に投稿 コメントを残す

西島 和彦
【素粒子のパラメターであるストレンジネスを提唱】-9/17

こんにちはコウジです。
「西島 和彦」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

物質の究極像
【スポンサーリンク】
【1926年10月4日生まれ ~ 2009年2月15日没】

 西島和彦の生い立ち

西島和彦は茨城県に生まれました。
東大を卒業後に大阪市立大学で教鞭
をとります。その後、イリノイ大学の後に
東京大学、京都大学で教鞭をとります。

そんな経歴の中において、西島和彦の業績として特筆すべきは
ストレンジネスの提唱でしょう。ストレンジネスは
素粒子の性質を吟味していく中で有用な概念です。

西島和彦が活躍した当時は電荷量バリオンといった
値が知られていたようですが、それに加えてストレンジネスといった
パラメターを西島和彦は導入して、素粒子の性質を語る
礎を固めていったのです。

  素粒子と西島和彦

西島和彦が素粒子を考えていく中で、特定の粒子と反粒子が
対になって生成される場合が多く見受けられたりしましたが、
そのメカニズムは説明されていませんでした。

生成にかかる時間を考察して、
反応の中間に存在するであろう中間子を考察
していったのです。保存される量として質量の他に別の量を
考えていき、散乱断面積の計算を追従し辻褄(つじつま)
の合う理論を構築します。果てしない思考の作業です。

西島和彦は学生時代に中野董夫、
マレー・ゲルマンとストレンジネスを法則化
しました。強い相互作用や電磁相互作用
において反応の前後でストレンジネスが
保存されるのです。そうした物理量を一つ一つ
生み出していく事がとても大事です。

 西島和彦とストレンジネス

西島和彦らが考え出したストレンジネスは直接観測にかかる
ものでは無く、反応の前後で、ストレンジクォークと
反ストレンジクォークの数を使って定義されます。

そして、ストレンジネスを使った中野西島ゲルマン・モデルは
坂田模型やSU3と呼ばれるモデルへ、クォークモデルと繋がり
素粒子の振る舞いを明らかにしていくのです。

そして、統一的な現象理解へと繋がるのです。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2020/11/12_初稿投稿
2025/09/17_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
京大関連のご紹介
量子力学関係
AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月現在での対応英訳)

History of Kazuhiko Nishijima

Kazuhiko Nishijima was born in Ibaraki prefecture.
He teaches at Osaka City University after graduating from the University of Tokyo
Take. Then he came after the University of Illinois
He teaches at the University of Tokyo and Kyoto University.

In such a career, the most notable achievement of Kazuhiko Nishijima is the advocacy of strangeness. It seems that values ​​such as charge amount and baryon were known at that time

while examining the properties of elementary particles, but in addition to that, Kazuhiko Nishijima introduced parameters such as strangeness and the foundation for talking about the properties of elementary particles. Was solidified.

Elementary particles and Kazuhiko Nishijima

While Kazuhiko Nishijima was thinking about elementary particles, it was often seen that specific particles and antiparticles were formed in pairs, but the mechanism was not explained. He considered the time it took to generate and the mesons that would be in the middle of the reaction. He considers other quantities in addition to mass as the quantity to be conserved, and follows the calculation of the scattering cross section to construct a theory that fits the bill. He is an endless task of thinking.

Kazuhiko Nishijima made strangeness a law with Tadao Nakano and Murray Gell-Man when he was a student. Strangeness is preserved before and after the reaction in strong and electromagnetic interactions. It is very important to create such physical quantities one by one.

Kazuhiko Nishijima and Strangeness

The strangeness devised by Kazuhiko Nishijima et al. Is not directly related to observation, but is defined using the number of strange quarks and anti-strange quarks before and after the reaction.

Then, the Nakano Nishijima German model using strangeness connects with the quark model to the Sakata model and the model called SU3, and clarifies the behavior of elementary particles.

And it leads to a unified understanding of the phenomenon.

に投稿 コメントを残す

小柴昌俊
【やればできる|素粒子の一つであるニュートリーを観測】‐9/16改訂

こんにちはコウジです。
「小柴昌俊」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

ニュートリーノで探る
【スポンサーリンク】
【1926年9月19日生まれ ~ 2020年11月12日没】

小柴昌俊と新しい分野

小柴昌俊は物理学の新しい分野を切り開いた先人でした。

2020/11/12の夜に老衰の為、東京都内の病院で

お亡くなりになりました。大きな仕事を

成し遂げた後での享年94歳の大往生です。

小柴昌俊は物質の基本元素を構成する素粒子の1つである
ニュートリノを観測にかける事に成功しました。
その結果をもとに今ではニュートリノ天文学
という新しい分野を確立しています。

基本粒子ニュートリーノ 

ニュートリーノは星の進化過程で発生する基本粒子です。

驚いたことに、ニュートリーノを観測にかけたのは、
小柴昌俊が東京大学を定年退官する一月前の観測でした。

強運を指摘された小柴氏は
「運はだれにでも等しく降り注ぐが、捕まえる準備を
しているのか、していないのかで差がつく」(のですよ)、
と反論しました。強運の一言で片づけられないほど
沢山の実験をして、議論をして、下準備をしてきたから、
このように語れたのでしょう。
その前に沢山の知恵を巡らしてみたのでしょう。

東京大学宇宙線研究所に所属している梶田隆章は
小柴昌俊の弟子にあたりますが、ニュートリーノに
質量がある事を示しノーベル賞を受けています。

また、戸塚洋二も小柴昌俊の弟子にあたります。
小柴昌俊は朝永振一郎から可愛がられた若かりし時代を経て
梶田隆章教授、戸塚洋二教授を育てたのです。

小柴昌俊のカミオカンデ

晩年の小柴昌俊は岐阜県飛驒市にある鉱山地下、1000メートルに
3000トンの水を使った、巨大装置である通称「カミオカンデ」
を建設し、天体からのニュートリノを観測することに世界で初めて
成功しました。その装置ではニュートリーノが飛来する方向、
観測した時刻、エネルギー分布を明確に検出します。

その装置を使い小柴昌俊は実際に観測をしました。
カミオカンデの主目的はニュートリーノではありません
でしたが、ニュートリーノも観測したい、
という2段作戦で成功を得たのです。

執念の男・小柴昌俊はそうした結果を使い
ニュートリーノ物理学を進めたのです。
何より彼は大変な努力家でした。
そして温かい人柄で他人に接し、テレビでの
言動を覚えている人は多いのではないでしょうか。 

そして情熱家でした。科学に対する限りない愛を感じます。
そんな男が大きな仕事を成し遂げた後、
静かな眠りに落ちたのですね。

大きなお悔やみを申し上げます。合掌。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/11/12_初稿投稿
2025/09/16_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係
AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

 

(2021年11月時点での対応英訳)

Masatoshi Koshiba and new fields

Masatoshi Koshiba was a pioneer who pioneered a new field in physics. He died at a hospital in Tokyo on the night of November 12, 2020 due to senility. He is 94 years old after completing a big job.

Masatoshi Koshiba succeeded in observing neutrinos, which are one of the elementary particles that make up the basic elements of matter. Based on the results, we are now establishing a new field called neutrino astronomy.

Elementary particles Nutrino

Nutrino is an elementary particle generated during the evolution of stars.

Surprisingly, it was one month before Masatoshi Koshiba retired from the University of Tokyo that he went to observe Nutrino. Mr. Koshiba, who was pointed out for good luck, argued, “Luck falls equally on everyone, but it makes a difference whether you are preparing to catch it or not.” I’ve done so many experiments, discussions, and preparations that I can’t put away with just one word of luck.
I think he said this.
Before that, I think I tried a lot of wisdom.

Takaaki Kajita, who belongs to the Institute for Cosmic Ray Research, the University of Tokyo, is a disciple of Masatoshi Koshiba, but has received the Nobel Prize for showing that Nutrino has mass. Yoji Totsuka is also a disciple of Masatoshi Koshiba. Masatoshi Koshiba raised Professor Takaaki Kajita and Professor Yoji Totsuka after a young age loved by Shinichiro Tomonaga.

Masatoshi Koshiba’s Kamiokande

Masatoshi Koshiba was the first in the world to succeed in observing neutrinos from celestial bodies by constructing a huge device known as “Kamiokande”, which uses 3000 tons of water at 1000 meters underground in a mine in Hida City, Gifu Prefecture. bottom. The device clearly detects the direction in which the nutrino arrives, the time of observation, and the energy distribution.

Masatoshi Koshiba actually made observations using the device. Kamiokande’s main purpose was not Nutrino, but he succeeded in a two-stage operation in which he wanted to observe Nutrino as well. Masatoshi Koshiba used these results to advance Nutrino physics. Above all, he was a hard worker. And he was a passionate person. He feels an endless love for science. After such a man did a big job, he fell asleep quietly, didn’t he? He has great condolences. Gassho.

に投稿 コメントを残す

江崎玲於奈
【トンネル効果を応用してポテンシャル障壁を突破】

こんにちはコウジです。
「江崎玲於奈」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

トンネル効果
【スポンサーリンク】
【1925年3月12日生まれ ~ 【ご存命中】 】

概説

江崎玲於奈は先の世界大戦時代の物理学者です。
2025年の3月に100歳になられるはずです。

電子デバイスを発明してスゥエーデンのグスタフ国王から
ノーベル賞を受けています。そして、
ノーベル賞受賞50周年でインタビュー受けていたりします。

量子力学を深く理解して、その原理を応用した
トンネル効果を応用したデバイスを作り出しています

因みに、このグスタフ国王って面白い人で、
結婚式の披露宴にABBAを呼んだら新曲の
ダンシング・クィーンを披露してくれて、
それが世界的な大ヒットになったという逸話なんかがあります。

その国王が26歳で初めてノーベル賞を手渡した一人が
江崎玲於奈だったのです。別の一人はブライアン・ジョゼフソン
でした。1973年、江崎玲於奈48歳の時でした。

そこで彼は国王に『自然科学の成果を称える式典では
「人種や差別無く」違った国から人々が集まってくるのだ』
と喜びを伝えました。

江崎玲於奈の業績

デバイス工学においてミクロの性格を応用することは
とても重要です。対象としているデバイスの中で量子的な
性格が顕著に表れる部分を応用すると従来の考えでは
予測できなかったような機能が使えるようになったのです。

具体的にはゲルマニウムを対象として考えた時に、
そのPN接合幅に注目します。

そこにおける伝導電子の波動的側面が伝導率に関わり、
接合幅を薄くしていった時に量子効果が表れたのです。
接合幅を薄くしていった時に、、、、
(ポテンシャルを考えた時に)
通過できない筈の場所を電子が
通過するイメージです。

実空間で想像して、「ポテンシャルの壁」を何故か
通過してしまう実験系を考えてみて下さい。
まさに量子的な効果なのです。

晩年の江崎玲於奈

江崎玲於奈は学者という立場で活躍した後、
筑波大学等で教育者として活躍しています。

第2の人生をしっかり歩んでいて、
とても尊敬出来ます。

更に語りたい部分はありますが、江崎玲於奈氏はご存命中なのでここまでと致します。更新のたびに幾つかのサイトでご存命であると確認していますが、少しでも長生きして頂きたいです。書き足したい気持ちはありますが、半面で今は少しでも静かに長生きして頂きたいと思っています。

2025年9月時点で100歳。
最高齡の日本人ノーベル賞受賞者
としてご存命中です!!

〆最後に〆

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。

nowkouji226@gmail.com

2020/08/27_初版投稿
2025/09/15_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
熱統計関連のご紹介へ
量子力学関係
AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Overview

Leo Esaki was a physicist from the previous World War era. She invented the electronic device and received the Nobel Prize from King Gustav of Sweden. She has a deep understanding of quantum mechanics and is creating devices that apply the tunnel effect that applies that principle. By the way, there is an anecdote that King Gustav was an interesting person, and when he invited ABBA to a wedding reception, he performed a new song, Dancing Queen, which became a big hit worldwide. Leo Esaki was the first person to hand over the Nobel Prize at the age of 26. Another was Brian Josephson. In 1973, Leo Esaki was 48 years old. So he rejoiced to the King, “At ceremonies celebrating the achievements of the natural sciences, people come from different countries” without race or discrimination. “

Achievements of Leo Esaki

It is very important to apply the micro character in device engineering. By applying the part of the target device where the quantum character appears prominently, it became possible to use functions that could not be predicted by conventional thinking. Specifically, when considering germanium, pay attention to its PN junction width. The wave-like aspect of the conduction electron there is related to the conductivity, and the quantum effect appears when the junction width is narrowed. It is an image of electrons passing through places that should not be able to pass when considering the potential. Imagine in real space and think of a system that somehow passes through the “potential wall”. It’s just a quantum effect.

Leo Esaki in her later years

After Leo Esaki was active as a scholar, she is active as an educator at the University of Tsukuba. She has a solid second life and she is very respectable. There is something I would like to talk about, but since Leo Esaki is still alive, I will end here. She wants to add more, but on the other hand she wants her to live a little quieter and longer.



に投稿 コメントを残す

中嶋 貞雄
【日本で超電導現象の土台を作っていた人|低温電子物性】‐3/14改訂

こんにちはコウジです。
「中嶋 貞雄」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

超伝導
【スポンサーリンク】
【1923年6月4日生まれ ~ 2008年12月14日没】

 物理学者の中嶋貞雄

映画監督で似た名前の方が居ますが
映画監督の方は貞夫と書きます。
物理学者の中嶋さんは貞雄と書きます。
中嶋貞雄は私が昔使っていた量子力学での
教科書の著者でした。(発行元は岩波書店)

東京大学を卒業後に名古屋大で教授を務め、
東大物性研の所長を務めています。
超伝導現象の理論化に先鞭をつけた方です。

超電導の議論史の中で有名な
エピソードがありますのでご紹介します。

 バーディンと中嶋貞夫

中嶋貞雄は低温物理の物性に関わる研究をしていきました。
そんな中で
名古屋で会議が開かれ、くりこみ理論を応用した
低温電子物性の議論をします。
その話にアメリカのバーディーン
が着目し、
講演内容のコピーを中嶋に求めました。

その時点ではカメリー・オネスの発見した超伝導現象は
実験的に示されていま
したが理論的な説明はなされてません。
バーディーンはそれを作ろうとしていたのです。

個別電子のモデルはありましたがその電子が
集団励起していく姿は誰も想像していませんでした。

中嶋はきっと研究の方向性に自信を持った事でしょう。
半導体の大家と一緒に現象を追求したのです。
後に名古屋駅で
バーディンにコピーを渡します。

バーディンは帰国後に英訳し、共同研究者であるクーパー・
シュリーファーと共に
考察を進め、クーパー対のアイディア
を盛り込み、
BCS理論を完成させます。日本でなくアメリカ
で生まれた事が残念ですが、
そうした議論の端緒は
日本でも芽生えて
いたのです。

 科学技術と我々

私は科学技術は人類が共有する財産だと思っています。
それだから、
コピーを届けた中嶋貞雄の行為は素晴らしい
と感じています。これからの若い研究者達も知を共有して
育んで欲しいと思います。
そうした行為が、
最後には日本の発展に
繋がっていくと信じています。
そして、世界人類の発展に繋がっていくと信じています。

最後は信念とか、
宗教っぽい話になりましたが
感動・情熱から繋がる話
ではないでしょうか。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。

nowkouji226@gmail.com

2020/12/19_初版投稿
2025/09/14_改定投稿

サイトTOP
舞台別のご紹介へ
時代別(順)のご紹介

日本関連のご紹介へ
東大関連のご紹介へ
熱統計関連のご紹介へ
量子力学関係のご紹介へ

AIでの考察(参考)

(2021年11月時点での対応英訳)

Physicist Sadao Nakajima

There is a movie director with a similar name, but I write that as Sadao. This is written as Sadao. Sadao Nakajima was the author of a textbook on quantum mechanics that I used to use. (Published by Iwanami Shoten) He is a professor at Nagoya University after graduating from the University of Tokyo, and is the director of the Institute for Solid State Physics of the University of Tokyo. He was a pioneer in theorizing superconducting phenomena. I would like to introduce a famous episode in the history of superconductivity discussions.

Birdin and Sadao Nakajima

Sadao Nakajima has been conducting research related to the physical properties of low temperature physics. Under such circumstances, a conference will be held in Nagoya to discuss low-temperature electronic properties applying the renormalization theory. Bardeen of the United States paid attention to the story and asked Nakajima for a copy of the lecture. At that time, the superconducting phenomenon discovered by Kamerlingh Ones was experimentally shown, but no theoretical explanation was given. Bardeen was trying to make it.

Nakajima must have been convinced of the direction of his research. He later gives a copy to Birdin at Nagoya Station. After returning to Japan, Bardeen will translate it into English, discuss it with his collaborator Cooper Schriefer, incorporate ideas for Cooper vs., and complete the BCS theory. It’s a pity that I was born in the United States instead of Japan, but the beginning of such discussions was also budding in Japan.

Science and technology and us

I think science and technology are a property shared by humankind. Therefore, I feel that Sadao Nakajima’s act of delivering the copy was correct. I hope that young researchers in the future will share their knowledge and nurture them. I believe that such actions will eventually lead to the development of Japan. And I believe that it will lead to the development of humankind in the world.

At the end, it was a belief or a religion-like story, but I think it is a story that connects with emotion and passion.

に投稿 コメントを残す

南部 陽一郎
【自発的対称性の破れを使って素粒子を研究|大戦時はレーダー研所属】-9/12改訂

こんにちはコウジです。
「南部 陽一郎」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

対称性の破れ
【スポンサーリンク】
【1921年1月18日生まれ ~ 2015年7月5日没】

 戦時下の南部陽一郎

南部 陽一郎は第二次世界戦時に理学を志しました。
まさに時は戦時中。彼の頭脳は武器製造に貢献できる
と判断されて陸軍のレーダー研に配属されました。

戦時下ではどんな研究をしていたんでしょうね。
そして、どんな気持ちだったのでしょうね。

戦争の前後で東京帝国大学で研究を進めます。
戦後、南部 陽一郎は朝永 振一郎のグループで研究を続けます。
そして物質を構成する原子を考えていき、
今に続く素粒子論を完成させていきます。

南部陽一郎と自発的対称性

 南部陽一郎の新規性は真空概念の再考でしょう。

「特定の対称性をもった物理系がエネルギー

で色々な状態を考えた時に的に、より

安定な真空状態に自発的に落ち着く」のです。

BCS理論でのクーパ対生成はこの考え方

に従っています。電子対の生成が「安定」です。

中間子をひもとき、素粒子間の総合作用を考え、
その形成に関して実験事実と、つじつまの合う
理論を展開していきます。

そうした研究を重ね南部陽一郎は「自発的対称性の破れ」で
ノーベル賞を受賞しています。

南部陽一郎の話の組み立てとしては、
強磁性体の自発磁化状態(外部からの磁場無しで
内部磁気モーメントを揃えている状態)が温度上昇に伴い
磁化を失う状態を考え、ラグラジアンを巧みに使い
素粒子に適用しているのです。

また彼は量子色力学や紐理論でも成果を上げています。

そういえば、

南部洋一郎は私が学生時代に使っていた教科書の著者でした。
その時点で米国の国籍を得ていた記憶
があり、
研究者に対しての日本での待遇に疑問を抱いたものです。

私は理論物理学の研究室に所属して居ましたが、
卒業後も研究を続けて研究者として身を立てている仲間は
今では数えるほどしかいません。多くは私のように、
民間の会社に所属して物理学とは全く関係のない業務に従事しています。

少子化という流れもありますが名誉職としての教授に対して
日本社会の扱いは低いとも感じていました。
狭き門である事に加えて扱いが低いのです。
そして、南部陽一郎のような優秀な頭脳は
どんどん海外に流出していきます。 

それだから

南部 陽一郎がアメリカに帰化した気持ちは

少しは理解出来る気がするのです。

以上、間違い・ご意見は
以下アドレス迄お願いします。
適時、返信改定をします。

【スポンサーリンク】

nowkouji226@gmail.com

2020/09/10_初版投稿
2025/09/12_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
量子力学関係
AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

【2021年11月時点での対応英訳】

Yoichiro Nambu during the war

Yoichiro Nambu aspired to his research during World War II. However, the time is during the war. Judging that his brain could contribute to the manufacture of weapons, he was assigned to the Army’s Radar Lab. What kind of research did he do during the war? And what was your feeling? Before and after the war, he pursued research at the University of Tokyo. After the war, Yoichiro Nambu continued his research with Shinichiro Tomonaga’s group. And he thinks about the atoms that make up matter, and completes the theory of elementary particles that continues to this day.

Spontaneous symmetry with Yoichiro Nambu

Yoichiro Nambu’s novelty would be a rethinking of the vacuum concept. ・ “When a physical system with a specific symmetry considers various states with energy, it spontaneously settles into a more stable vacuum state.” Cooper pair production in BCS theory follows this idea. The electron pair generation is stable.

We will consider the overall action between elementary particles when using mesons, and develop a theory that is consistent with experimental facts regarding the formation of mesons. After repeating such research, Yoichiro Nambu won the Nobel Prize for “spontaneous symmetry breaking”. As for the construction of Yoichiro Nanbu’s story, considering the state in which the spontaneous magnetization state of the ferromagnet (the state in which the internal magnetic moments are aligned without an external magnetic field) loses magnetization as the temperature rises, the Lagradian is skillfully used. It is applied to particles. He has also been successful in quantum chromodynamics and string theory.

by the way,

Yoichiro Nanbu was the author of the textbook I used when I was a student. I remember he had American citizenship at that time
I was skeptical about the treatment of researchers in Japan. I belonged to the laboratory of theoretical physics, but now there are only a few colleagues who continue their research after graduation and become researchers. Many, like me, belong to a private company and engage in work that has nothing to do with physics.

Although there is a trend toward a declining birthrate, I also felt that the treatment of Japanese society was low for professors as honorary positions. In addition to being a narrow gate, it is not easy to handle.

that is why

I feel that I can understand the feeling that Yoichiro Nambu was naturalized in the United States.

 

に投稿 コメントを残す

竹内均(ひとし)
【科学の啓蒙活動を続けた初代Newton編集長】-9/11改訂

こんにちはコウジです。
「竹内均(ひとし)」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

に投稿 コメントを残す

久保 亮五
【線形応答理論を使ったフーリエ変換NMR理論を展開】‐9/9改訂

こんにちはコウジです。
「久保 亮五」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

デジタルフーリエ変換
【スポンサーリンク】
【1920年2月15日生まれ ~ 1995年3月31没】

物理学者久保亮五

久保亮五と同名(漢字違い)の別人が居ますが、
以下記載は物理学者に関する文章で、ここでの
久保亮五は統計力学で
私が使った教科書の著者です。

私の指導教官は久保先生の講義を受けていたそうです。
そんな時代の
物理学者についての記載です。

久保亮五は学者肌の家で育ち、中国文学者であった
お父様の仕事で子供時代には台湾で生活しています。
高校まで台湾で過ごし、帰国後に旧制高校へ入学、
東大へ入学、その後に助手、助教授、教授をつとめました。

久保亮五の業績

 なにより先ず1957年に日本物理学会誌で発表した久保公式です。
原子や分子のミクロな現象を上手く説明します。その発表以降、
なんと12000回を超える引用が世界の物理学会でなされています。
(日経新聞2024年5月4日の記事「成果に名を刻んだ日本人」会員限定)
平衡状態にある物理量のハミルトニアンを用いて
密度行列と摂動を考える事で、時間発展をする
物理量のハミルトニアンが表現できるのです。

その他に久保亮五の仕事で何より特筆すべきは
物性論での成果です。
ゴムの弾性に関する研究と、
線形応答理論を使ったフーリエ変換NMRへの応用研究
があげられます。その他のコンピューターシュミレーション
でも久保亮五が確立したモデルは有効です。

単純に「実験屋さん」とか「理論屋さん」と区別出来ません。
どちらも深く兼ね備えている研究を久保亮五はしたのです。
試料の純度が実験結果に大きく関わるような実験を
沢山の試行錯誤を重ねて一つ一つ成し遂げてきたのです。

久保亮五の基礎理論を構築したNMRの概説を
一般の人向けに記し
てみたいと思います。
先ず
フーリエ変換理論は端的には
「時系列の波形を周波数を基準に考えた
波形に変換し
て解析する技術」です。

そうした「数学的に確立されているフーリエ変換」
を理論的基礎として電子回路で応用されています。
離散化された電気信号に対して回路上で
実質的に
マトリクス変換を加えます。

久保亮五とNMR 

診察で実際にNMRを使った経験のある人はNMRの中で
測定を受けている時を思い出してみてください。

(Credit:Pixabay)
頭の中を調べる時などに、強磁場を人間の頭部に
二次元的に与えます。
その時に大きな音がしますが、
音がしている時に「時系列でインパルス的な情報」
機械的に処理して「周波数応答に関する情報」を得ます。

作業として、吸収スペクトルを測定することで
各スピンの情報を集め、そこから
最終的には
断面の画像を処理します。
(Credit:Pixabay)

最終的な写真で見える画像は、
これらの処理の結果です。

そして今、久保亮五はこの世に居ませんが、
その仕事を応用したNMRは世界中の病院で
患者達の情報を集めています。きっと今、
この瞬間も医療行為の中
NMRの機械が動い
ています。

【参考:東大理学部での退官当時の広報

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/11_初稿投稿
2025/09/09‗改定投稿

サイトTOP
舞台別のご紹介へ
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介へ
熱統計関連のご紹介へ

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Physicist Ryogo Kubo

There is another person with the same name (different Chinese characters) as Ryogo Kubo, but the following is a sentence about a physicist, and Ryogo Kubo here is the author of the textbook I used in statistical mechanics. My supervisor took a lecture. This is a description of physicists of that era. Ryogo Kubo grew up in a scholarly-skinned house and lived in Taiwan as his childhood for his father’s work. He spent his time in Taiwan until high school, and after returning to Japan he entered a high school, the University of Tokyo, and then an assistant, associate professor, and professor.

Achievements of Ryogo Kubo

The most notable thing about Ryogo Kubo’s work is the result of condensed matter theory. His research on the elasticity of rubber and his applied research to Fourier transform NMR using linear response theory can be mentioned. I would like to write an overview of NMR that Ryogo Kubo thought about for the general public. First of all, the Fourier transform theory is simply “a technology that converts a time-series waveform into a waveform that is considered based on frequency and analyzes it.” Such “mathematical established Fourier transform” is applied in electronic circuits as a theoretical basis. Substantially matrix transformation is applied on the circuit to the discretized electrical signal.

Ryogo Kubo and NMR

If you have actually used NMR in a medical examination, remember when you were taking measurements in it. A strong magnetic field is applied to the human head two-dimensionally when examining the inside of the head. There is a loud noise at that time, but the impulse-like information is mechanically processed in that time series to obtain information on the frequency response. As a result, the information of each spin is collected by measuring the absorption spectrum, and finally the image of the cross section is processed from there. The image you see in the final photo is the result of these processes.

And now, Ryogo Kubo is not in the world, but NMR, which applies his work, collects information on patients at hospitals around the world. I’m sure I’m collecting this moment as well.

に投稿 コメントを残す

アイザック・アシモフ
【「ロボット3原則」で有名なSF作家】‐9/9改訂

こんにちはコウジです。
「アシモフ」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

ロボット戦士
【スポンサーリンク】
【1920年1月2日 ~ 1992年4月6日】

アシモフの人物像

今回、少し物理から離れます。アシモフは

「ロボット3原則」で有名なSF作家です。

具体的に3原則とは、

第1条:ロボットは人間に危害を与えてはならない。
また、その危険を看過することによって人間に危害を及ぼしてはならない.

第2条:ロボットは人間に与えられた命令に服従しなければならない。

3条:ロボットは前掲第1条及び第2条に反する恐れがない限り、
自己を守らなければならない。

となります。

悪い人が善人を攻撃しなさいと命じたらどうなるか?
と考えていくと議論のネタになるのですが、
そうした考察を現代の我々は当然していかなければ
いけない段階に来ています。
鉄腕アトムも色々と悩んでいましたよね。

最近のウクライナ紛争ではドローンが強力な兵器となり、
白兵戦での戦局に影響を与えています。

平和利用として地雷探査ロボが活躍していますが、
殺傷能力を持ったロボットが戦う日も想定できます。
ロボットの動きは性格で素早いので殺傷能力が
どこまで期待できるのでしょう。怖いことです。

何故ならロボットに殺されていく貧しい国の人々が
想像出来るからです。尚更無念な死が現実として
迫ってきているのです。

過去に、人類は核兵器を具現化して
暗黒の歴史を作りました。悲劇は繰返しありません。

ロボットのもう一つの懸念は判断です。
今やAIで判断が進み、更に進化していけば
人間が初期設定を誤る時点でロボット群が
人間に不利益を働くかもしれません。
ロボットに悪意が無くとも不利益を働きます。 

実際のアシモフの研究分野としては生化学なのですが、
作家としての顔
の方が有名ですね。

また調べてみるとアシモフはロシア生まれでした。
リニアモーターカー
が走る今日の世界を見せてあげたいと、
個人的には考えてしまいます。また、もはやロボットも日常的ですよね。

そんな未来をアシモフは20世紀の初めにに予見していました。

20世紀の知見で機械化が進む未来を描き、進んだら
どうなるだろうと考えますが、
好ましい方向性を指摘して
大衆に問いかける。
つまり、科学の夢を投げかけていたのです。

アシモフの作家デビュー

アシモフは1938年に初めてのSF作品を雑誌に持ちかけて認められ、
1939年から作家デビュー
しています。

才能を認めるアメリカっぽいですね。
この年にコロンビア大学を卒業して大学院に進みます。

所謂、ロボット三原則などを提唱していますが、
時代は第二次大戦に向かう時代で
アシモフは学校を休学したりしています。

科学が知識を集めるスピードの速さにアシモフは驚愕していて、
社会が叡智を集結
する事を求めていました。
相変わらず分断
している世界をどう見るのでしょうか。

意外な結末

そして、意外な最後なのですが、アシモフは

1992年にHIV感染が元でこの世を去ってます。

心臓バイパス手術の時に使用された
輸血血液が感染源のようです。

本当に色々と経験されてきた人生だったと思います。

【スポンサーリンク】

以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。

nowkouji226@gmail.com

2020/08/24_初回投稿
2025/09/09_改定投稿

舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Asimov’s portrait

This time, I’m a little away from physics. Asimov is a science fiction writer famous for “Three Laws of Robotics”. Biochemistry is the actual research field of Asimov, but his face as a writer is more famous. When I looked it up, Asimov was born in Russia. He personally wants to show us the world of today’s maglev trains. Also, robots are no longer commonplace. Asimov foresaw such a future in the 20th century. He envisions a future of mechanization with his knowledge of the 20th century, and wonders what will happen if it progresses, but he points out a favorable direction and asks the public. In short, he was throwing a dream of science.

Asimov’s writer debut

Asimov was recognized for his first science fiction work in a magazine in 1938, and has made his debut as a writer since 1939. He’s like America, who recognizes his talent. He graduated from Columbia University this year and went on to graduate school.

He advocates the so-called Three Laws of Robotics, but Asimov is taking a leave of absence from school in the era of World War II. Asimov was amazed at the speed at which science gathered knowledge, and he wanted society to gather wisdom. How does he see the world that is still divided?

Unexpected ending

And, surprisingly, Asimov died in 1992 due to HIV infection. He seems to be infected with the transfused blood used during heart bypass surgery. I think he really had a lot of experience in his life.

に投稿 コメントを残す

R・P・ファインマン
【天才|経路積分やファインマンダイヤグラムを考案】-9/8改訂

こんにちはコウジです。
「ファインマン」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

経路積分
【スポンサーリンク】
【1918年5月11日 ~1988年2月15日】

アメリカのファインマン

有名な教科書の著者で、私が学生時代からその著書は
日本で使われていました。
世界中でその教科書は使われています。
またファインマンは量子電磁気学の業績で
朝永 振一郎と共にノーベルを受賞しています。。

具体的に、ファインマンの名を聞いて
真っ先に
思い出す業績は経路積分です。
数学的な定式化が驚異的なのです。
【参考_Wikipedeiaの記載:経路積分

その発想はとてもユニークだとも言えます。

経路積分の考え方

二つの経路を初めに考えて、其々からの寄与を
考えていく時に拡張が出来て二つ、三つ、四つ、、、
そして無限大の経路。と経路を
無限大に広げていくのです。

もう少し具体的にファインマンの考えを紹介しますと、
「ダブルスリットの実験を拡張した場合に、
無限の経路を想定すると何も無い空間
を考える事になっていく」という考え方なのです。

この経路に関するファインマンの考え方には数学的な難点
も指摘されているようですが物理の世界では非常に面白い
考えであり、進めて考えていきたい視点です。

また、素粒子の反応を模式化したファインマンダイアグラムは
視覚的に、直感的に秀逸です。本当に天才の技に見えました。

業績の話が先行しましたが、最後に
生い立ち,人つながりの話を致します。

ファインマンはユダヤ系なので苦労を強いられています。
ユダヤ人枠で大学に入れなかったりした時代もありました。
後にMITやプリンストン大学で研究を進めます。

電気力学の量子論についてのゼミをプリンストン大学で
行うことになった時には、ゼミの話を聞きつけて
ユージン・ウィグナー、ヘンリー・ノリス・ラッセル、
フォン・ノイマンE・パウリアインシュタイン
が参加していたそうです。天才大集合ですね。

そして、ファインマンはアインシュタインと共に
原爆開発の計画であるマンハッタン計画に参画しています。その中で、率直に意見を述べたメモが
没後の2018年にサザビースで落札されています。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。

nowkouji226@gmail.com

2020/09/01_初版投稿
2025/09/08_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

American Feynman

He is the author of a well-known textbook, and his book has been available in Japan since I was a student. The textbook is used all over the world. He has won the Nobel Prize with Shinichiro Tomonaga for his achievements in quantum electrodynamics. .. Specifically, the first achievement that comes to mind when I hear Feynman’s name is path integral.

The mathematical formulation is amazing.
[Reference_Wikipedeia description: Path integral]

Concept of path integral

Two, three, four, … infinite routes that can be expanded when considering the two routes first and then the contributions from each. And expand the route to infinity. To introduce Feynman’s idea a little more concretely, the idea is that if we expand the double-slit experiment, we will think of an empty space. It seems that Feynman’s way of thinking about this path has some mathematical difficulties, but it is a very interesting idea in the world of physics, and I would like to continue thinking about it. In addition, the Feynman diagram, which models the reaction of elementary particles, is visually and intuitively excellent. It really looked like a genius.

I talked about achievements first, but at the end I will talk about how I grew up and how people connect. Feynman is struggling because he is Jewish. There was a time when he couldn’t enter university because of the Jewish quota, but he pursued research at MIT and Princeton University. When it was decided to hold a seminar on quantum theory of electromechanics at Princeton University, Eugene Wigner, Henry Norris Russell, von Neumann, E. Pauli, and Einstein were attending the seminar. is. Feynman and Einstein are participating in the Manhattan Project, a plan to develop the atomic bomb.
Among them, a memo that frankly expressed his opinion
It was sold at Sotheby’s in 2018 after his death.

に投稿 コメントを残す

矢野 健太郎
【数々の数学書を監修|「解法のテクニック」の著者】‐9/6改訂

こんにちはコウジです。
「矢野 健太郎」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

解法のテクニック
【スポンサーリンク】
【1912年3月1日生まれ ~ 1993年12月25日没】

矢野健太郎の多彩な活躍

矢野健太郎は私が使っていた数学の教科書の著者でした。
同名の方で漫画家の「矢野健太郎」と
サッカー選手の「矢野健太郎」が居ますが、
本稿は数学者の矢野健太郎に関する原稿です。

因みに、名前の「矢野」に関するエピソードとして
有名なものがあります。外人との雑談
をする中で
「矢野」って英語でいえばどんな表現?
と聞かれた時に、当意即妙で矢野さんは
次のように答えました。

「矢」=「Vector」、「野(野原)」=「Field」。

だから「矢野」って「ベクトル場」ですね。

そう答えたそうです。当然、外人は大喜び。

専門は幾何学関係か解析学関係だったかと。

彫刻家の子として生まれ東京帝大で学びます。

矢野健太郎とパリ大学

矢野健太郎の小学生時代にアインシュタインが来日し
健太郎
は刺激を受けました。また、
帝大の山内恭彦先生から
物理学の理解には
代数幾何学が必要だと教えを受けました。

物理現象のモデル化の有用性を感じた筈です。
その後、矢野はカルタン先生の下で学ぶべく
パリ大学
留学します。パリ大学で纏めた博士論文は
射影接続空間に
関する論文でした。

この頃から統一場理論にも関心を持ちます。

 矢野健太郎とアインシュタイン

戦後にはプリンストン高等研究所で微分幾何学の研究
をしていき、同時期に在席していたアインシュタイン
交流
を持ちます。奥様と一緒にアインシュタイン
写った写真は
大事にしていて、家宝としたそうです。

矢野健太郎の業績

矢野健太郎の著作は多岐に渡り、

受験参考書の定番だった(今でも定番)

解法のテクニック」は矢野健太郎の著作です。

また、アイザックアシモフポアンカレアインシュタイン
書物を日本に紹介する際に監修をしたりしました。更に、
矢野健太郎は微分幾何学において「Bochner–Yano 定理」を提唱しました。この定理は、ボッホナーと共同で、負のリッチ曲率をもつコンパクトリーマン多様体の等長群が有限であることを明らかにした重要な成果です ウィキペディア1_ウィキペディア2

他には、

  • 東京大学、東京工業大学名誉教授のほか、東京慈恵会医科大学、新潟大学、
    プリンストン高等研究所、ローマ大学、イタリア国立高等数学研究所、
    アムステルダム数学研究所、サウサンプトン大学、香港大学、ワシントン大学、
    リヴァプール大学、ブラウン大学、アバディーン大学など、
    非常に多彩な研究機関で国際的に活躍しました ウィキペディア

  • 国際数学者会議(1954年アムステルダム)で招待講演を
    行ったことも記録されています ウィキペディア

  • また、
  • 主な著作として、以下のようなものがあります ウィキペディア

    • Les espaces à connexion projective et la géométrie projective des “paths”(1938年、博士論文)

    • Geometry of Structural Forms(1947年、日本語)

    • Groups of Transformations in Generalized Spaces(1949年)

    • Curvature and Betti Numbers(Bochnerとの共著、1953年)

    • The Theory of Lie Derivatives and its Applications(再版あり)

    • Differential geometry on complex and almost complex spaces(1965年)

    • Integral formulas in Riemannian Geometry(1970年)

    • Tangent and cotangent bundles: differential geometry(石平との共著、1973年)

    • Anti-invariant submanifolds, CR Submanifolds…, Structures on Manifolds(今野・小林との共著、1970~80年代)

私や皆さんが知った情報も矢野健太郎
の仕事かも知れませんね。

そんな、矢野健太郎はバイオリンが好きな静かな人でした。

安らかな印象を持ち続けたいと思います。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2020/11/12_初稿投稿
2025/09/06‗改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

Various activities of Kentaro Yano

Kentaro Yano was the author of the textbook I was using. There is a manga artist “Kentaro Yano” and a soccer player “Kentaro Yano” who have the same name, but this article is about the mathematician Kentaro Yano. By the way, there is a famous episode about the name “Yano”. What kind of expression is “Yano” in English while chatting with foreigners? When asked, Mr. Yano was selfish
“Arrow” = “Vector”, “Field (field)” = “Field”, so “Yano” is a “vector field”. I heard that he answered. Naturally, foreigners are overjoyed. Was my specialty related to geometry or analysis? He was born as a child of a sculptor and studied at the University of Tokyo.

Kentaro Yano and the University of Paris

Kentaro Yano was inspired by Einstein’s visit to Japan when he was in elementary school. Also, Professor Yasuhiko Yamanouchi of Imperial University taught me that algebraic geometry is necessary to understand physics. It seems that he found the usefulness of modeling physical phenomena. After that, Yano will study abroad at the University of Paris to study under Professor Cartan. His dissertation he compiled was a dissertation on the projective connection space. From this time on, he was also interested in unified field theory.

Kentaro Yano and Einstein

After the war, he studied differential geometry at the Princeton Institute for Advanced Study and interacted with Einstein, who was present at the same time. He cherished the photo of Einstein with his wife and made it a heirloom.

Kentaro Yano has a wide variety of authors, and Kentaro Yano’s “Solution Technique”, which was a staple of examination reference books. He also supervised the introduction of Isaac Asimov, Poincaré and Einstein’s books to Japan. The information that I and everyone knew may be Kentaro Yano’s work. Kentaro Yano was a quiet person who liked the violin. He wants to keep a peaceful impression.