に大きいのです。
その有益性は単純な私達では思い付かなかったでしょう。

込み入った話をすると、マクローリンが定式化した
数学的な定式化は「任意の関数の級数への分解」です。
任意の関数が持つ変化率を、
1次成分の寄与、2次成分の寄与、3時成分の寄与、、、
と分けて表現していくのです。

 

マクローリンと残した仕事 

 マクローリンは英スコットランドに生まれました。
ニュートン_と仕事をする中で彼の信頼を得て、
大学への推薦状を書いてもらう程でした。

マクローリン自身もニュートン_の考えに惚れ込んでいて、
ニュートンの紹介を目的として出版活動をしていました。
こうした仕事を通じてスコットランド啓蒙運動
に勤しんだ【いそしんだ】のです。

多くの人は高校時代以降に数学を使わなくなるでしょうが、
実生活の中で数学の世界はとても役に立っています。
特に、今回ご紹介しているマクローリンの考えは
一般関数の級数展開といった考えにつながり、
その考えは最終的にデジタル回路における近似処理
に繋がるのです。スマホの中とかの回路での処理原理です。
一般の人は意識しませんが恩恵を受けています。

理工学系の過程に進む初学者は出来るだけ
数学と産業のつながりを意識して下さい。
一見関係ないように思える数学の世界も、その概念を
土台として現代の応用技術が成り立っているのです。

無意味無乾燥に思える講義の内容が
貴方の人生で思わぬ成果を生む場合があります。

〆最後に〆

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/11/06_初稿投稿
2025/05/06_改定投稿

【スポンサーリンク】

 

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年8月時点での対応英訳)

About McLaughlin

Isn’t it a math lecture that you hear the name of McLaughlin? He is a mathematician rather than a physicist, but a decade ago physics and mathematics had a vague line. The name is Colin Maclaurin.

If you search for “Macroline” in Wikipedea, you will see robot animation, but if you search for “Macroline expansion”, it will be one shot.
Twice

About McLaughlin’s achievements

McLaughlin is especially famous for his developments. The content is “Taylor development centered on 0”, which is a very special case, but its usefulness is very great. Its benefits would not have come to our minds simply.

To put it in a complicated way, the mathematical formulation that McLaughlin formulated is “decomposition of an arbitrary function into a series”. The rate of change of an arbitrary function is expressed separately as the contribution of the primary component, the contribution of the secondary component, the contribution of the 3 o’clock component, and so on.

Work left with McLaughlin

McLaughlin was born in Scotland, England.
While working with Newton, he gained his trust and even got a letter of recommendation to the university. McLaughlin himself fell in love with Newton’s ideas and was publishing for the purpose of introducing Newton. Through these jobs, I worked for the Scottish Enlightenment Movement.

Many people will stop using math after high school, but the world of math is very useful in real life. In particular, the idea of ​​McLaughlin introduced this time leads to the idea of ​​series expansion of general functions, and that idea eventually leads to the approximation processing in digital circuits. It is a processing principle in a circuit such as in a smartphone. The general public is not aware of it, but they are benefiting from it. Beginners who advance to the science and engineering process should be aware of the connection between mathematics and industry as much as possible.

Even in the world of mathematics, which seems unrelated at first glance, modern applied technology is based on that concept. The content of a lecture that seems meaningless and dry may produce unexpected results in your life.

に投稿 コメントを残す

P・V・ミュッセンブルーク
【ライデン瓶を発明し静電気の基礎を確立】‐5/5改定

こんにちはコウジです。
「ミュッセンブルーク」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)
Warning: file_get_contents(/home/xs569222/nowkouji226.com/public_html/wp-content/plugins/backwp/index.php): failed to open stream: No such file or directory in /home/xs569222/nowkouji226.com/public_html/wp-includes/functions.php on line 6900
メインコンテンツへスキップツールバーへスキップ
WordPress について
物理学への道標
ExUnit
77件の更新が利用できます
00件のコメントが承認待ちです
新規
固定ページを表示
Site Kit
Autoptimize
統計情報
ExactMetrics5
WPForms
SEO!
こんにちは、元)新人監督 さん
表示オプションヘルプ
固定ページを編集 固定ページを追加
Autoptimize: 利用中の ShortPixel 画像最適化と CDN クォータを使い果たしました。クレジットの追加により、サイトの最適化された画像の提供を継続するか、(ほぼ) 無制限の画像最適化ができる Autoptimize Pro を検討してください。Pro には自動化されるクリティカル CSS と追加のブースターオプションもあります。 CDN クォータを十分にお持ちであれば、Shortpixel のアカウントをお使いのドメインに関連付ける必要がある可能性があります。 (以前に取得したデータに基づく, クリックでクォータの状態を更新).

この通知を非表示にする。
Google for WooCommerce requires WooCommerce version 7.9 or higher.

Urgent: Your Website is Not Tracking Any Google Analytics Data!

Google Analytics 3 (UA) and support was sunset on July 1, 2023. Your website is currently NOT tracking any analytics.
Create or connect a new Google Analytics 4 property immediately to start tracking.

Learn How to Create a GA4 Property
Connect a Property

この通知を非表示にする。
固定ページを更新しました。 ページを表示

この通知を非表示にする。
タイトルを追加

P・V・ミュッセンブルーク【ライデン瓶を発明し静電気の基礎を確立】
エディターへ移動
パーマリンク: https://www.nowkouji226.com/musschenbroek-1692/ ‎編集
メディアを追加 フォームを追加 お問合せフォームを追加ビジュアルコード

ライデン瓶発電機
【スポンサーリンク】
【1692年3月14日生まれ-1761年9月19日没】

 ライデン瓶を考案したミュッセンブルーク

その名はピーテル・ファン・ミュッセンブルーク

;Pieter van Musschenbroek。

ライデン瓶の発明で知られているオランダの物理学者です。

ポンプや顕微鏡、望遠鏡を作る職人の子として生まれます。

何より、最初の蓄電器であるライデン瓶

を作ったことで知られています。

ラテン語学校でギリシア語・ラテン語・フランス語・英語、ドイツ語などを学んだ後にライデン大学で医学博士となります。当時の学識の付け方は今と大きく異なっていたようですね。そして、ロンドンで当時の大物である物理学者ニュートンの講義を受けています。

その後、ミュッセンブルークは数学、哲学、医学、占星術の教授を歴任します。占星術は当時の教養の中で合理的な学問体系であると考えられていて、少し前の時代には王家に使えていたノストラダムスが天文学と占星術を修めていたという史実もあります。そして、ミュッセンブルークが1726年に刊行した「Elementa Physica」では広くニュートンの理論をヨーロッパに広めています。

 ミュッセンブルークと帯電現象の理解

その後、

静電気の力を中心にミュッセンブルークは関心を深め、ガラス瓶の中に充満した水の中で「帯電した棒」が反発しあう現象を形にします。非常に効果的な装置で水の中で実験を行うことで、重力の効果を浮力の効果を打ち消して微細な反発力をとらえられます。

また、支点を介した二つの棒が重力と直角方向に開いていくので
開いた角度がθの時に重力の分力が

Sinθで考えられるのです。

数学上、θが0の近傍ではSinθが殆ど0なのです。

上記の数学的な仕組みで、①荷電現象で生じた力と②ニュートンの明確にした力が釣り合い、平衡を保っています。その様子は少し感動できます。後の時代に動的な電磁気学が発展していきますがミュッセンブルークは静電磁気学の土台を作ったのです。

理論で期待される効果が目視で確認できます。浮力が重力を打ち消す効果と分力でSinθだけ考えればよい事情が相まって電気による微細な反発力が目に見える効果として現れます。開き角度が狭い時点では殆ど重力の効果がない形で帯電に起因する力が可視化出来るのです。

 

それまで帯電棒をこすり続けたりしなければ示せなかった「静電容量に起因する力」をミュッセンブルークによって示しました。後の電磁気学の発展に繋がる成果です。確かな一歩が残されたと言えるでしょう。



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/07/01_初回投稿
2024/05/05_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
オランダ関係のご紹介へ
イギリス関係のご紹介

電磁気関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年8月時点での対応英訳)

About Musschenbrook

Its name is Pieter van Musschenbrook

; Pieter van Musschenbroek.

Musschenbruck is a Dutch physicist as we know for the invention of the Leyden jar. He was born as a child of a craftsman who makes pumps, microscopes and telescopes. He had best known for making his first capacitor, the Leyden jar.

He had become a Doctor of Medicine at Leiden University after studying Greek, Latin, French, English, German, etc. at a Latin school. It seems that his way of learning at that time was very different from that of now. And he had taken a lecture in London by the then-big physicist Newton.

After that, Musschenbrook was a professor of mathematics, philosophy, medicine and astrology. Astrology is considered to be a rational academic system in the culture of the time, and there is a historical fact that Nostradamus, who was used for the royal family a while ago, studied astronomy and astrology. And in “Elementa Physica” published by Musschenbrook in 1726, Newton’s theory had widely spreaded in Europe.

Method of Musschenbrook

After that, Musschenbrook deepened his interest around the force of static electricity, and formed a phenomenon in which charged rods repel each other in the water filled in a glass bottle. By conducting experiments in water with a very effective device, the effect of gravity can be canceled by buoyancy and with a minute repulsive force, we had be able to capture.

Also, since the two rods that pass through the fulcrum open in the direction perpendicular to gravity, we had been able to consider the component force of gravity in Sinθ when the opening angle is θ.

Mathematically, Sin θ is almost 0 near θ of 0.

You can visually confirm the effect expected in theory.

The effect of buoyancy canceling gravity and the fact that only Sinθ needs to be considered as a component force combine to make a minute repulsive force due to electricity appear as a visible effect. When the opening angle is narrow, the force caused by charging can be visualized with almost no effect of gravity.

Work of Musschenbrook

Musschenbrook showed the “force due to capacitance” that could only be shown by rubbing the charging rod until then. It will lead to the later development of electromagnetism.

It can be said that Musschenbrook has left a solid step.

文字数: 3581 最後の編集: 2025年4月25日 4:19 AM – 元)新人監督
上に移動下に移動パネルを切り替え: ExactMetrics
上に移動下に移動パネルを切り替え: VK All in One Expansion Unit
すべて開く

広告アラート設定
挿入アイテムの設定
HTMLサイトマップの非表示設定
head タグ内の title タグのテキスト
noindex設定
OGPタイトル
シェアボタンの非表示設定
CTA設定
ページリストからの除外設定
カスタム CSS
VK ExUnit
上に移動下に移動パネルを切り替え: アイキャッチ画像

編集または更新する画像をクリック

アイキャッチ画像を削除

上に移動下に移動パネルを切り替え: 公開
変更をプレビュー(新しいタブで開く)
ステータス: 公開済み 編集ステータスを編集
公開範囲: 公開 編集公開状態を編集
リビジョン: 29 表示リビジョンを表示
投稿日: 2021年7月1日 01:01 編集日時を編集
修正日を更新しない
AIOSEO スコア
93/100
ゴミ箱へ移動
上に移動下に移動パネルを切り替え: このページの自動最適化
上に移動下に移動パネルを切り替え: ディスカッション
上に移動下に移動パネルを切り替え: AIOSEO 設定
SERP プレビュー

Favicon
物理学への道標
https://www.nowkouji226.com › musschenbroek-1692
P・V・ミュッセンブルーク【ライデン瓶を発明し静電気の基礎を確立】 – 物理学への道標
ミュッセンブルークはライデン瓶の発明で広く知られているオランダの物理学者です。ポンプや顕微鏡、望遠鏡を作る職人の子供として生まれます。何より、最初の蓄電器であるライデン瓶を作ったことで知られています。ラテン語学校でギリシア語・ラテン語・フランス語・英語、ドイツ語などを学んだ後にライデン大学で医学博士となります。
固定ページ のタイトル
以下のタグをクリックして、タイトルに変数を挿入します。
すべてのタグを表示 →

固定ページ のタイトル

区切り

サイトのタイトル

推奨される最大文字数60字のうち110字
メタディスクリプション
以下のタグをクリックして、変数をメタディスクリプションに挿入します。
すべてのタグを表示 →
ミュッセンブルークはライデン瓶の発明で広く知られているオランダの物理学者です。ポンプや顕微鏡、望遠鏡を作る職人の子供として生まれます。何より、最初の蓄電器であるライデン瓶を作ったことで知られています。ラテン語学校でギリシア語・ラテン語・フランス語・英語、ドイツ語などを学んだ後にライデン大学で医学博士となります。

推奨される最大文字数160字のうち156字
基礎となるコンテンツ
PRO
基礎となるコンテンツとは、コンテンツ戦略の基礎となる、サイト上の最も重要で有益な記事やページを指します。AIOSEO では、基礎となるコンテンツを次の用途に使用しています:リンクアシスタントの内部リンク推奨もっと詳しく →

基礎としてマーク
基礎となるコンテンツは PRO の機能です。もっと詳しく →
フォーカスキーフレーズ
フォーカスキーフレーズを追加する
追加のキーフレーズを取得
追加のキーフレーズ
追加のキーフレーズを使って SEO ランキングを改善しましょう。
追加キーフレーズは PRO の機能です。もっと詳しく →
ページ分析
Meta description length

Well done!

Content length

The content length is ok. Good job!

Internal links

You are linking to other resources on your website which is great.

External links

Great! You are linking to external resources.

上に移動下に移動パネルを切り替え: ページ属性

(親なし)
テンプレート

デフォルトテンプレート
順序

0
ヘルプが必要ですか ? 画面のタイトルの上の「ヘルプ」タブをご利用ください。

上に移動下に移動パネルを切り替え: XML Sitemap
Sitemap inclusion

default
Relative priority

default
Update frequency

default
上に移動下に移動パネルを切り替え: リビジョン
元)新人監督, 1秒前 (2025年4月25日 04:19:44)
元)新人監督, 1年前 (2024年4月25日 03:51:10)
元)新人監督, 1年前 (2024年4月25日 03:49:11) [自動保存]
元)新人監督, 2年前 (2023年10月19日 03:55:44)
元)新人監督, 2年前 (2023年6月9日 19:57:30)
元)新人監督, 2年前 (2023年5月10日 04:10:49)
元)新人監督, 3年前 (2022年10月23日 08:59:45)
元)新人監督, 3年前 (2022年10月23日 08:47:54)
元)新人監督, 3年前 (2022年10月23日 08:40:36)
元)新人監督, 3年前 (2022年10月22日 18:09:25)
元)新人監督, 3年前 (2022年4月4日 04:38:10)
元)新人監督, 3年前 (2022年1月4日 10:35:26)
元)新人監督, 3年前 (2021年11月5日 20:56:05)
元)新人監督, 4年前 (2021年8月5日 22:01:32)
元)新人監督, 4年前 (2021年8月5日 20:20:24)
元)新人監督, 4年前 (2021年8月5日 19:50:30)
元)新人監督, 4年前 (2021年7月11日 13:16:43)
元)新人監督, 4年前 (2021年7月11日 13:15:16)
元)新人監督, 4年前 (2021年7月11日 13:09:13)
元)新人監督, 4年前 (2021年7月11日 13:04:08)
元)新人監督, 4年前 (2021年7月11日 13:00:12)
元)新人監督, 4年前 (2021年7月11日 08:55:56)
元)新人監督, 4年前 (2021年6月26日 10:56:20)
元)新人監督, 4年前 (2021年6月25日 10:34:19)
元)新人監督, 4年前 (2021年6月25日 10:32:28)
元)新人監督, 4年前 (2021年6月25日 10:31:08)
元)新人監督, 4年前 (2021年6月25日 10:22:45)
元)新人監督, 4年前 (2021年6月25日 10:17:09)
元)新人監督, 4年前 (2021年6月25日 10:08:10)
上に移動下に移動パネルを切り替え: AIOSEO ライティングアシスタント

AIOSEO ライティングアシスタントで SEO を強化しよう
SEOBoost に連携されました
SEOBoost にシームレスに統合された、AI を利用したライティング支援のパワーを活用しましょう。ログインしてコンテンツ作成プロセスを強化し、検索ランキングを向上しましょう。
SEOBoost にログイン
上に移動下に移動パネルを切り替え: カスタムフィールド
上に移動下に移動パネルを切り替え: コメント
コメントする

まだコメントはありません。

上に移動下に移動パネルを切り替え: Novo Map
Title of the Marker

P・V・ミュッセンブルーク【ライデン瓶を発明し静電気の基礎を確立】

Select a Marker image
Select
Latitude
0
Longitude
0
Click on the map to prefill

Add an image in the Infobox

Upload Remove

Text description of the Infobox
ファイル 編集 表示 挿入 フォーマット ツール テーブル

Add marker

WordPress のご利用ありがとうございます。バージョン 6.8

に投稿 コメントを残す

理研で新型量子計算機稼働【米クオンティニュアム社が設置_イオン方式の新型】

新型量子コンピューターの概要

量子コンピューターは、従来のコンピューターでは解決が難しい問題に対して新たな可能性を提供する革新的な技術です。特に、イオントラップ方式は高い精度と安定性を持ち、量子コンピューターの実現において注目されています。本章では、イオントラップ方式の量子コンピューターについて、その原理、構造、そして拡張性に焦点を当てて解説します。

イオントラップ方式の原理

イオントラップ方式の量子コンピューターは、原子から電子を1つ取り去ったイオンを電場で空間に捕捉し、その内部状態を量子ビットとして利用します。これにより、外部環境からの影響を受けにくく、長いコヒーレンス時間を実現できます。また、レーザーを用いてイオンの状態を精密に制御し、量子ゲート操作を行います。この方式は、量子ビット間のばらつきが少なく、高い忠実度を持つことが特徴です。mki.co.jp+2日経クロステック(xTECH)+2理化学研究所+2J-STAGE+1日経クロステック(xTECH)+1

理化学研究所

出典: 日経クロステック

イオントラップ方式の構造

イオントラップ方式の量子コンピューターは、以下の主要な構成要素から成り立っています。

  • イオントラップ: 電場を用いてイオンを空間に捕捉する装置で、イオンの位置を安定に保ちます。日経クロステック(xTECH)+1mki.co.jp+1

  • レーザーシステム: イオンの状態を制御するために、特定の波長のレーザーを照射します。日経クロステック(xTECH)

  • 真空チャンバー: イオンが外部の粒子と干渉しないように、超高真空環境を維持します。J-STAGE

  • 光学系: レーザー光を適切に導くためのミラーやレンズなどの光学部品で構成されます。

  • 検出システム: イオンの状態を読み取るための光検出器やカメラなどが含まれます。

これらの構成要素が連携することで、高精度な量子操作が可能となります。

出典: 日経クロステック

イオントラップ方式の拡張性と課題

イオントラップ方式は高い精度を持つ一方で、スケーラビリティに課題があります。一つのトラップに多くのイオンを配置すると、制御が難しくなるため、複数のトラップを連携させる技術が求められます。その一つが「光接続法」で、異なるトラップ間で光子を介して量子情報を伝達する方法です。この技術により、大規模な量子コンピューターの実現が期待されています。日経クロステック(xTECH)+2NICT+2J-STAGE+2mki.co.jp+2日経クロステック(xTECH)+2J-STAGE+2

出典: 日経クロステック

また、オンチップイオントラップの開発も進められており、電極を同一平面上に配置することで、より自由度の高いトラップ電位の生成が可能となります。これにより、量子ビットの配置や制御が柔軟になり、拡張性の向上が期待されています。NICT+1J-STAGE+1J-STAGE+4理化学研究所+4日経クロステック(xTECH)+4

出典: 情報通信研究機構(NICT)

イオントラップ方式の量子コンピューターは、高精度な量子操作が可能であり、将来的な大規模化に向けた研究が進められています。今後の技術革新により、実用的な量子コンピューターの実現が期待されます。

新型量子コンピューター「黎明」の仕様

量子コンピューターの進化は、私たちの未来を大きく変える可能性を秘めています。特に、理化学研究所で稼働を開始した「黎明」は、その革新的な設計と性能で注目を集めています。本章では、「黎明」の仕様について、以下の3つの観点から詳しく解説します。

1. イオントラップ方式とレーザー制御

「黎明」は、イオントラップ方式を採用しており、イオンを電場で閉じ込め、レーザーで操作や測定を行います。この方式は、量子状態の保持が容易で、計算速度が速いという利点があります。一方で、量子ビットを精密に操作する必要があり、イオンを移動させる操作には時間がかかるという課題もあります。

出典: Quantinuum JapanPR News Asia+2Quantinuum – クオンティニュアム株式会社+2QUANTUM BUSINESS MAGAZINE+2

2. コンパクトな設計と冷却システム

「黎明」は、一辺が約1インチ(約2.54cm)のチップに、マイクロメートル単位の溝を掘り、イオンを閉じ込めたり移動させたりする構造を持っています。このチップは、バスケットボール大の容器に収納され、摂氏マイナス250度程度に冷却されます。容器には複数の窓があり、そこからレーザーを照射して操作や測定を行います。

出典: Quantinuum JapanQUANTUM BUSINESS MAGAZINE+2Quantinuum – クオンティニュアム株式会社+2PR News Asia+2

3. スーパーコンピューターとの連携と将来展望

「黎明」は、理化学研究所とソフトバンクの共同研究により、スーパーコンピューター「富岳」との連携を目指しています。このハイブリッドな計算環境により、エラーの発生を抑える効果が期待されています。また、米クオンティニュアム社は、2025年中に96量子ビットの量子コンピューター「Helios(ヘリオス)」を開発する予定であり、さらなる性能向上が見込まれています。

出典: Quantinuum Japan

「黎明」の登場は、量子コンピューターの実用化に向けた大きな一歩となりました。今後の技術革新と応用範囲の拡大に注目が集まります。

その他の方式を含めた現状の課題

量子コンピューターの開発は、さまざまな方式が競い合いながら進化しています。それぞれの方式には独自の利点と課題があり、最適なアプローチを模索する研究が続けられています。

主要な量子コンピューター方式の比較

方式主な特徴メリットデメリット
イオントラップ電場と磁場でイオンを捕捉し、レーザーで制御高い忠実度、長いコヒーレンス時間制御が難しく、スケーリングに課題がある
中性原子レーザーで冷却した中性原子を光ピンセットで操作スケーラビリティが高い制御精度がイオントラップ方式に劣る
超伝導超伝導回路を用いて量子ビットを構成高速なゲート操作、既存技術との親和性超低温環境が必要で、エラー率が高い
光量子光子を用いて量子情報を伝達・処理常温動作が可能、通信との親和性が高い光子の制御が難しく、エラー訂正が課題
シリコンスピンシリコン中の電子スピンを利用既存の半導体技術を活用可能高精度な制御が必要で、技術的なハードルが高い

出典: WIRED JapanWIRED.jp+1WIRED.jp+1

イオントラップ方式の詳細

イオントラップ方式では、電場と磁場を組み合わせてイオンを真空中に捕捉し、レーザーで量子ビットとして制御します。この方式は、量子ビット間の相互作用を高精度で制御できるため、誤り訂正に適しています。しかし、イオンの移動や配置に時間がかかり、大規模化には課題があります。WIRED.jp+1WIRED.jp+1

出典: 大阪大学Resou

中性原子方式の詳細

中性原子方式では、レーザーで冷却した中性原子を光ピンセットで並べ、量子ビットとして利用します。この方式は、同一の原子を大量に配置できるため、大規模な量子コンピューターの構築に向いています。ただし、原子間の相互作用を制御する技術がまだ発展途上であり、精度の向上が求められています。東京医科歯科大学+3blueqat+3科学技術振興機構+3

oaicite:60

出典: WIRED JapanWIRED.jp+1WIRED.jp+1

超伝導方式の詳細

超伝導方式では、超伝導体を用いた回路で量子ビットを構成します。この方式は、既存の半導体技術を活用できるため、産業界での実用化が進んでいます。しかし、動作には極低温環境が必要であり、冷却装置のコストやエネルギー消費が課題となっています。leapleaper.jpblueqat+1leapleaper.jp+1

oaicite:78

出典: LeapLeaperleapleaper.jp

各方式には独自の強みと課題があり、用途や目的に応じて最適な方式を選択することが重要です。今後の技術革新により、これらの方式がさらに進化し、実用化が進むことが期待されています。blueqat

Favicon
Favicon
Favicon
Favicon
Favicon
情報源

 

今後の日本での対応

日本は量子コンピューター技術の発展において、独自の強みを活かしながら世界と競争しています。特にイオントラップ方式においては、精密なレーザー制御や真空技術が求められるため、日本の高度な技術力が期待されています。また、産学官の連携を通じて、量子コンピューターの社会実装に向けた取り組みも進行中です。ソフトバンク

産業技術総合研究所と英国Universal Quantum社の連携

2025年3月、産業技術総合研究所(産総研)は英国のUniversal Quantum社と、日本におけるイオントラップ型量子コンピュータとその周辺技術の開発に関する覚書を締結しました。この連携により、スケーラブルな量子コンピューティングパワーの提供や、複雑な量子アプリケーションの開発、大規模量子コンピューティングに必要な基盤サブシステムの共同開発が期待されています。 国立研究開発法人人工知能研究所

ソフトバンクと東京大学の産学連携

ソフトバンク株式会社と東京大学は、量子コンピューターの社会実装に向けた共同研究を2023年9月に開始しました。ソフトバンクは、東京大学が運営する「量子イノベーションイニシアティブ協議会」に加盟し、産学連携を強化しています。また、127量子ビットのプロセッサーを搭載した量子コンピューター「IBM Quantum System One」を活用し、量子コンピューターの新たなユースケースの発掘を進めています。 ソフトバンク+1ニュースイッチ by 日刊工業新聞社+1

イオントラップ方式の研究開発

量子科学技術研究開発機構(QST)は、イオントラップ方式による量子コンピューターの研究開発を進めています。特に、133バリウムイオンを用いた量子ビットの開発に注力しており、ノイズに強く演算精度が高い特性を持つことから、量子コンピューターの実現を加速できる可能性があります。 QST+1QST+1

さらに、情報通信研究機構(NICT)では、オンチップイオントラップの開発を進めており、電極を平面形状に配置することで、自由度の高いトラップ電位の生成が可能となっています。これにより、量子コンピューターの大規模化が期待されています。 国立研究開発法人情報通信研究機構+1科学技術振興機構+1

これらの取り組みにより、日本は量子コンピューター技術の発展において、独自の強みを活かしながら世界と競争しています。今後も、産学官の連携を通じて、量子コンピューターの社会実装に向けた取り組みが加速することが期待されます。ソフトバンク

Favicon
Favicon
Favicon
Favicon
情報源

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/05/04‗初稿投稿

旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係へ
電磁気関係へ
熱統計関連のご紹介へ
量子力学関係へ

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

建部賢弘(たけべ かたひろ)_
【江戸時代に生まれ和算を大成した数学者】‐5/4改定

こんにちはコウジです。
「建部賢弘」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

建部堅弘の数学
【スポンサーリンク】
【1664年(寛文4年)6月 ~ 1739/8/24】

和算の大成者である健部賢弘

建部賢弘は日本の数学者で、和算を大成した人物です。
江戸時代1664年生まれです。

関ヶ原の合戦が1600年で江戸太平の世が200年ほど
だったことを思い返せば建部はまさに江戸時代の中期
に活躍したと言えますね。

時は享保の時代で8代将軍の暴れん坊将軍「徳川吉宗」
の信頼を得ます。そして享保四年(1719年)「日本総図」
を作成します。また、
師である関孝和の業績に関する著作を多数残しました。

その内容は歴史的な記述というよりも内容に深く入り込んでいます。
いわば
数学の側面からの解説書であったようです。

関孝弘の考察を建部が補う 

そもそも、関孝和は沢口一之が残した『古今算法記』での
未解決問題を関さん独自の点竄術を使って解決していました。

そこで「関さんの悪い所」なのですが、
省略し過ぎで難しい本だったのです。

面白いのは関西系の数学者からツッコミ食らっていた訳です。

「頑固な江戸のおじいちゃん」が関西人から
ツッコまれていたのですが、建部さんは
丁寧な解説で「正しいでしょう?」
って感じの話し方が出来たのです。

きっと関西人たちも納得したはずです。
関西人であれ関東人であれスッキリした瞬間です。

そして、師匠の関孝和と建部賢弘と建部賢明の三人で
全20巻の「大成算経」をまとめました。

「大成算経」は当時の和算をまとめ上げた
秀作として評価され続けています。

円に対しての建部の業績

建部賢弘の大きな業績として円に対しての
定量的な追及があります。物凄い精度で
円について考えていったのです。

そもそも、精度の高い真円が描けたとしても
その円での半径とこの長さの関係は自明ではありません。

今でこそ、子供たちも3.14…と記憶していけるのですが
理論的に真円が描けたと考えた時の弧の長さは
「三角関数を使って級数を作り極限」
を求めていくしかありません。

三角関数、級数、極限といった概念を和算の中で
正確に使っていくデリケートさが求められるのです。

建部賢弘は丁寧に言葉を選んで誰でもわかる
表現をして未知の世界に挑んでいったのです。

建部以前の時代から使われていた正多角形を
円が囲む近似から考えていきました。

建部は逆に正多角形に円が囲まれた部分を想像して、
円の面積がA以上B以下であると証明していくのです。

そして円弧の長さがα以上β以下であると証明していったのです。

そして建部賢弘は円周率を41桁まで正確に出したのです。
世界的に考えても数値的な解法として優れた業績でした。

その他の建部の業績

その他にも建部賢弘は多くの業績を日本に残しましたが、
以下備忘録的に羅列します。

・指数1/2の二項級数の近似解法を紹介
・ディオファントス方程式の近似解法を紹介
・帰納法に基づいた数値解析の方法論を紹介
・無限の概念を「不尽」として導入
・三角関数の内容を表の形で明示

そして今、
日本数学会では建部賢弘特別賞や建部賢弘奨励賞
という形で若手数学者を奨励する賞を設けています。
建部賢弘のように若かりし人が
新しい分野を開いていく姿を数学会は期待しています。




エンジニア転職保証コース
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2022/10/06_初稿投稿
2025/05/04_ 改訂投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介

AIでの考察(参考)

(2022年10月時点での対応英訳)

Katahiro Tatebe was a Japanese mathematician and a great exponent of Japanese arithmetic.
He was born in 1664 during the Edo period.

The Battle of Sekigahara took place in 1600, and the Edo period lasted about 200 years.
If we recall that the Battle of Sekigahara took place in 1600,we underground the peaceful Edo period lasted for about 200 years
The time was the Kyoho period, and he was active in the MiddleEdo generation.

The time was in the Kyoho period, and Takebe gained the trust of the 8th shogun, “Tokugawa Yoshimune,” the ruffian and tyrant shogun.
And Tatebe produced the “General Map of Japan” in 1719.

In addition
Tatebe also wrote many works on the achievements of his mentor, Seki Takakazu.
The contents of these works are not so much historical descriptions as commentaries .
The contents of these works seem to have been commentaries from a mathematical point of view rather than historical descriptions.

Seki and Takebe

To begin with, Seki Takakazu solved the unsolved problems in Sawaguchi Kazuyuki’s “Kokin Keiken” by using Seki’s original point-falsification technique. However, the book was difficult to read because of the excessive “omissions” as “Seki’s bad point.

What is interesting here is the fact that Kansai mathematical persons had criticized Takebe . The stubborn old man from Edo was getting flack from the Kansai people, but

Mr. Tatebe was able to give a polite explanation and say, “Isn’t that right? He was able to speak in a way that made the Kansai people understand.

I am sure the Kansai people must convinced. It was a moment of great clarity, even for Kansai people.

And then, his master Seki Takakazu, Tatebe Masahiro, and Tatebe Tatebe Kenmei together produced a 20-volume book, “The Great Calculation Sutra,” which they had published in 1949.
The “Taisei Keikyo”,Everybody had highly regarded as an excellent work that summarized the Japanese mathematics of those time.

One of Tatebe’s major achievements was his quantitative pursuit of the circle. He thought about the circle with tremendous precision. Even if a highly accurate circle could be drawn, the relationship between the radius and the length of the circle would not be self-evident.

Nowadays, children can memorize the rate,3.14…, but theoretically, when a perfect circle is drawn, the length of the arc can only be obtained by using trigonometric functions to create a series and finding the limit.

Rate of circle

The concepts of trigonometric functions, series, and limits must be used with delicacy and precision in Japanese arithmetic.

Kenhiro Tatebe carefully chose his words to express them in a way that anyone could understand, challenging the unknown.

Tatebe began by considering the approximation of a circle enclosing a regular polygon, which had been used since the pre-Tatebe era, and then, conversely, imagined the area of a circle enclosed by a regular polygon, proving that the area of the circle is greater than A and less than or equal to B.

Takebe then used a circle with an arc length of at least α and less than or equal to B. He then proved that the length of the arc is greater than or equal to α and less than or equal to β.

How many obtained

Then, Kenhiro Tatebe obtained pi to exactly 41 digits. This was an outstanding achievement in numerical solving, even when considered on a global scale.

Other wiorks of Takebe

Kenhiro Tatebe also left many other achievements in Japan, which are listed below as a reminder.

Introduced a forbidden solution method for binomial series with exponent 1/2.
Introduced an approximate solution method for Diophantine equation.
Introduction of a methodology for numerical analysis based on induction
Introduces the concept of infinity as “inexhaustibility
・Contents of trigonometric functions are clearly stated in the form of tables.

Kenhiro Tatebe Encouragement Award.

The Mathematical Society of Japan now offers prizes to encourage young mathematicians in the form of the  Katahiro Tatebe Special Prize and the Katahiro Tatebe Encouragement Prize.
We hope to see young people like Katahiro Tatebe
to open up new fields of study.

Translated with www.DeepL.com/Translator (free version)

に投稿 コメントを残す

アイザック・ニュートン
【微積分を駆使して空間・時間・力を明確に定式化】‐4/23改訂

こんにちはコウジです。
「ニュートン」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

「数学の世界史」
【スポンサーリンク】
【1642年12月25日 ~ 1727年3月20日】

物理学を変えたニュートン

物理学でのパラダイムシフトを語るうえで
外せない人物が、このニュートンでしょう。

物理学に於いてそれまでの常識を覆しました。
数学を駆使して物理学を大きく変えています。

今では世界で彼の名を冠した科学関係の雑誌が
刊行されている程です。
多くの人がその名と
業績を知っています。

イギリスで生まれたニュートンはケンブリッジでアイザック・バローに師事し研究をしていきます。家庭的に問題を抱えていたことに加えて、ニュートンは体も小さく体力も無かったのです。そんな紆余曲折があってアイザック・バロー教授と出会ったのです。

特に大きな転機となったのは学位を習得する時期です。ペストがヨーロッパ中に大きな被害をもたらし、ケンブリッジも封鎖された時期があったのです。その時期にニュートンは地元に戻り思索の時間を多くとれたのです。その時間が1665年の万有引力発見に繋がります。

ニュートンの業績 

ニュートンが示したものは大きいのです。

力が「相互作用」であって小さなリンゴと大きな地球が

相互作用するように、全ての物質が相互に作用して、

互いに引き合う事象を見出しました。

ニュートンの著書「プリンキピア」の中で法則として体系化しました。その数学的定式化として微分の考え方を使って洗練された形を残し、その後の学問の発展に大きな基礎を築いています。

ニュートンの足跡 

何年もの後にマッハが「力学の哲学的批判史」の中でニュートン独自の空間概念の定式化を批判しますが、それもニュートンの整理・確立した空間概念、慣性の法則、などがあって初めて気づき得る話なのです。

特に神との関りにおいてニュートンは「人格神に対する信仰を固辞している」(ハイゼンベルグ「現代物理現象の自然像」(1955)より)という指摘が重要です。神を想定して「絶対空間」を想定している時点で、後世の相対的(人間的)思想とニュートンの理解体系は少しずつ乖離していくのです。

 実際にはアインシュタインが空間の相対性を明確化する中でも「基礎理論」としてのニュートン力学は依然として有益な理論なのですが、特に20世紀初頭の物理学の進展で適用範囲に大きな疑問を投げかけました。ニュートンの力学を土台の一つとして更に量子力学が出来てくるのです。

その他、ニュートンの業績は光学、微積分学、と尽きませんが空間・時間・力を明確に定式化した点が後世の我々にとっても、物理学にとっても何より大きいと思えます。

ニュートンは人々の物に対する考え方を大きく変えました。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全てに返事が出来ていませんが
問題点には適時、返信・改定をします。

nowkouji226@gmail.com

2020/09/02_初版投稿
2025/04/23_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
ケンブリッジ関連
力学関係

 AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年8月時点での対応英訳)

The Newton

This Newton is a must-have person when talking about the paradigm shift in physics.Newton overturned conventional wisdom in physics. He uses mathematics to make a big difference in physics.

Nowadays, science magazines bearing his name have been published in the world. Many know the name and his achievements. Born in England, Newton will study under Isaac Barrow in Cambridge. In addition to having problems at home, Newton met Professor Isaac Barrow under twists and turns because he was small and weak. A particularly big turning point was when the plague caused great damage throughout Europe during his bachelor’s degree and Cambridge was also blocked. At that time Newton returned to his hometown and had more time to think about him. That time will lead to the discovery of universal gravitation in 1665.

Newton’s Work

What Newton has shown is great. He found that all matter interact and attract each other, just as forces are “interactions” and small apples and large earths interact.

It was systematized as a law in Newton’s book “Principia”. He used his idea of ​​differentiation as his mathematical formulation to leave a sophisticated form, laying a great foundation for the subsequent development of scholarship.

Newton’s Footprint

Years later, Mach criticizes Newton’s concept of space in “History of Philosophical Criticism of Mechanics”, but it is a story that can only be noticed with Newton’s organized and established concept of space, the law of inertia, etc. It is.

In addition, Newton’s achievements are not limited to optics and calculus, but the fact that space, time, and force are clearly formulated seems to be greater for us in posterity and for physics. Newton has changed the way people think about things.

に投稿 コメントを残す

ロバート・フック【ばねの運動に働く力学を法則化した英国人】‐5/2改訂

こんにちはコウジです。
「ロバート・フック」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

「ニュートンに消された男(中島秀人著)」
【スポンサーリンク】
【1635年7月28日生まれ ~ 1703年3月3日没】

ボイルの助手フック

イギリスのワイト島でに生まれたフックは若い時代に
ボイル
下で実験助手を務め、様々な経験を積みます。

1546年にヘンリー8世が創設したオックスフォード大学
クライスト・チャーチに席を置き学びます。
そしてまた、ユークリッドの原論や、光の屈折
など様々な考え方を身に着けていきます。

フックの情報を調べてみると性格的側面で、
人間関係の問題を抱えていったように思われます。

そもそもフックの父は英国国教会の聖職者でした。
2人の兄も聖職者として人生を歩んでいるようです。

フックの美学

そんな家庭で育ったロバート・フックは

科学・数学といった理論の世界で神に通じる

美学を構築していったのではないでしょうか。

宗教的側面は精神的な土台として考慮すべきです。

そこから生まれる高潔な理想と現実世界での不条理が

彼の抱えていた問題だったのです。

数学で「問題の壁を乗り越えた時の感動」や

「誰の手も借りずに新しい発見をした時」の

感謝は完全に人に伝えられない部分だと思えます。

そこで感動の共有が出来なかったとしたら、

フックはきっと孤独を感じたのです。

この紹介を書くにあたり調べ直してみた所、最終的にフックは寂しい人生を送っています。フックには子孫が居ませんでした。また、同時代のニュートンに比べ業績は見劣りします。思うに、年配のフックをニュートンは敬っていたようですが最後はどうしても論戦になり、科学的な思考の深さと明快な視点で反論されてしまったのでしょう。

自らが痩せて「醜く見える」容貌であった側面もあるようです。
16歳までフックの背中はまっすぐでしたが、その後
段々に曲がっていったそうです。
その為に肖像画を描かせることも控えていたようです。 

とはいえ、なにより、フックの業績は特筆に値します。

フックの業績 

有名な仕事はバネでの、フックの法則です。
ばねに働く力が長さの一乗に比例するという法則は
非常に明快で今でも色々な分野に応用されています。

また、細胞という言葉を初めて使ったのも
フックだと言われています。

また、惑星間に働く力が距離のマイナス2乗に働く
という法則もフックの発案であるという主張もありました。
もはや今となっては真相は不明です。

理論として体系立てることも大事ですが
先ずは気付きを与えるという事も大事です。

その意味でフックは議論をしてたというだけで

素晴らしいと感じます。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全てに返事が出来ていませんが
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2020/09/11_初版投稿
2025/05/02_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
オックスフォード関連
力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021/8//3時点での対応英文)

Hook in yonger Days

Born in England, Hook worked as an experimental assistant under Boyle when he was young and gained a lot of experience. And again, he learns various ideas such as Euclid’s Elements and refraction of light. Looking at Hook’s information, he seems to have had a relationship problem on the personality side. In the first place, Hook’s father was a priest of the Anglican Church.

It seems that the two older brothers are also living their lives as priests. .. Robert Hooke, who grew up in such a family, may have built a divine aesthetic in the world of theory such as science and mathematics. Religious aspects should be considered as a spiritual foundation.

noble ideals and Hook

The noble ideals and absurdities of the real world that emerged from it were his problems. In mathematics, gratitude for “impression when overcoming a problem wall” and “when making a new discovery without the help of anyone” seems to be a part that cannot be completely conveyed to people. If you couldn’t share the excitement there,

Hook must have felt lonely. After re-examining it when writing this introduction, Hook is finally living a lonely life. Hook had no descendants. Also, his achievements are inferior to his contemporaries Newton. It seems that Newton respected the elderly Hook, but in the end it was a debate, and he would have been argued with his depth of scientific thinking and a clear perspective.

Hook’s Work

However, his achievements deserve special mention. His famous work is Hooke’s Law in Spring. The law that the force acting on a spring is proportional to the first power of length is very clear and is still applied in various fields.

It was also argued that the law that the force acting between planets acts on the minus square of the distance was also the idea of ​​Hook. The truth is unknown now. It is important for him to systematize as a theory, but it is also important to give awareness first. In that sense, Hook feels great just because he was having a discussion.