に投稿 コメントを残す

オックスフォード大学(OXFORD)

ニューカッスル生れ

ピーター・ヒッグス-Peter Ware Higgsは2024年4月8日にエレインバラ大学のヒッグスしが亡くなりました。享年94才。謹んでお悔やみ申し上げます。

ヒッグス氏は1929年に英国中部のニューカッスルに生まれてます。

ピーター・ヒッグス氏は理論物理学者であり、特に素粒子物理学の分野で知られています。ヒッグスは、ヒッグス粒子(またはヒッグス・ボソン)の存在を予測しました。この粒子は、物質の質量を与える役割を果たすとされ、素粒子の標準模型において重要な位置を占めています。

2013年、ヒッグスはその業績に対してノーベル物理学賞を受賞しました。彼の理論の確証を示す実験結果が得られたことにより、ヒッグス粒子の発見は科学界に大きな影響を与え、標準模型の確立と理解を深める上で重要な一歩となりました。

キングス・カレッジ時代

ヒッグス氏はロンドン大学キングスカレッジで学びます。1950年頃から研究生活をしていたと考えたら、当時の宇宙論はどうだったのでしょうか??素粒子論はどうだったのでしょうか??

1950年代当時の宇宙論と素粒子論は、まだ発展途上の段階でしたが、重要な発展を遂げていました。

宇宙論に関しては、一般相対性理論に基づいた大局的な宇宙モデルが提案され、宇宙が膨張していることが広く受け入れられていました。エドウィン・ハッブルによる銀河の赤方偏移の観測結果が、宇宙膨張の証拠として重要な役割を果たしました。しかし、宇宙初期の状態や大爆発理論はまだ完全に確立されていなかったため、この時期の宇宙論はさまざまな理論が提案されるなかで進化していました。

一方、素粒子論は量子力学と場の理論の枠組みの中で発展していましたが、まだ標準模型のような包括的な理論が確立される前でした。1950年代には、素粒子の発見や特性の理解が進みつつありました。たとえば、1956年には中性子と陽子が弱い相互作用によって相互作用することが示され、弱い相互作用の理論が発展しました。また、量子電磁力学や量子色力学など、素粒子間の相互作用を記述する理論が次第に発展していった時期でもあります。

つまり、ヒッグス氏が研究活動を始めた1950年代には、宇宙論と素粒子論はまだ発展途上であり、様々な新しい発見や理論が提案される時代でした。

南部陽一郎との繋がり

1964年にヒッグス粒子の概念をヒッグス氏は提唱しています。実際に理論の正しさが明らかにされたのは2012年のCERN(欧州原子核研究機構)の加速器による実験でした。ヒッグス粒子の存在については同国のホーキング氏と議論を交わしました。ホーキング氏は存在を否定していたようです。

ヒッグス粒子そもそものアイディアは南部陽一郎の「自発的対称性の破れ」だと言われています。ヒッグス氏は質量の起源も素粒子にあると考えたのです!

自発的対称性の破れは、物理学の概念であり、シンメトリーが物理的な状態や系の性質に対して破れる現象を指します。例えば、氷の結晶構造や磁性体の磁化などがこの概念に基づいています。この理論は、シンメトリーが存在する状態よりも低いエネルギー状態が存在することを示唆しています。

ヒッグスは、素粒子が質量を持つメカニズムを理解するために、自発的対称性の破れの概念を応用しました。具体的には、ヒッグスは素粒子が場と相互作用する際に、対称性が自発的に破れることで、質量を持つようになると考えました。これは、ヒッグス場と呼ばれる場の存在を仮定することで実現されます。

ヒッグス場は、宇宙全体を満たしており、素粒子がこの場と相互作用することで質量を獲得します。ヒッグス場の効果が弱い領域では、素粒子は高いエネルギーを持ち、質量がほぼ無視できるように見えます。しかし、ヒッグス場が強い領域では、素粒子はヒッグス場と相互作用し、その結果として質量を持つことになります。

ヒッグス場とその相互作用が素粒子の質量を与えるメカニズムは、標準模型と呼ばれる素粒子物理学の理論の中核をなしています。2012年のCERNの大型ハドロン衝突型加速器(LHC)による実験で、ヒッグス粒子の存在が観測され、これが素粒子の質量を与えるメカニズムの一部を確認する重要な証拠となりました。

エディンバラ大より悼辞

エディンバラ大学はヒッグス氏に次のような評価を捧げています。

(ヒッグス氏は)「偉大な教師、指導者でもあり何世代もの和解科学者に刺激を与えた」

〆最後に〆

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com


【スポンサーリンク】

20214/04/15_初回投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介

力学関係のご紹介

【このサイトはAmazonアソシエイトに参加しています】

 

 

に投稿 コメントを残す

アマーリエ・エミー・ネーター Amalie Emmy Noether‗4/13改訂‗1882/3/23 – 1935/4/14

deutuland

ユダヤ系ドイツ人エミー・ネータ

エミー・ネータの名前は‗太田氏浩一の本
「ほかほかパン 物理学者のいた街」で知りました。

出来立てのパンのように温かいイメージです。

そして早口で話すユダヤ系のドイツ人。それが
「代数学の母」エミー・ネーターだと言えましょう。

アマーリエ・エミー・ネーターは、数学における
重要な概念である環、体、多元環の理論を発展させる
ことで、その名声を確立しました。以下に、彼女の
主な貢献として挙げられるものを具体的に説明します:

環の理論の発展:

ネーターは環の理論を深く探究し、その構造や性質に関する重要な結果を示しました。環は数学的構造の一般化であり、整数環、多項式環などの重要な例が含まれます。彼女の業績は、環論の基礎を確立し、この分野の発展に大きく貢献しました。

体の理論の貢献:

ネーターは体の理論にも重要な貢献をしました。体は、加法と乗法の演算が定義され、特定の性質を持つ集合です。彼女の研究は、体の拡大、体の構造、そして体の理論における重要な定理の証明に焦点を当てました。

多元環の理論の発展:

多元環は、環の一般化であり、スカラーの積によって要素を乗算する代数的構造です。ネーターは多元環の理論を探求し、その基礎を築きました。特に非可換多元環に関する彼女の業績は、数学の理論の発展において重要な役割を果たしました。

これらの業績は、ネーターが抽象代数学の分野において
先駆的な研究を行い、その成果が数学の基礎理論や
応用分野に大きな影響を与えたことを示しています。

また、物理学においては現象理解を対称形から考える
「ネーターの定理」が重要です。

最後に、ネーターの人柄が伝わるエピソードをご紹介します。:

大学の建物が州の祝日で閉まっていた時の話です。
ネーターは外にあるの階段に
そのクラスの生徒たち
を集めました。連絡の行き違いでしょうか。生徒さんと

ネーターが教室に入れない日があったのです。
そんな日にはネーターは森を通って

地元の喫茶店で講義をしていたそうです。

また、第三帝国がユダヤ人迫害を始めた
時期には、大学に入れないのでネーターは
自宅に生徒を集めて講義をしていました。
そんな風にしてエミー・ネーターは
数学を発展させ続けていました。

コスパ最強・テックジム|プログラミング教室の無料カウンセリング【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2024/04/06_初稿投稿

旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介

ドイツ関連のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

ディーゼル
4/12改訂‗: Rudolf Diesel、1858/3/18 – 1913/9/29

deutuland

パリ生まれのディーゼル

ディーゼルはフランスの製本業を営んでいた父のもとに
パリで生まれます。1870年の普仏戦争勃発に伴い、
多くのドイツ人はフランスから退去させられました。
ディーゼル一家もロンドンに移住します。
12歳の時にルドルフは、ドイツ語の教育を
受ける為にアウクスブルクの母方の叔父と叔母の下へ
送られました。1873年にトップの成績で学校を卒業し、
工業学校を経てミュンヘン工科大学へ進みます。

そもそも、私は
太田氏の小説「ほかほかのパン」で
ディーゼルの名前を思い出しました。

ルドルフ・ディーゼルに対するイメージは
ヤンマー社の彦根研究所で初期型のエンジン
を見た時の思い出しかありませんでした。

調べてみると、実の所は色々な足跡を残しています。
ルドルフ・ディーゼルは、ディーゼルエンジン
の発明者として知られていますが、彼の足跡は
その発明にとどまりません。以下に、
彼の主な業績や足跡を紹介します。

ディーゼルエンジンの発明:

ルドルフ・ディーゼルは、1892年に初めてディーゼルエンジンの特許を取得しました。これは内燃機関の一種であり、蒸気機関と比較して効率が高く、燃料の消費量が少ない特徴を持っています。ディーゼルエンジンは、自動車、船舶、発電所など広範囲にわたる産業で使用されています。

技術革新の推進: ディーゼルは、燃料の消費を最小限に抑えつつエネルギーを効率的に変換する方法を探求しました。彼の発明は、産業革命以降の技術革新に大きな影響を与えました。

産業界への貢献:

ルドルフ・ディーゼルは、彼の発明を実用化するために努力し、産業界にその技術を普及させました。これにより、機械化された生産プロセスが可能となり、産業の発展に寄与しました。

教育活動:

ディーゼルは後進の育成にも力を注ぎました。彼はエンジニアリングの教育に熱心であり、多くの学生や技術者を指導しました。

社会的影響:

ルドルフ・ディーゼルの発明は、エネルギーの効率的な利用によって社会に大きな影響を与えました。それにより、交通手段や産業活動の発展が促進され、経済の成長に寄与しました。

遺産と認識:

ディーゼルエンジンの普及と彼の業績に対する認識は、
世界中で広く認識されています。彼の名前は、
エンジンや自動車産業、エネルギー分野など、
多くの分野で永遠に記憶されるでしょう。
私が彦根で見た遺産は一端に過ぎません。

これらは、ルドルフ・ディーゼルが残した
主な足跡の一部です。
彼の業績は、
現代の産業社会においても
重要な役割を果たしています。



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレス迄お願いします。
問題点には適時、
改定・返信をします。

nowkouji226@gmail.com

2024/04/05_初稿投稿
2024/04/12‗改訂投稿

旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
ドイツ関連のご紹介へ
電磁気学関係

【このサイトはAmazonアソシエイトに参加しています】

(2024/4/12時点での対応英訳)

Diesel born in Paris

Diesel was born to his father who was a bookbinder in France.
Born in Paris. With the outbreak of the Franco-Prussian War in 1870,
Many Germans were expelled from France.
The Diesel family also moves to London.
At the age of 12 Rudolf received a German education.
I went to my maternal uncle and aunt in Augsburg to receive the test.
Sent. He graduated from school at the top of his class in 1873,
After attending technical school, he entered the Technical University of Munich.
In the first place, I
In Mr. Ota’s novel “Hot other bread”
I remembered the name Diesel.

What is your impression of Rudolf Diesel?
Early engine at Yanmar’s Hikone Research Institute
All I could remember was when I saw it.

If you look into it, you’ll find that it actually leaves a lot of footprints.
Rudolf Diesel is a diesel engine
Although he is known as the inventor of
It’s not just his invention. less than,
We will introduce his main achievements and footprints.

Invention of the diesel engine:

Rudolf Diesel patented the first diesel engine in 1892. This is a type of internal combustion engine that has higher efficiency and consumes less fuel than a steam engine. Diesel engines are used in a wide range of industries, including automobiles, ships, and power plants.

Driving innovation: Diesel explored ways to efficiently convert energy while minimizing fuel consumption. His inventions had a major impact on technological innovation after the Industrial Revolution.

Contribution to industry:

Rudolf Diesel worked hard to put his invention into practice and popularized it in industry. This enabled mechanized production processes and contributed to the development of industry.

Educational activities:

Diesel also focused on training the next generation. He was passionate about engineering education and mentored many students and engineers.

Social impact:

Rudolf Diesel’s invention had a huge impact on society through the efficient use of energy. This facilitated the development of transportation and industrial activities, contributing to economic growth.

Heritage and recognition:

The spread of diesel engines and recognition of his achievements were
Widely recognized all over the world. his name is,
engines, automobile industry, energy field, etc.
It will be forever remembered in many fields.
The heritage that I saw in Hikone is just one part of it.

These were left behind by Rudolf Diesel
Some of the main footprints. His achievements are
Even in modern industrial society
plays an important role.

 

に投稿 コメントを残す

ピエール・ラプラス‗
P-S Laplace_4/10改訂_1749/3/23-1827/3/5

パリの夕暮れ

天文学者ラプラス

ラプラスはフランスの数学者にして物理学者、天文学者です。

ニュートンの後に時代に天文学の理解を進めました。名著である
「天体力学概論」(traité intitulé Mécanique Céleste)「確率論の解析理論」
をまとめています。 1789年には、その功績を評価され
ロンドン王立協会フェローに選ばれています。

ラプラスの業績

ラプラシアン(ラプラス作用素):Δの二乗:ベクトルの勾配と表現できます。

ラプラス方程式:ラプラシアンを=0としたは2階の微分方程式で,
一般的に3つの座標変数をちます。

カント-ラプラスの星雲説:1755年にカントが唱え、96年にラプラスが補説。
太陽系の起源として星雲状ガス塊であるとの考えました。

決定論者ラプラス

ラプラスは決定論者です。ある時点の後に起きるすべての現象は、
それ以前の条件に起因し、完全に決定されていると考えていました。

Wikipediaによると決定論とは「ある特定の時間の宇宙のすべての粒子の運動状態が
分かれば、これから起きるすべての現象はあらかじめ計算できるという考え方」です。

「全ての事象の原因と結果は因果律に支配されているが故に、未来は一意的に決定される」
とする「因果的決定論」に属しています。
決定論のなかでも「強い」部類のものであるとされているのです。

但しラプラスは真面目に考えています。いわゆるラプラスのいう
「ラプラスの悪魔」に対して考察しているのです。
考えたら無茶苦茶な悪魔です。

「ある瞬間における全ての物質の力学的状態を知ることが出来る。
同時に、全てののデータを解析できるだけの能力の知性」という悪魔です。

まさに「決定論的での神ってる存在」です。
因果律に重みを置きすぎているともいえますね。

定まっている未来を完全に見通すことができる者」という
概念的なとしての「仮定(命題)」だといえます。

政治家ラプラス

ラプラスはナポレオン・ボナパルトの統領政府で1ヵ月余の間、
内務大臣に登用され元老院議員を努めていました。。
その後に王政復古の大号令が出されて後は、ルイ18世の下で
貴族院議員として活躍しています。意外な一面ですね!!

|コスパ最強・タイパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。
nowkouji226@gmail.com

2024/04/03_初稿投稿
2024/04/10‗改訂投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
力学関係

【このサイトはAmazonアソシエイトに参加しています】

astronomer laplace

Laplace was a French mathematician, physicist, and astronomer.

He advanced the understanding of astronomy in an era after Newton. A masterpiece
“Introduction to Celestial Mechanics” (traité intitulé Mécanique Céleste) “Analytical Theory of Probability Theory”
I am summarizing. In 1789 he was recognized for his
He has been elected a Fellow of the Royal Society of London.

Laplace’s achievements

Laplacian (Laplace operator): Δ squared: Can be expressed as the gradient of a vector.

Laplace equation: Setting the Laplacian = 0 is a second-order differential equation,
Generally, there are three coordinate variables.

Kant-Laplace’s nebula theory: Posted by Kant in 1755, supplemented by Laplace in 1996.
He believed that the origin of the solar system was a nebular gas mass.

determinist laplace

Laplace is a determinist. All phenomena that occur after a certain point are
It was attributed to previous conditions and was thought to be completely determined.

According to Wikipedia, determinism means that “the state of motion of all particles in the universe at a particular time is
The idea is that if we understand this, all phenomena that will occur in the future can be calculated in advance.

“Because the cause and effect of all events are governed by the law of causality, the future is uniquely determined.”
It belongs to “causal determinism”.
It is considered to be one of the “strong” types of determinism.

However, Laplace is thinking seriously. So-called Laplace’s
He is considering “Laplace’s Demon.”
If you think about it, he’s an unreasonable devil.

“It is possible to know the mechanical state of all matter at a given moment.
At the same time, it is a devil with an intelligence that is capable of analyzing all data.

It’s exactly like a “deterministic God”.
It can be said that he places too much weight on the law of cause and effect.

“A person who can completely foresee the fixed future.”
It can be said to be a conceptual “assumption (proposition).”

politician laplace

Laplace served in Napoleon Bonaparte’s government for just over a month.
He was appointed Minister of the Interior and served as a member of the Senate. .
After that, the Great Decree for the Restoration of the Monarchy was issued, and after that, under Louis XVIII.
He is an active member of the House of Lords. That’s a surprising side!!

に投稿 コメントを残す

オットー・ハーン‗
【1879年3月8日 – 1968年7月28日】

deutuland

オットー・ハーン(Otto Hahn)は20世紀初頭のドイツの化学者で、
核化学の分野で重要な業績を残しました。

彼は核分裂の現象を解明する上で重要な役割を果たしました。
また、リーゼ・マイトナー(Lise Meitner)との共同研究は、
核分裂の理解に大きく貢献しました。

1938年、オットー・ハーンとリーゼ・マイトナーは
ウラニウムの核を中性子で照射する実験を行い、
その結果としてバリウムとクリプトンが生成されることを発見しました。
この現象は、ウラニウム核が中性子を吸収し、
重い核と軽い核に分裂することを示しており、
これが後に核分裂として知られるようになりました。

しかし、1938年当時、ハーンはこの現象を
完全に理解することができず、その解釈に関する
理論的な考察を行うことができませんでした。

更に、この話の中で重要なのはマイトナーがユダヤ系だという事情です。
マイトナーはナチスの台頭に従ってドイツ内での研究活動が
難しくなってきます。その後、リーゼ・マイトナーはスウェーデンに亡命し、
オットー・ロベルト・フリッシュ(Otto Robert Frisch)と共同で
核分裂の理論的な解釈を提案しました。その後、
ハーンとマイトナーの共同研究成果が、マイトナーの名前が
冠された形で広く知られるようになりました。

オットー・ハーンとリーゼ・マイトナーの業績は、
20世紀の物理学と化学における最も重要な発見の一つ
である核分裂の理解につながりました。
彼らの実験的結果と理論的解釈は、核物理学と核化学の分野
における革命的な進歩をもたらしました。

ハーンとマイトナーが行ったウラニウムの核を中性子で照射する実験は、当時の核物理学において画期的なものでした。彼らが発見した核分裂の現象は、核が中性子を吸収して分裂することを示唆し、その際に新たな元素が生成されることを示しました。この発見は、後に原子爆弾や核エネルギーの開発につながる重要な基盤となりました。

しかしながら、ナチスの政権によるユダヤ人に対する迫害の影響により、マイトナーの研究環境は悪化しました。彼女はスウェーデンに亡命し、そこでオットー・ロベルト・フリッシュと協力して核分裂の理論的解釈を提案しました。その後、マイトナーの名前が冠された形で、彼らの共同研究成果が広く知られるようになりました。

このように、ハーンとマイトナーの業績は、科学史上永遠に残る重要な貢献であり、彼らの協力関係は科学的発展における模範的な例として賞賛されています。

|コスパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2024/04/02_初回投稿
2024/04/08‗改訂投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介
熱統計関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

₍2024年4月時点での対応英訳)

Otto Hahn was a German chemist in the early 20th century.
He made important achievements in the field of nuclear chemistry.

He played an important role in elucidating the phenomenon of nuclear fission.
In addition, joint research with Lise Meitner
He made a major contribution to the understanding of nuclear fission.

In 1938, Otto Hahn and Lise Meitner
An experiment was conducted in which uranium nuclei were irradiated with neutrons.
They discovered that barium and krypton were produced as a result.
This phenomenon occurs when uranium nuclei absorb neutrons,
This shows that the nucleus splits into a heavy nucleus and a light nucleus.
This later became known as nuclear fission.

However, in 1938, Hahn recognized this phenomenon.
cannot be fully understood and is concerned with its interpretation.
He was unable to make theoretical considerations.

Furthermore, what is important in this story is that Meitner is Jewish.
Meitner’s research activities in Germany began with the rise of the Nazis.
It’s getting difficult. After that, Lise Meitner went into exile in Sweden.
She collaborated with Otto Robert Frisch
He proposed a theoretical interpretation of nuclear fission. after that,
The results of Hahn and Meitner’s joint research will be recognized by Meitner’s name.
It became widely known by its crowned form.

The achievements of Otto Hahn and Lise Meitner are
One of the most important discoveries in physics and chemistry of the 20th century
This led to an understanding of nuclear fission.
Their experimental results and theoretical interpretations are important in the fields of nuclear physics and nuclear chemistry.
brought about revolutionary advances in

Hahn and Meitner’s experiment in irradiating uranium nuclei with neutrons was a breakthrough in nuclear physics at the time. The phenomenon of nuclear fission that they discovered suggested that nuclei absorb neutrons and split, and new elements were created during this process. This discovery was an important foundation that later led to the development of the atomic bomb and nuclear energy.

However, Meitner’s research environment deteriorated due to the persecution of Jews by the Nazi regime. She fled to Sweden, where she collaborated with Otto Robert Frisch to propose a theoretical interpretation of nuclear fission. Since then, the results of their joint research have become widely known, bearing Meitner’s name.

The work of Hahn and Meitner is thus a timeless and important contribution to the history of science, and their collaboration is hailed as an exemplary example of scientific development.

に投稿 コメントを残す

アマーリエ・エミー・ネーター Amalie Emmy Noether‗1882/3/23 – 1935/4/14

deutuland

ユダヤ系ドイツ人エミー・ネータ

エミー・ネータの名前は‗太田氏浩一の本
「ほかほかパン 物理学者のいた街」で知りました。

出来立てのパンのように温かいイメージです。

そして早口で話すユダヤ系のドイツ人。それが
「代数学の母」エミー・ネーターだと言えましょう。

アマーリエ・エミー・ネーターは、数学における
重要な概念である環、体、多元環の理論を発展させる
ことで、その名声を確立しました。以下に、彼女の
主な貢献として挙げられるものを具体的に説明します:

環の理論の発展:

ネーターは環の理論を深く探究し、その構造や性質に関する重要な結果を示しました。環は数学的構造の一般化であり、整数環、多項式環などの重要な例が含まれます。彼女の業績は、環論の基礎を確立し、この分野の発展に大きく貢献しました。

体の理論の貢献:

ネーターは体の理論にも重要な貢献をしました。体は、加法と乗法の演算が定義され、特定の性質を持つ集合です。彼女の研究は、体の拡大、体の構造、そして体の理論における重要な定理の証明に焦点を当てました。

多元環の理論の発展:

多元環は、環の一般化であり、スカラーの積によって要素を乗算する代数的構造です。ネーターは多元環の理論を探求し、その基礎を築きました。特に非可換多元環に関する彼女の業績は、数学の理論の発展において重要な役割を果たしました。

これらの業績は、ネーターが抽象代数学の分野において
先駆的な研究を行い、その成果が数学の基礎理論や
応用分野に大きな影響を与えたことを示しています。

また、物理学においては現象理解を対称形から考える
「ネーターの定理」が重要です。

最後に、ネーターの人柄が伝わるエピソードをご紹介します。:

大学の建物が州の祝日で閉まっていた時の話です。
ネーターは外にあるの階段に
そのクラスの生徒たち
を集めました。連絡の行き違いでしょうか。生徒さんと

ネーターが教室に入れない日があったのです。
そんな日にはネーターは森を通って

地元の喫茶店で講義をしていたそうです。

また、第三帝国がユダヤ人迫害を始めた
時期には、大学に入れないのでネーターは
自宅に生徒を集めて講義をしていました。
そんな風にしてエミー・ネーターは
数学を発展させ続けていました。

コスパ最強・テックジム|プログラミング教室の無料カウンセリング【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2024/04/06_初稿投稿
2024/04/13‗改訂投稿

旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介

ドイツ関連のご紹介

【このサイトはAmazonアソシエイトに参加しています】

₍2024/4月時点での対応英訳)

German Jewish Emmy Neta

Emmy Neta’s name is‗Koichi Ota’s book
I learned about it from “Hotada Bread: The Town Where the Physicists Worked”.
The image is warm, like freshly made bread.

And a fast-talking Jewish German. that is
You could say she’s Emmy Noether, the “mother of algebra.”

Amalie Emmy Noether is an expert in Mathematics.
She develops the theory of important concepts rings, fields, and multidimensional algebras.
By doing so, she established her reputation. Below is her
Here are some of her major contributions:

Development of ring theory:

Noether deeply explored the theory of rings and showed important results regarding their structure and properties. Rings are a generalization of mathematical structures and include important examples such as integer rings, polynomial rings, etc. Her work established the foundations of ring theory and greatly contributed to the development of this field.

Contributions of field theory:

Noether also made important contributions to the theory of the body. A field is a set for which addition and multiplication operations are defined and has specific properties. Her research focused on field extensions, field structure, and proving important theorems in field theory.

Development of the theory of algebras:

An algebra is a generalization of rings, an algebraic structure whose elements are multiplied by a product of scalars. Noether explored and laid the foundations for the theory of algebras. Her work, especially on noncommutative algebras, played an important role in the development of mathematical theory.

These achievements are the result of Noether’s achievements in the field of abstract algebra.
She conducted pioneering research, and the results of her research led to the foundational theory of mathematics.
This shows that it has had a significant impact on applied fields.

She also points out that in physics, understanding phenomena is considered from the perspective of symmetry.
“Noether’s theorem” is important.

Finally, I would like to introduce an episode that conveys Noether’s personality. :

This was when the university buildings were closed for a state holiday.
The students of that class are outside on the stairs.
We collected. Was it a miscommunication? with students
There were days when Noether was not allowed in the classroom.
On such days, Noether walks through the forest
Apparently she was giving a lecture at a local coffee shop.

Also, the Third Reich began persecuting Jews.
At that time, she would not be able to enter university, so Noether
I used to gather her students at her home and give lectures.
That’s how Emmy Noether
He continued to develop his mathematics.

 

に投稿 コメントを残す

ルドルフ・ディーゼル
‗: Rudolf Diesel、1858/3/18 – 1913/9/29

deutuland

パリ生まれのディーゼル

ディーゼルはフランスの製本業を営んでいた父のもとに
パリで生まれます。1870年の普仏戦争勃発に伴い、
多くのドイツ人はフランスから退去させられました。
ディーゼル一家もロンドンに移住します。
12歳の時にルドルフは、ドイツ語の教育を
受ける為にアウクスブルクの母方の叔父と叔母の下へ
送られました。1873年にトップの成績で学校を卒業し、
工業学校を経てミュンヘン工科大学へ進みます。

そもそも、私は
太田氏の小説「ほかほかのパン」で
ディーゼルの名前を思い出しました。

ルドルフ・ディーゼルに対するイメージは
ヤンマー社の彦根研究所で初期型のエンジン
を見た時の思い出しかありませんでした。

調べてみると、実の所は色々な足跡を残しています。
ルドルフ・ディーゼルは、ディーゼルエンジン
の発明者として知られていますが、彼の足跡は
その発明にとどまりません。以下に、
彼の主な業績や足跡を紹介します。

ディーゼルエンジンの発明:

ルドルフ・ディーゼルは、1892年に初めてディーゼルエンジンの特許を取得しました。これは内燃機関の一種であり、蒸気機関と比較して効率が高く、燃料の消費量が少ない特徴を持っています。ディーゼルエンジンは、自動車、船舶、発電所など広範囲にわたる産業で使用されています。

技術革新の推進: ディーゼルは、燃料の消費を最小限に抑えつつエネルギーを効率的に変換する方法を探求しました。彼の発明は、産業革命以降の技術革新に大きな影響を与えました。

産業界への貢献:

ルドルフ・ディーゼルは、彼の発明を実用化するために努力し、産業界にその技術を普及させました。これにより、機械化された生産プロセスが可能となり、産業の発展に寄与しました。

教育活動:

ディーゼルは後進の育成にも力を注ぎました。彼はエンジニアリングの教育に熱心であり、多くの学生や技術者を指導しました。

社会的影響:

ルドルフ・ディーゼルの発明は、エネルギーの効率的な利用によって社会に大きな影響を与えました。それにより、交通手段や産業活動の発展が促進され、経済の成長に寄与しました。

遺産と認識:

ディーゼルエンジンの普及と彼の業績に対する認識は、
世界中で広く認識されています。彼の名前は、
エンジンや自動車産業、エネルギー分野など、
多くの分野で永遠に記憶されるでしょう。
私が彦根で見た遺産は一端に過ぎません。

これらは、ルドルフ・ディーゼルが残した
主な足跡の一部です。
彼の業績は、
現代の産業社会においても
重要な役割を果たしています。



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレス迄お願いします。
問題点には適時、
改定・返信をします。

nowkouji226@gmail.com

2024/04/05_初稿投稿

旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
ドイツ関連のご紹介へ
電磁気学関係

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

ピエール・ラプラス‐Pierre-Simon Laplace1749/3/23-1827/3/5

パリの夕暮れ

天文学者ラプラス

ラプラスはフランスの数学者にして物理学者、天文学者です。

ニュートンの後に時代に天文学の理解を進めました。名著である
「天体力学概論」(traité intitulé Mécanique Céleste)「確率論の解析理論」
をまとめています。 1789年には、その功績を評価され
ロンドン王立協会フェローに選ばれています。

ラプラスの業績

ラプラシアン(ラプラス作用素):Δの二乗:ベクトルの勾配と表現できます。

ラプラス方程式:ラプラシアンを=0としたは2階の微分方程式で,
一般的に3つの座標変数をちます。

カント-ラプラスの星雲説:1755年にカントが唱え、96年にラプラスが補説。
太陽系の起源として星雲状ガス塊であるとの考えました。

決定論者ラプラス

ラプラスは決定論者です。ある時点の後に起きるすべての現象は、
それ以前の条件に起因し、完全に決定されていると考えていました。

Wikipediaによると決定論とは「ある特定の時間の宇宙のすべての粒子の運動状態が
分かれば、これから起きるすべての現象はあらかじめ計算できるという考え方」です。

「全ての事象の原因と結果は因果律に支配されているが故に、未来は一意的に決定される」
とする「因果的決定論」に属しています。
決定論のなかでも「強い」部類のものであるとされているのです。

但しラプラスは真面目に考えています。いわゆるラプラスのいう
「ラプラスの悪魔」に対して考察しているのです。
考えたら無茶苦茶な悪魔です。

「ある瞬間における全ての物質の力学的状態を知ることが出来る。
同時に、全てののデータを解析できるだけの能力の知性」という悪魔です。

まさに「決定論的での神ってる存在」です。
因果律に重みを置きすぎているともいえますね。

定まっている未来を完全に見通すことができる者」という
概念的なとしての「仮定(命題)」だといえます。

政治家ラプラス

ラプラスはナポレオン・ボナパルトの統領政府で1ヵ月余の間、
内務大臣に登用され元老院議員を努めていました。。
その後に王政復古の大号令が出されて後は、ルイ18世の下で
貴族院議員として活躍しています。意外な一面ですね!!

|コスパ最強・タイパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。
nowkouji226@gmail.com

2024/04/03_初稿投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
力学関係

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

オットー・ハーン‗
【1879年3月8日 – 1968年7月28日】

deutuland

オットー・ハーン(Otto Hahn)は20世紀初頭のドイツの化学者で、核化学の分野で重要な業績を残しました。彼は核分裂の現象を解明する上で重要な役割を果たしました。また、リーゼ・マイトナー(Lise Meitner)との共同研究は、核分裂の理解に大きく貢献しました。

1938年、オットー・ハーンとリーゼ・マイトナーはウラニウムの核を中性子で照射する実験を行い、その結果としてバリウムとクリプトンが生成されることを発見しました。この現象は、ウラニウム核が中性子を吸収し、重い核と軽い核に分裂することを示しており、これが後に核分裂として知られるようになりました。

しかし、1938年当時、ハーンはこの現象を完全に理解することができず、その解釈に関する理論的な考察を行うことができませんでした。

更に、この話の中で重要なのはマイトナーがユダヤ系だという事情です。マイトナーはナチスの台頭に従ってドイツ内での研究活動が難しくなってきます。その後、リーゼ・マイトナーはスウェーデンに亡命し、オットー・ロベルト・フリッシュ(Otto Robert Frisch)と共同で核分裂の理論的な解釈を提案しました。その後、ハーンとマイトナーの共同研究成果が、マイトナーの名前が冠された形で広く知られるようになりました。
オットー・ハーンとリーゼ・マイトナーの業績は、20世紀の物理学と化学における最も重要な発見の一つである核分裂の理解につながりました。彼らの実験的結果と理論的解釈は、核物理学と核化学の分野における革命的な進歩をもたらしました。

ハーンとマイトナーが行ったウラニウムの核を中性子で照射する実験は、当時の核物理学において画期的なものでした。彼らが発見した核分裂の現象は、核が中性子を吸収して分裂することを示唆し、その際に新たな元素が生成されることを示しました。この発見は、後に原子爆弾や核エネルギーの開発につながる重要な基盤となりました。

しかしながら、ナチスの政権によるユダヤ人に対する迫害の影響により、マイトナーの研究環境は悪化しました。彼女はスウェーデンに亡命し、そこでオットー・ロベルト・フリッシュと協力して核分裂の理論的解釈を提案しました。その後、マイトナーの名前が冠された形で、彼らの共同研究成果が広く知られるようになりました。

このように、ハーンとマイトナーの業績は、科学史上永遠に残る重要な貢献であり、彼らの協力関係は科学的発展における模範的な例として賞賛されています。

|コスパ最強・テックジム|
プログラミング教室の無料カウンセリング
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2024/04/02_初回投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介
熱統計関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

ボルン
T-B稿【アインシュタインと「神はサイコロを振らない」と語った男】

SolvayConf-1927

ボルンについての別サイトを見つけました。

トラックバックの為に再度、更新履歴を残します。

https://blog.goo.ne.jp/kayamatetsu/e/8aef2e3e60c14b5f4ff842d2a0cb223e

是非、トラックバック許可頂き、併せて読んでいただけたらと存じます。

(以下原稿です)


【スポンサーリンク】

【1882年12月11日 ~1970年1月5日】

マックスボルンと確率解釈

M・ボルンはユダヤ系ドイツ人なので、

第二次世界大戦時は大変苦労しています。

そんな中でボルンは形成時の量子論において本質的な

概念である「確率解釈」を提唱しています。

私なりに確率解釈を考えてみると、
微視的な現象の観測では一意的に全ての値が定まる事実は無く、
観測する行為は
一定の確率で観測値を得る統計的な行為である
とする
解釈です。
【古典物理学での観測値に対応する物理量は量子論では期待値です。】

特定の観測値を持つ場合は確率で表現されます。
1930年に初版が書かれた教科書
【dirac「量子力学」】から一文を引用します。
「観測結果の計算には避けられない不定さがあり、そして理論のなしうることは、一般には我々が観測をする時にある特定の結果が得られる事の確率を計算するだけである」

ボルンの人間関係

ボルンはドイツ本国で教授職を解雇されたりしていて、
反戦の姿勢、非核の姿勢を貫き
ラッセル=アインシュタイン宣言にも参加しています。

この点ではドイツに残り、原爆開発に参加
していたハイゼンベルクとは全く別の人生を歩んでいます。

ちなみに、

ハイゼンベルクはボルンの門下生です。
オッペンハイマーもまた弟子にあたります。
オッペンハイマーとは
「ボルン・オッペンハイマー近似」と呼ばれる業績を残し、
共に研究していた時代があります。

共にユダヤ系でしたのでボルンはイギリス、
オッペンハイマーはアメリカへと追われていきます。
ユダヤ人排斥運動の中でボルンは教授職を奪われたのです。
戦時下でのどうしようもない事情でした。

彼の解釈で有名なやり取りがあります。

ボルンの考え方である確率解釈に対して反論した

アインシュタインが量子力学の解釈を

サイコロ遊びに例えたのです。

【Wikipedeaより引用:アインシュタインの有名な言葉
「彼(神)はサイコロを遊びをしない」は1926年
にボルンに当てた手紙の中で述べられたものである。】

さいころ遊びに例えた手紙が交わされた翌年の
1927年に
ハイゼンベルグが不確定性関係を定め、
このサイトTOPで写真を使っている
第五回ソルベー会議が開かれます。【於10月】

其処で本質に対して真剣な議論が交わされるのです。
人類の理解が大きく変化していった時代でした。

確率解釈は人類の思想にとって大きなパラダイムシフトです。

ボルンの考え方は、それまでの発想を大きく変えました。

最後にトリビア話

ボルンの孫の一人に歌手であるオリヴィア・ニュートン・ジョン
が居ました。私も初稿を書く際に分かったのですが意外ですね。

勝手に想像するとボルンは如何にもドイツ人らしい人
だったのでしょうね。アインシュタインとのやり取りは、
そんな彼を偲ばせます。

イギリスに亡命後にドイツへ帰国しており、
プランクと同じゲッティンゲン市立墓地に眠っているそうです。
母国の土に帰りたい想いもあったのでしょう。
そしてきっと、
お孫さんのオリビア・ニュートンジョンも墓参りに来るのでしょう。

関連URL(YouTubeへ:)
https://www.youtube.com/watch?v=E-JGTk_WM1k

TechAcademy [テックアカデミー]
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。

nowkouji226@gmail.com

2020/08/30_初版投稿
2023/01/15_改定投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
ドイツ関連のご紹介

量子力学関係

【このサイトはAmazonアソシエイト参加しています】

(2021年10月時点での対応英訳)

Max Born and Probabilistic Interpretation

Since M. Born is a Jewish German, he had a lot of trouble during World War II. Under such circumstances, he advocates “probabilistic interpretation”, which is an essential understanding of phenomena in the early quantum theory. To express the probability interpretation simply, it is an interpretation that the phenomenon related to the observation includes not only the uniquely obtained object but also the event observed with a certain probability. In other words, the observed value is multiplied by the certain probability. It is permissible if it is a match.

Born Relationships

Born has been dismissed as a professor in Germany, and he has been involved in the Russell-Einstein Declaration with an anti-war and non-nuclear stance. In this respect, he remains in Germany and lives a completely different life from Heisenberg, who participated in the development of the atomic bomb. By the way, Heisenberg is a student of Born. Oppenheimer is also a disciple. There was a time when Oppenheimer left a work called “Born-Oppenheimer approximation” and studied together. Both were of Jewish descent, so Born was chased by England and

Oppenheimer was chased by the United States. Born was deprived of his professorship during the Jewish exclusion movement. It was a terrible situation during the war. There is a well-known exchange in his interpretation. Einstein, who argued against Born’s idea of ​​stochastic interpretation, likened the interpretation of quantum mechanics to dice play.

[Quoted from Wikipedea: Einstein’s famous words
“He (God) does not play dice” is 1926
It was stated in a letter to Born. ]

In 1927, the year after this letter was exchanged, Heisenberg established an uncertainty relationship, and the 5th Solvay Conference using photographs will be held on the top of this site. [October] There is a serious discussion about the essence. It was an era when human understanding changed drastically. Probabilistic interpretation is a major paradigm shift for human thought. Born’s thinking changed his way of thinking.

Finally the trivia story

One of Born’s grandchildren was the singer Olivia Newton-John. I also found out when writing the first draft, but it’s surprising. Imagine that Born was a German person. The interaction with Einstein is reminiscent of him. He returned to Germany after his exile in England and is sleeping in the same Göttingen Cemetery as Planck. Perhaps he also wanted to return to his homeland. And I’m sure his grandson Olivia Newton-John will come to visit the grave.