に投稿 コメントを残す

こんにちはコウジです。
半年ごとの既存記事見直しの作業です。
今回は古代に原子の概念・手法を確立していった
大御所をご紹介します。時代は進み応用理論も展開されています。
では、ご覧ください。内容を整理し、リンクを見直しました。
現時点での英訳も考えています。

(以下原稿)

ギリシア哲学史
【スポンサーリンク】
【BC460年頃 ~ BC370年頃】

 原子論の始まり

デモクリトスは、古代ギリシアの哲学者です。苗字と名前がありそうだから調べてみたら見つかりません。この時代には未だ無いのかも知れません。何よりデモクリトスは初期の原子論を明確に示した人です。

デモクリトスはレウキッポスを師匠として考察を始め、その理論を確立しました。ベルシャの僧侶やエジプトの神官に学び、果てはインドやエチオピアまで出かけて見聞を広めたそうです。そんな活動的な人生を歩んでいて、仕舞いには生活に困るようになってしまい、最後は故郷のご兄弟に扶養の世話になっていたそうです。ただ死後はデモクリトスの著作物の公開朗読によって多額の贈与を受け国葬されたと伝えられています。こうした話を聞くと人徳について考えてしまいますね。デモクリトスはまさに「人が語り継ぎたい」と考えるような立派な人だったのです。隣人にそう思わせる人柄だったのです。

デモクリトスと統計的総合作用

 デモクリトスは、世界を「見えるもの」ではなく「小さな粒(原子)」の集まりとして理解しようとしました。つまり、あらゆる物体を小さな単位の集合として捉えるという考え方――後の統計的な思考の“原点”を作ったのです。これは、世界を数や比率で説明しようとする最初の試みとも言えます。ハイゼンベルグはその著書「現代物理学の自然像」(1955)において指摘しています。
「デモクリトスは次の命題を立てている。『甘いもの、または酸っぱいものはただ見かけだけであり、色はただ見かけだけであり、実際にはただ原子と空間があるだけである。』 」

デモクリトスは統計的な手法を発展させられる時代には生きていませんが、「統計的考え方の土壌を作った」と断言できます。

たとえば、私たちが「甘い」と感じる味覚も、ハイゼンベルクの理解では“原子の動きと配置の組み合わせ”で説明されるものです。つまり、感覚や色、音の違いさえも、原子と空間の配置という「統計的な構造」が作り出しているのです。

そして、デモクリトスの命題を解決するための
「原子と空間の新しい理論」をハイゼンベルグは全力で模索したのです。
食物は、燃やしてしまえば匂いも舐めた味もほぼ均一化されるのです。
人間生活の上で大事なものは対象物の、①特定時間での統計的法則性でありまた、観測する(または過去の事象の場合はパラメターを採取する)②タイミングなのです。統計的な手法によって、私たちは「現実を最もよく説明する近似値(=統計の解)」を求めることができます。そして、その解が本当に最適かどうかを比較・検証するという科学の方法論が、ここから始まっていったのです。

また、上記①、②と最適解の判断が、会話の中で出来ていない人は残念な人として扱われてしまいます。皆さん、少しでも良い議論を交わして下さい。

デモクリトスは哲学、詩学、倫理学、数学、天文学、音楽、生物学などで博識を示し、「知恵 (Sophia)」の異名を受けていました。私の視点では(物理学の観点から)原子論を創り出した点が特に重要です。

物質根源への定性的アプローチ 

物質の根元についての学説は、(後の)アリストテレスが完成させた四大元素(火・空気・水・土)が別途あって、時代ごとに原子論か四代元素かのどちらかが主流となって人々は根源物質を考えていました。デモクリトス以後、原子論は長らく反主流でしたが、ジョン・ドルトンの時代に彼によって優勢となりました。

【ドルトン以降の原子論は、デモクリトスの説と全く同じではありません。】ドルトンの時代には対象原子の質量やサイズに関する議論は無かったようですが、物質の根源物質を原子として考えて、元素の種類があると考えたのです。

現代では、原子は核反応によって別の元素に変わることもわかっています。しかし、日常生活で目にするあらゆる物質が、共通する最小単位「元素」の組み合わせでできている――この考えの原型を、デモクリトスはすでに語っていたのです。


化学的手段が無い時代に、こうした基礎知見を
確立できたのは驚くべき考察力です。

デモクリトスの洞察は、後の科学の根幹そのものに息づいています。
現代の量子物理学や統計力学も、実は彼の「原子と空間」
という発想を出発点にしているのです。いまもその知恵は、
私たちの科学的な思考の奥に静かに流れ続けています。

〆最後に〆



【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/10/06_初版投稿
2025/10/23_改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
イタリア関係のご紹介
ドイツ関連のご紹介
力学関係のご紹介
AIでの考察記事(他サイト

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

The beginning of atomism

Democritus is an ancient Greek philosopher. I can’t find it when I look it up because his last name and name are likely to be there. It may not be there yet in this era. Above all, Democritus is a person who clearly showed the early atomism.

Democritus established the theory with Leucippus as his mentor. He learned from Bersha monks and Egyptian priests, and eventually went to India and Ethiopia to spread his sights. He was living such an active life, and his disposition made him difficult to live, and in the end he was taken care of by his brothers in his hometown. However, after his death, it is reported that he was given a large gift and was state funeral by public reading of Demox’s work.

Democrates has shown knowledge in philosophy, poetry, ethics, mathematics, astronomy, music, biology, etc., and has been nicknamed “Sophia”. From my point of view, it is especially important that I created atomism (from a physics point of view).

Qualitative approach to material origin

The theory about the roots of matter has four major elements (fire, air, water, and soil) completed by (later) Aristotelis, and either atomism or the fourth element is the mainstream for each era. People were thinking about the source material. Atomism has long been anti-mainstream since Democrates, but was dominated by him during the time of John Dalton. [Atomism after Dalton is not exactly the same as Democritus’s theory. ] It seems that there was no discussion about the mass and size of the target atom, but I thought that the source substance of the substance was considered as an atom and that there were different types of elements. In reality, atoms change due to nuclear reactions, but Democrates argued that substances that support daily life can be expressed using the smallest unit called “elements.” It is a surprising record that we were able to establish such basic knowledge in an era when there was no chemical means. The insights derived by Democrates contributed significantly to the later development of physics. Knowledge is being deepened steadily even now.

〆Finally〆

に投稿 コメントを残す

松山基範【1884年10月25日 – 1958年1月27日_地磁気の反転を兵庫県の玄武岩の磁気測定で発見】‐10/20改訂

こんにちはコウジです。
半年ごとの新規記事投稿の中での草稿です。
今回は日本における地震観測の大御所をご紹介します。
時代は進み応用理論も展開されています。
では、ご覧ください。内容を整理し、リンクを見直しました。
現時点での英訳も考えています。

地球の歴史は常に変化に満ちています。その中でも特に人々を驚かせたのが
「地磁気の逆転」という現象です。コンパスの針が指す北と南が、
ある時代には逆だったという事実。この重要な発見を最初に科学的に示したのが、
日本の地球物理学者 松山基範(まつやま・もとのり)博士 でした。

1926年、兵庫県豊岡市の「玄武洞」で採取した玄武岩を調べた松山博士は、
その岩石の磁化方向が現在とは逆であることを突き止めました。
1929年の論文発表は、世界で初めて地磁気逆転を証明したものとして
知られています。その後、この研究は「チバニアン」認定の科学的根拠の一つ
ともなり、古地磁気学という新しい学問分野を切り開くきっかけとなりました。
本稿では、発見の経緯、玄武岩と磁化のメカニズム、地磁気逆転の仕組み、
そして松山博士の人物像をたどりながら、この偉業の意義を改めて振り返ります。


1. 発見の経緯とその意義

1-1 玄武洞での観察

1926年、京都大学の 松山基範博士 は、豊岡市にある「玄武洞」の約160万年前の玄武岩を調査しました。その結果、岩石の残留磁化が現在の地磁気と逆を向いていることを確認しました。この観察は当初、大きな注目を集めませんでしたが、1929年に論文として発表されると、地磁気が過去に反転していたことを示す最初の科学的報告となりました(Matsuyama, 1929)。

1-2 その後の評価

発表当時、学界は懐疑的でしたが、後の研究で裏付けられ、現在では地磁気逆転は確立した学説となっています。松山の名は「松山逆磁極期(Matuyama Reversed Chron)」として、地質学の標準的な時間区分に刻まれました。

まとめ(約200字)

松山博士が玄武洞で行った観察は、当時は小さな発見に見えましたが、のちに地球科学全体を変える基盤となりました。科学の進展は時に「時代が追いつくまで」評価されないことを示す好例でもあり、松山の研究はチバニアン認定にもつながる現代的な意義を持ち続けています。


2. 地磁気逆転のメカニズム

2-1 地球の磁場をつくる「ダイナモ作用」

地球の磁場は、外核の液体金属(主に鉄とニッケル)の対流によって生じる「地球ダイナモ作用」で生み出されています。この流れが変動すると、磁場の強さや方向も変化し、時には逆転が起こると考えられています(Glatzmaier & Roberts, 1995)。

2-2 逆転の周期性と特徴

地磁気逆転は完全に周期的ではなく、不規則に発生します。例えば「松山逆磁極期」は約260万年前から78万年前にかけて続きました。逆転の間隔は数十万年から百万年以上に及ぶこともあり、近い将来の逆転可能性についても議論されています。

2-3 現代観測との関連

現在、地磁気は弱まりつつあり、これが「逆転の前兆ではないか」との議論も存在します。しかし研究者の間では「弱まってもすぐに逆転するとは限らない」とされています(NASA, 2018)。

まとめ(約200字)

地磁気逆転は地球ダイナモ作用の自然な結果として生じる現象であり、地球の歴史を刻む「周期的な鼓動」ともいえます。松山博士の発見は、単なる岩石観察にとどまらず、この地球規模のダイナミズムを示す先駆的証拠となったのです。


3. 玄武岩と磁化のメカニズム

3-1 岩石に残る「自然残留磁化」

溶岩が冷えて固まるとき、岩石中の磁性鉱物(主に磁鉄鉱)が周囲の地磁気の方向に並び、その方向を保持します。これを「自然残留磁化(NRM)」と呼びます。

3-2 玄武岩の特徴

玄武洞の岩石は玄武岩であり、磁性鉱物を多く含むため、過去の地磁気を記録するのに適しています。玄武洞の柱状節理は景観的にも知られていますが、科学的にも「天然の磁気テープ」として大きな価値を持ちます。

3-3 測定方法の進化

松山博士の時代には限られた測定技術しかありませんでしたが、現在では高感度の磁力計や放射年代測定と組み合わせて、より正確な古地磁気解析が行われています。

まとめ(約200字)

玄武岩は地球の過去を記録する「天然の磁気メディア」といえる存在です。松山博士は、この岩石が示す微妙な磁化の向きに注目し、そこから地球規模の逆転現象を導き出しました。シンプルながらも深い洞察が科学の大発見につながった好例といえます。


4. 松山基範の人物像

4-1 学歴と経歴

松山基範(1884–1958)は京都大学で地球物理学を学び、地磁気や地球電気学の研究に従事しました。1929年の発表によって世界的に名を残しましたが、日本国内では長らく過小評価されてきました。

4-2 人柄と研究姿勢

松山博士は慎重で実直な研究者として知られ、地味ながらも着実に観察と実験を重ねるタイプでした。その誠実な姿勢が、確かなデータをもとにした地磁気逆転の発見につながったといえます。

4-3 功績と評価

彼の業績は死後に再評価され、「松山逆磁極期」という名が国際的に採用されることで、その価値が世界的に認められることとなりました。

まとめ(約200字)

松山博士は名声を追うよりも観察と実証を重んじる研究者でした。彼の真摯な姿勢が時代を超えて評価され、現在では「古地磁気学の父」として世界的に知られる存在となっています。


参考図版(イメージ)

図版内容
玄武洞の柱状節理(約160万年前の玄武岩)
地磁気逆転の概念図

全体のまとめ

松山基範博士が1926年に玄武洞で発見した「逆向きの磁化」は、やがて地球の磁場が反転するという壮大な事実を示す最初の証拠となりました。この研究は当時すぐには理解されませんでしたが、のちに古地磁気学という新しい分野を開き、チバニアン認定にもつながりました。地磁気逆転のメカニズム、玄武岩の残留磁化、そして松山博士の誠実な人柄をたどることで、科学における「一見小さな観察」がどれほど大きな発見を導くかを実感できます。松山の名は、今も地質年代の中に生き続けています。


参考文献

  • Matsuyama, M. (1929). “On the Direction of Magnetization of Basalt in Japan, Tyosen and Manchuria.” Proc. Imp. Acad. 5: 203–205.

  • Glatzmaier, G. A., & Roberts, P. H. (1995). “A three-dimensional self-consistent computer simulation of a geomagnetic field reversal.” Nature, 377, 203–209.

  • NASA (2018). Earth’s Magnetic Field Is Weakening. https://www.nasa.gov

  • 豊岡市公式サイト「玄武洞公園」 https://www.city.toyooka.lg.jp

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/10/13‗初稿投稿
2025/10/20‗改訂投稿

舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係
京都大学関連のご紹介へ

(2025年10月時点での対応英訳)

The Discovery of Geomagnetic Reversal: The Achievement of Motonori Matsuyama

The history of the Earth has always been full of change.
Among the many surprising phenomena, one that has fascinated scientists and the public alike is geomagnetic reversal—the fact that the magnetic north and south poles have switched places throughout Earth’s history.
The first scientist to demonstrate this phenomenon scientifically was Dr. Motonori Matsuyama (1884–1958), a Japanese geophysicist.

In 1926, while studying basalt collected from Genbudo Cave in Toyooka City, Hyogo Prefecture, Dr. Matsuyama discovered that the rock’s magnetic orientation was reversed relative to the present geomagnetic field.
His 1929 publication became the world’s first scientific proof of geomagnetic reversal.
This research later formed part of the scientific basis for the designation of the Chibanian epoch and opened the door to a new field of study—paleomagnetism.
This article revisits the process of discovery, the mechanism of magnetization in basalt, the dynamics of geomagnetic reversal, and Dr. Matsuyama’s life and character, to highlight the enduring significance of his work.


1. The Discovery and Its Significance

1-1. Observation at Genbudo

In 1926, Dr. Motonori Matsuyama of Kyoto University investigated basalt formations approximately 1.6 million years old at Genbudo Cave in Toyooka.
He found that the rock’s remanent magnetization was oriented opposite to the current geomagnetic direction.
Although his observation initially received little attention, his 1929 paper became the first scientific report to demonstrate that Earth’s magnetic field had reversed in the past (Matsuyama, 1929).

1-2. Later Evaluation

At the time, the academic community remained skeptical, but subsequent research confirmed his findings.
Today, geomagnetic reversal is an established scientific theory.
Matsuyama’s name endures in the geological timescale as the Matuyama Reversed Chron, a standard reference in paleomagnetic and geochronological studies.

Summary
Dr. Matsuyama’s observation at Genbudo seemed modest at first, but it later became the foundation for a revolution in Earth sciences.
His work exemplifies how scientific progress sometimes requires decades for recognition, and his research continues to hold relevance today, even contributing to the Chibanian epoch designation.


2. The Mechanism of Geomagnetic Reversal

2-1. The Earth’s Magnetic Field and the Geodynamo

The Earth’s magnetic field is generated by convection currents of liquid metal—mainly iron and nickel—in the outer core, through a process known as the geodynamo effect.
When these fluid motions change, the intensity and orientation of the magnetic field also fluctuate, and at times, complete reversals can occur (Glatzmaier & Roberts, 1995).

2-2. Periodicity and Characteristics of Reversals

Geomagnetic reversals do not occur at regular intervals but rather sporadically.
For instance, the Matuyama Reversed Chron lasted from about 2.6 million to 0.78 million years ago.
Intervals between reversals can range from several hundred thousand to over a million years.
There is ongoing debate about whether a new reversal could happen in the near future.

2-3. Relation to Modern Observations

Recent measurements show that Earth’s magnetic field has been weakening, leading to speculation that a reversal might be imminent.
However, experts caution that a weakened field does not necessarily imply an imminent reversal (NASA, 2018).

Summary
Geomagnetic reversal is a natural outcome of the geodynamo process, representing a kind of “heartbeat” of the Earth’s internal dynamics.
Matsuyama’s discovery, based on rock magnetization, provided the first empirical evidence of this global-scale phenomenon.


3. Basalt and the Mechanism of Magnetization

3-1. Natural Remanent Magnetization (NRM)

When lava cools and solidifies, magnetic minerals within the rock—chiefly magnetite—align with the direction of the surrounding geomagnetic field.
This alignment is preserved over time and is known as natural remanent magnetization (NRM).

3-2. Characteristics of Basalt

The basalt of Genbudo Cave is particularly rich in magnetic minerals, making it an excellent natural recorder of ancient geomagnetic fields.
While Genbudo’s columnar joints are famous for their striking appearance, they are also scientifically valuable as a “natural magnetic tape” that preserves Earth’s magnetic history.

3-3. Advances in Measurement Techniques

In Matsuyama’s era, magnetic measurement technology was limited.
Today, researchers use high-sensitivity magnetometers and combine them with radiometric dating to perform more precise paleomagnetic analyses.

Summary
Basalt serves as a natural magnetic archive of the Earth’s past.
Dr. Matsuyama’s keen observation of subtle magnetic orientations in these rocks led to the identification of a planetary-scale magnetic reversal—a prime example of how simple but insightful observations can yield profound scientific discoveries.


4. The Life and Character of Motonori Matsuyama

4-1. Education and Career

Motonori Matsuyama (1884–1958) studied geophysics at Kyoto University, specializing in geomagnetism and terrestrial electricity.
His 1929 publication earned him international recognition, although his contributions remained underappreciated in Japan for many years.

4-2. Personality and Research Style

Dr. Matsuyama was known for his careful and methodical approach to research.
He valued precision and integrity over fame, conducting steady observations and experiments.
This commitment to accuracy led directly to his groundbreaking discovery of geomagnetic reversal.

4-3. Legacy and Recognition

After his death, Matsuyama’s work was re-evaluated and his name immortalized in the term “Matuyama Reversed Chron”, internationally adopted in geological time scales.

Summary
Dr. Matsuyama was a researcher who valued evidence over prestige.
His sincere and disciplined approach continues to earn respect across generations, and today he is recognized worldwide as the “father of paleomagnetism.”


Overall Summary

Dr. Motonori Matsuyama’s 1926 discovery at Genbudo Cave of rocks with reversed magnetization provided the first evidence that Earth’s magnetic field can flip.
Though not immediately understood, his work later gave rise to the field of paleomagnetism and contributed to the designation of the Chibanian epoch.
By examining the mechanism of geomagnetic reversal, the magnetization of basalt, and Matsuyama’s integrity as a scientist, we are reminded of how a seemingly small observation can transform our understanding of the planet.
Matsuyama’s name lives on—engraved in the geological timescale of the Earth itself.

 

に投稿 コメントを残す

今後の更新方針について【①TOPICで個別人物②固定記事③投稿記事を拡充】

人物第一

先ず本稿はあくまで、このブログに対しての方針ですので
ご関心のない方は読み飛ばしてください。そんな内容です。
定期購読者の方に対してのメッセージなのです。
【ご意見を頂ければ幸いです。】
本稿は本ブログの今後の進め方を出来るだけ明確にしたい
という目的のもとに書いていきます。主題は「人物」です。

私にとって更新は目的へのステップです。
具体的には
「科学史を通じて考える事の楽しさを伝え、
少しでも各人の理解を進める手助けをして、
私自身も物理の理解を深めたい」 のです。

そんな私が愛すべき物理学者達を出来るだけ
本人に近い形で伝えていきたいと思っている
のです。人物の記載中心で地道に進めます。
そうした観点での投稿です。

固定記事の定期更新

忘れてはいけないと考えていることは
今まで伝えてきた記事の更新です。

書きっぱなしにするのではなくて内容を吟味し直す
作業を続ける事によって、色々なタイミングでの
視点から文章を見直し、補足できる内容がないか
考えていきます。

Topic記事を投稿に関連

上記の固定記事を考えてみたら、(私の観点で考えたら)
未来永劫にも更新を続ける機会を持ちたいと思います。
私が他界したらブログ自体は姪っ子か娘にあげます。

個別の物理学者に対して何時も知識をリフレッシュして
新しい情報を追加していきたいのです。その為には期毎の、
あるいは半年毎の更新が望ましいと思いつつ今に至ります。

最近読んだ本の中でエーレンファストが死の数日前に
涙ながらにディラックに語りかける場面がありました。
そうした小さな感情の場面を残す手立てが欲しいです。

また、関連事項、関連人物がどんどん出てきてくる事態は
嬉しいと言えば嬉しい状況なので盛り込みたいです。

そこで、Topic記事や書評記事を個別人物にリンクさせて
いこうと考えました。色々な記事は全て個別人物の更新時に
あわせて更新します。

具体的な更新計画

最後に(予告編的として)今後の計画を明示します。

3/20・今後の更新方針について(TOPICを個別人物に対応)
3/21・イギリス関係のリンク更新
3/22・記事の更新頻度に関して
3/23・オランダ関係のリンク更新
3/24・記事の相互リンクに対して
3/25・ドイツ関係のリンク更新
3/26・日本関係のリンク更新
3/27・フランス関係のリンク更新
3/28・Indexされな記事に対して更新
3/29・舞台別のご紹介の更新
3/30・ひも理論と現代の理解
3/31・時代順のご紹介更新

4月以降は時代別の更新再開です。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、返信・改定をします。

nowkouji226@gmail.com

2023/03/20_初回投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介

【このサイトはAmazonアソシエイトに参加しています】

 

に投稿 コメントを残す

【2021/03/18投稿_9/24改定】今後のサイト運営_特にツイッターと英訳

OJISAN

春に運営方針を決め改定を続けていますが、

ここでチェックをかけます。ご覧下さい。

【以下元原稿と追記です】 

 

春もどんどん進み暖かくなる今日この頃、季節変わりのタイミングで今後の運用方向を再度、考えてみたいと思います。内容はファンブログとSeeSaaとワードプレスで作成したブログの位置付けです。内容としては科学史に関するブログと生活の中での雑記なのです。 また、当ブログへのアクセスを増やしたいのでツイッターしてますが、4つのアカウントでフォロー制限受けてます。3/17(水)朝の時点で2日前とのフォロワー数と比べると、、、、 ①コウジ@kouji@SyvEgTqxNDfLBX_3167→3195_ ②バンドリ好き太郎@ev2Fz71Tr4x7b1k_2317→2361_ ③浩司@BLLpQ8kta98RLO9_2058→2075_ ④kouji kazeno@KazenoKouji_2147→2156_ ・合計で考えると4アカウント合計で_【9689⇒9787】 【合計で98垢/25単垢。9/15朝にまたフォロバで規制食らいましたので、こんなペースで小休止。】焦らず作業。【21/9/9追記@現時点では一万超えてます。営業マンが居るイメージでアクセス増に役立ってくれてます】

科学史のブログに関してはファンブログを全ての記事を残す書庫のような形で運用しています。それなので整理に従い、ワードプレスで作製したhtpps://wwwドメインのサイトでは固定ページに個別記事が残り、日々更新しているブログではトピック以外の記事は削除を進めています。トピック以外は一週間を目安に削除していく積りです。SeeSaaを対応したミラーサイトとして運用していましたが、最近更新を止めています。このミラーサイトは時期をみて全て英訳します。
【21/9/9追記@実際に英訳を始めていて、現在は19世紀の人物を英訳しています。外国からのアクセスも伸びています。削除も一週間を目途に進めています。トピックは整理しています。】
【22/9/24追記@トピックスの整理が進んでいて記事は年間10記事程度新規作成中_定期的に過去記事のリライトを心がけています。】

雑記はトピックスに残していますがファンブログ以外のサイトでは削除していきます。

斯様に考えて見やすいサイトを目指しますので、今後も宜しくお願い致します。

以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に関しては適時、 返信・改定をします。

nowkouji226@gmail.com

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介

2020/12/11_初稿投稿
2022/09/24_改定投稿

に投稿 コメントを残す

【Topics】Indexされない問題の実例【このサイトで発生していて2022年度からは問題点だと考えています】_9/21改訂

こんにちはコウジです。「NoIndex」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

本稿はメモです(Noindexは問題です)

以前から気になっていて明文化できていなかった問題です。

Googleサーチ・コンソールに対して検索リクエストをした際に

「URL が Google に登録されていません」というメッセージが出て

その後、数か月後ににリクエストをしてもやはり同じメッセージ

が出てしまう問題です。私は2020年10月ごろから当サイトを運営していて

ドメインパワーも、そこそこ上がってきているので、今の私が

リクエストを受け付けてもらえないのなら、最近ブログを立ち上げた

人たちは尚更、この問題に問題を感じているのではないかと予想されます。

そんな関心からの記録です。

問題は文字数でしょうか。話題なのでしょうか。

具体的なIndexされないページの例

以下に当該メッセージの出た例を記載していき、

何か共通点・法則性が出てきたら纏め直して対応案を作ります。

オレンジに色を変えた部分は改善が出来ています。

ただ、結果的に「インデックスされている」という意味で問題解決

しているだけで「何が悪くてインデックスされないか」という

問題の本質が解決できていません。

デモクリトス・2022/3/22にGoogleへ再依頼⇒4/30にOK
コペルニクス・2022/3/24にGoogleへ再依頼⇒4/30に再依頼
アイザック・バロー・2022/04/01にGoogleへ再依頼
ベルヌーィ・2022/04/06にGoogleへ再依頼
エルステッド・2022/4/19にGoogleへ再依頼
フーコー・2022/4/30にGoogleへ再依頼
メイデンホール・2022/5/10にGoogleへ再依頼
マイケルソン・2022/5/16にGoogleへ再依頼
テスラ・2022/5/21にGoogkeへ再依頼
長岡半太郎・2022/02/24にGoogleへ再依頼⇒5/28にOK
中村清二・2022/06/01にGoogleへ再依頼
ヒルベルト・2022/06/06にGoogleへ初申請
M・ボルン・2022/03/10にGoogleへ再依頼⇒6/10にOK
ピカール・2022/06/12にGoogleへ再依頼
フォン・ノイマン・2022/04/02にGoogleへ再依頼⇒7/3にOK
H.A.ベーテ・2022/7/6にGoogleへ再依頼
エドワード・テラー・2022/7/8にGoogleへ再依頼
ランダウ・2022/7/9にGoogleへ再依頼
竹内均・2022/7/20にGoogleへ再依頼
ムツゴロウ・2022/03/03にGoogleへ再依頼⇒8/5にOK
益川敏英・2022/04/24にGoogleへ再依頼⇒8/8にOK
ホーキング・2022/4/25にGoogleへ再依頼⇒8/9にOK

Indexされない問題の要因と今後の対策

今回のIndexされない問題は、数j年来今話題になっている

「Google側のアルゴリズム対応」

が主因であると思われます。生活様式。情報習得様式が

大きく変化しているなかで、グーグルが対応に追われて、

個々のインデックスの優先順をつけて処理しているだけ、と言えます。

もっと言えば(Coolに考えたら)グーグルは昔と変わらないけれども

ネット社会が変わってきていて我々リクエストする側が

問題であると考えるようになってきているとも言えます。

定量的な指標として、検索リクエストしてから検索表示されるまでの時間

が明らかに定量化できる数字で、皆さんは昨今、その数字を問題視します。

状況としては直ぐに変わらないと思えるのでGoogleを超えた所で

ツイッターやコ・ワーキングスペースでの議題とするとか、

自分のブログから発信する仕組みを作るとかしていきたい

と考えています。

 

【スポンサーリンク】

以上、間違いやご意見があれば
以下アドレスまでお願いします。
問題点に対しては適時、
改定・訂正を致します。

nowkouji226@gmail.com

2022/02/24_初回投稿
2022/09/21‗改訂投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

【トピックス】語学関係の習得に関してと、物理学会での英語コミュニケーションについて_改訂

こんにちはコウジです。「語学関係」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター(現時点での名称は「X」)使います。
2022/7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@2023/7/3】
⇒BLLpQ8kta98RLO9【8700@2024/10/30】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

英語にこだわっていた理由

このサイトでは第二外国語として

英語にこだわり、対応英訳を入れていました。

理由は明快で、日本における学術論文は英語で書き、

大学によっては物理のディスカッションも英語で行うからです。

歴史的に英語で記載するやり方が主流です。

私の英語は粗雑ですが何かを相手に伝えたいと

話し続けていることが大事なのです。そして内容修正。 

むろん、学術論文では不要な修辞語やあいさつ文は不要です。

その意味で学術論文は

英語学習の中でも特殊な文章といえるでしょう。

フランス語やドイツ語の魅力

一方で、医学ではドイツ語がつかわれ、古いお医者様は

ドイツ語でカルテを書いていました。関連機器メーカーも

ドイツ系のメーカーが強かった時代もありました。

私のブログの中での登場人物は多国にわたり、必ずしも英語で

議論をしていたか疑問に思える人々が多いです。

アルキメデス・ソクラテスの時代の人々は現地の言葉で話していて

英語で物事を考える土壌はなかったと思えます。

そこで、そんな国も人々のご紹介の際には英語の習得

に関するご紹介は意識して除いていこうと思います。

一方で文末につけている対応英訳は英語圏で

議論をする人が参照できるように残します。

別の考え方をすれば、ドイツ語やフランス語を習得できる

アフリエイトプログラムがあるといいですね。


【スポンサーリンク】

以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2022/02/09_初版投稿
2024/12/25‗原稿改訂

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係
電磁気関係

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

【2020年度11月-トピック_改訂】
量子計算機実用化の波

こんにちはコウジです。「量子コンピューター」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

以下投稿の内容は
2020/11/11の日経新聞記載の情報メインです。

現代の情報だと考えて下さい。

 

量子コンピュータが企業活動の現場で
使われ始めてきました。事例として
キューピーでは惣菜工事の生産ライン
で最適なシフトを組む為に量子コンピュータ
を活用しています。今まで数百人のスタッフに
最適な勤務シフトを与えるのは大変な作業でした。
120種以上ある惣菜の品目に対して技量の
バラツキを考慮してシフトを与え現場に割り振ります。

キューピーでは現場を熟知した管理者が
30分以上かけてシフト配置をしていましたが
量子コンピュータを活用して一秒でシフト配置
を終える事が出来ています。導入メリットとして
時間短縮だけでなく不適切な配置に対する
ミスがなくなってきているという
利点も出ています。

現在、量子コンピュータはカナダのDウェーブ社
が先行して実用化していて、最適化問題に強い
メリットを享受しています。キューピーの事例
でも従来型コンピュータでは一日かかっても
最適拍位置が出来なかったのです。

また、日本郵便は配送ルートの最適化に量子コンピューターを使い
同僚の荷物に対して埼玉県での運搬量を8%減らせることを確認しました。
全国に展開すれば100億円規模のコストダウンにつながる見通しです。
デンソーはDウェーブの量子コンピューターでの制御により
無人搬送ロボットの稼働率を80%から95%まで向上させられるとしています。

ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/11/11_初稿投稿
2022/09/18_改定投稿

舞台別のご紹介へ
時代別(順)のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

サイト立ち上げました【サイト運営方針再確認】_9/17改訂

こんにちはコウジです。「サイト立ち上げ」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

本サイト立ち上げにあたり、2020年10月17日に

FanBlogで投稿した記事を残します。

初心に帰ってそれぞれのブログでの

位置付けを確認して今後も発展させていく所存です。

以後もご覧下さい。【以下原稿です】

ご覧頂いているサイトと連動する別サイト作りました。

新サイトです:https://www.nowkouji226.com/
【本サイトURL】

このサイト(ファンブロク)は最新の個別記事を記載して、
新しいサイト(WWWサイト)では包括的な纏め・検索
がし易いように作っていくつもりです。

また、その後の実態としてFANブログと

SEESAAブログが書庫の形で運営されてます。

それぞれのブログから本ブログへのリンクを設ける事で

ブログ界隈の需要を広く集める目的もあります。

別途、ツイッターを中心としたSNSでの世界も広げ、

其処との交流も図っていきます。ご覧下さい。

 


【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/17_初稿投稿
2022/09/07_改定投稿

舞台別のご紹介へ
時代別(順)のご紹介

 

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

トピック 室温超電動 _改訂
米ロチェスター大 高圧下

こんにちはコウジです。「超電導」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

科学史の観点からトピックスをお伝えします。
現在でも続いている物理学での進展です。

米ロチェスター大学のグループが室温超電導
を実現しました。2020年10月中頃に
ネイチャーに発表してます
。突然私も当時、
2020/11/02朝の新聞読んで知って、
びっくりしたのです。
一般人はびっくり。
基礎科学での現象実現と応用科学での応用技術の
確立迄には大きな壁があるのですが先ずは第一歩。

 

267万気圧という条件下でレーザーを使い
摂氏15℃での超電導状態を実現しています。

対象試料のサイズが数十マイクロメートル
の大きさだと言う事も気になります。
圧力条件も実用化の大きな壁でしょう。
とは言え、超電導状態の解明に向けた
大きな一歩と言える気がします。

特に、超電導では
現象発言時の温度を室温に近づけたいのです。

こうした事実の積み重ねはカメリー・オネス
の実験から始まりました。
絶対零度近くでの抵抗値損失は
再現性の高い事実で、その後、

アメリカで

ジョン・バーディーン

レオン・クーパー

ロバート・シュリーファー

によるBCS理論が提唱され現在に至ります。

 

私の研究時代にはイットリウムの系(YBCOの系)や
ランタンの系(RSCOの系)の酸化物で
高温を模索していました。

別途、青山大学の先生が
別種金属で高い転移温度を実現してます。

また、最近では東北大をはじめとするグループが「揺らぎ」
の考えを使って高圧下でより常温に近い現象発現を目指しています。今でも続いている追及です。

ほぼ室温超伝導を示す高圧下ランタン水素

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/11/02_初稿投稿
2022/09/16_改定投稿

舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関係へ
電磁気関係

熱統計関連のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

【トピック】
受勲について_改訂
【イギリスの叙勲・など】

こんにちはコウジです。「叙勲」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

フランス人はエッフェル塔に名を残し、
イギリス人は勲章で名誉を称え爵位を授ける。
科学の歴史を整理していて私はそう感じます。

以下に気付く限りの叙勲を連ねますのでご参考に。


二代目コーク伯爵_
ロバート・ボイル

Sir Robert Boyle
_1627年1月25日 ~ 1691年12月31日


アイザック・ニュートン_Sir Isaac Newton

_1642年12月25日 ~ 1727年3月20日


ヴォルタ伯爵_アレッサンドロ・ジュゼッペ・

アントニオ・アナスターシオ・ヴォルタ

Il Conte Alessandro Giuseppe Antonio Anastasio Volta
_1745年2月18日 ~ 1827年3月5日(ナポレオン時代の叙勲)


マイケル・ファラデー_Michael Faraday

_1791年9月22日 ~ 1867年8月25日(叙勲を辞退)


初代ケルヴィン男爵_
ウィリアム・トムソン

William Thomson, 1st Baron Kelvin OM, GCVO, PC, PRS, PRSE
_1824年6月26日 ~ 1907年12月17日


第3代レイリー男爵_
J・W・ストラット

_John William Strutt, 3rd Baron Rayleigh
_1842年11月12日 ~ 1919年6月30日

J・A・フレミング
_Sir John Ambrose Fleming
_1849年11月29日 ~ 1945年4月18日


山川 健次郎男爵_1854年9月9日 ~ 1931年6月26日

 

J・J・トムソン_1856年12月18日~1940年8月30日


初代のネルソン卿__ラザフォード男爵_
アーネスト・ラザフォード

Ernest Rutherford, 1st Baron Rutherford of Nelson, OM, FRS,
_1871年8月30日 ~ 1937年10月19日

 

ブライアン・ハロルド・メイ_1947年7月19日~ご存命中

 

なお、ホーキング博士も大英勲章を得ていますが
爵位は受けていません。時の移り変わりでしょうか。

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/24_初回投稿
2022/09/15_改定投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係