2025年4月20日2025年4月20日に投稿 投稿者 元)新人監督 — コメントを残す中性原子方式量子コンピューターの静かな躍進:BECから始まる第3の革命 量子コンピューターといえば、超伝導方式やイオントラップ方式が 真っ先に思い浮かびます。しかし今、水面下で急速に頭角を現している 「第3の選択肢」があります。それが中性原子方式です。ボース=アインシュタイン凝縮(BEC)という基礎理論から生まれたこの方式は、 高精度な量子制御とスケーラビリティの高さを兼ね備え、世界中の研究機関や 企業が注目する存在となっています。この記事では、日本と世界における中性原子方式の発展史をたどりつつ、 量子ビットの構造や最新技術のブレイクスルー、そして乗り越えるべき 技術的課題まで、包括的に解説します。中性原子方式量子コンピューターの歴史:静かに進化してきた第3の選択肢量子コンピューターといえば「超伝導方式」や「イオントラップ方式」 が先行して知られていますが、実はいま、**「中性原子方式」**が急速 に存在感を増しています。この方式は他の方式とは異なるアプローチを 取り、実用化に向けた革新技術として注目を集めています。ここでは、その中性原子方式がどのように生まれ、 どのように発展してきたのか、その歴史を3つの視点からたどります。1. 基盤となる技術の登場:超冷却原子と量子制御中性原子方式の基礎は、1995年に実現されたボース=アインシュタイン 凝縮(BEC)**にさかのぼります。これは、極低温状態にある中性原子が 一つの量子状態に凝縮する現象で、量子情報処理に必要な高精度の制御 が可能となりました。この研究により、2001年にエリック・コーネル、ヴォルフガング・ ケテルレ、カール・ワイマンの3名がノーベル物理学賞を受賞 しています。🔗 出典:Nobel Prize 2001 in Physics – nobelprize.org2. 日本におけるブレイクスルー:分子研と国産量子機の挑戦日本でも中性原子方式の研究は進んでおり、分子科学研究所の 大森賢治教授らによって重要な進展が見られます。特に、 超高速レーザーを用いた二量子ビットゲートの制御速度が従来の 100倍に向上したという成果は大きな注目を集めました(2022年)。さらに、2024年には産業界と連携し、国産初の中性原子方式量子コンピューターの開発プロジェクトが本格化しています。🔗 出典:分子科学研究所 – プレスリリース(2024年2月27日)3. グローバル展開:PasqalとQuEraの台頭世界では、フランスのPasqal(パスカル)社がリードしています。 同社は2024年に100量子ビットを超えるシステムを出荷予定とし、 2026年には1万量子ビット規模へのスケールアップを掲げています。🔗 出典:QBMニュース – Pasqalのロードマップ(2024年2月)また、アメリカのQuEra社は日本の産業技術総合研究所との間で 約65億円規模の契約を締結し、 先進的な中性原子量子コンピューターを導入予定です。🔗 出典:時事通信 – 「冷却原子方式」量子コンピューター導入中性原子方式は、比較的常温で動作可能かつ高いスケーラビリティ を持つという特長があり、今後の量子技術の本命の一つとして 急浮上しています。その静かな革命は、これからさらに 大きな波となるかもしれません。中性原子方式量子コンピューターの基礎理論:BECから広がる量子情報の世界量子コンピューターの実現に向けて、さまざまな方式が研究されていますが、その中でも「中性原子方式」は、特に集積化やスケーラビリティの面で注目されています。この方式の基礎には、ボース=アインシュタイン凝縮(BEC)という現象があり、これが情報工学的な応用への扉を開いています。本章では、中性原子方式量子コンピューターの基礎理論について、以下の3つの観点から解説します。1. BECと中性原子キュービットの形成ボース=アインシュタイン凝縮(BEC)は、極低温下で多数の中性原子が同一の量子状態に凝縮する現象です。この状態では、原子間の相互作用が制御しやすくなり、量子ビット(キュービット)としての利用が可能になります。特に、BEC内で形成されるソリトン(孤立波)は、キュービットの論理状態を確立するのに重要な役割を果たします。ソリトンを操作することで、キュービットの作成や制御が可能となり、量子計算タスクに応用されています。出典: Generation of solitons by initial phase differences between portions of a BECResearchGate2. リュードベリ状態と量子ゲートの実現中性原子方式では、原子を高励起状態であるリュードベリ状態に遷移させることで、強い相互作用を引き起こし、量子ゲート操作を実現します。このリュードベリ相互作用を利用することで、2量子ビット間のエンタングルメント(もつれ)を高い精度で生成することが可能です。実際に、リュードベリ状態を介した2量子ビットゲートのフィデリティ(忠実度)は99.5%に達しており、実用的な量子計算に向けた大きな一歩となっています。出典: High-fidelity parallel entangling gates on a neutral atom quantum computeriopscience.iop.org+4arXiv+4authors.library.caltech.edu+43. 集積化とスケーラビリティの利点中性原子方式の大きな利点の一つは、量子ビットの集積化が比較的容易であることです。光ピンセット技術を用いることで、数百から数千の中性原子を規則的に配置し、それぞれを独立したキュービットとして制御することが可能です。さらに、原子の種類や同位体を使い分けることで、補助的な量子ビットの読み出しをデータ量子ビットに影響を与えずに行う手法も開発されています。これにより、量子誤り訂正の実装が容易になり、量子コンピューターの実用化が加速すると期待されています。arXiv出典: Neutral Atoms in Optical Tweezers as Messenger Qubits for Scaling up a Trapped Ion Quantum ComputerarXiv中性原子方式量子コンピューターでのQubit:光で操る量子の最小単位量子コンピューターの心臓部とも言える「量子ビット(Qubit)」は、情報の基本単位です。中性原子方式では、レーザー光を用いた精密な制御により、個々の原子をQubitとして利用します。この章では、中性原子Qubitの構造と制御技術について、以下の3つの観点から解説します。1. 光ピンセットによる中性原子の捕捉と配置中性原子Qubitの実現には、「光ピンセット」と呼ばれる技術が不可欠です。これは、レーザー光の焦点により原子を捕捉し、任意の位置に配置する方法です。この技術により、数百から数千の原子を規則的に並べ、各原子を個別に制御することが可能となります。例えば、QuEra社はこの技術を用いて、原子を高精度に配置し、量子計算を実現しています。出典: QuEra Technologies – Neutral Atom Platformquera.com2. リュードベリ状態を利用した量子ゲート操作中性原子を高励起状態である「リュードベリ状態」に遷移させることで、隣接する原子間に強い相互作用が生じます。この「リュードベリブロッケード効果」を利用することで、2つのQubit間で高精度な量子ゲート操作が可能となります。実際に、Nature誌に掲載された研究では、99.5%の忠実度で2量子ビットゲートを実現しています。出典: High-fidelity parallel entangling gates on a neutral-atom quantum computer – NatureNature3. 長いコヒーレンス時間とスケーラビリティの実現中性原子Qubitは、他の方式と比較して長いコヒーレンス時間を持つことが特徴です。これは、量子状態が外部環境の影響を受けにくいためであり、長時間の量子計算が可能となります。さらに、光ピンセット技術により、Qubitの数を容易に増やすことができるため、大規模な量子コンピューターの実現に向けたスケーラビリティも確保されています。ohmori.ims.ac.jp出典: Neutral-atom quantum computers – PennyLane DemosEE Times Europe+2Quantum Programming Software — PennyLane+2Quantum Programming Software — PennyLane+2中性原子方式のQubitは、精密な光制御技術と原子物理学の融合により、高精度かつスケーラブルな量子計算を可能にします。今後の研究と技術革新により、さらに高性能な量子コンピューターの実現が期待されています。中性原子方式量子コンピューターでの技術的困難中性原子方式量子コンピューターは、その高いスケーラビリティと精密な制御能力により、次世代の量子計算技術として注目されています。しかし、実用化に向けては、量子誤り訂正やキュービットの読み出しといった技術的課題が存在します。本章では、これらの課題と、それに対する最新の研究成果について解説します。1. 量子誤り訂正の課題と同位体利用による解決策量子計算では、外部環境からの干渉や制御の不完全さにより、誤りが発生する可能性があります。これを訂正するためには、補助的な量子ビット(補助キュービット)を用いて、データキュービットの状態を監視し、誤りを検出・訂正する必要があります。しかし、中性原子方式では、補助キュービットの読み出しがデータキュービットに影響を与えるという課題がありました。この課題に対し、京都大学の研究グループは、イッテルビウム原子の2種類の同位体を用いる手法を開発しました。同位体シフトと呼ばれる遷移周波数の差を利用することで、補助キュービットとデータキュービットを独立に制御・読み出すことが可能となり、データキュービットに影響を与えずに誤り訂正を行えるようになりました。京都大学+1ニュースカフェセンター+1この成果は、2024年12月10日に国際学術誌「Physical Review X」に掲載されました。京都大学出典: 京都大学 研究ニュース2. 高速量子ゲートの実現とその課題量子ゲートの操作速度は、量子コンピューターの性能に直結します。中性原子方式では、リュードベリ状態を利用した量子ゲートが用いられますが、その操作速度の向上が課題となっていました。分子科学研究所の大森賢治教授らの研究グループは、超高速レーザーを用いることで、2量子ビットゲートの操作速度を従来の100倍に向上させることに成功しました。これにより、量子計算の実行時間が大幅に短縮され、実用化に向けた大きな一歩となりました。出典: 分子科学研究所 プレスリリース3. キュービット配置の精度とスケーラビリティの課題中性原子方式では、光ピンセットを用いて原子を捕捉・配置し、キュービットとして利用します。しかし、大規模な量子コンピューターを構築するためには、多数の原子を高精度に配置・制御する必要があります。この課題に対し、QuEra社は、光ピンセット技術を用いて256個の中性原子を高精度に配置し、量子コンピューター「Aquila」を開発しました。この技術により、大規模なキュービットアレイの構築が可能となり、スケーラビリティの向上が期待されています。出典: Qiita 記事中性原子方式量子コンピューターは、量子誤り訂正や高速量子ゲート、キュービット配置の精度といった課題に対し、最新の研究成果により着実に前進しています。これらの技術的困難を克服することで、実用的な量子コンピューターの実現が近づいています。中性原子方式量子コンピューターの世界での開発状況量子コンピューターの進化は、まさに「静かな革命」とも言える状況です。特に中性原子方式は、他の方式に比べてスケーラビリティや誤り耐性の面で優位性を持ち、世界中の研究機関や企業が注目しています。本章では、最新の開発状況を3つの視点から解説します。1. Pasqalのロードマップ:1万量子ビットへの挑戦フランスのPasqal社は、2026年までに1万個の物理量子ビットを実現し、2028年には128個以上の論理量子ビットによる完全な誤り耐性を持つ量子コンピューターの開発を目指しています。このロードマップは、ハードウェアの進化だけでなく、ビジネスユースケースの拡大やグローバルな展開も視野に入れたものです。詳細は以下のリンクをご参照ください。🔗 Pasqal announces new Quantum Roadmap2. QuEraの進展:256量子ビットから100論理量子ビットへアメリカのQuEra社は、256量子ビットの中性原子量子コンピューター「Aquila」をAmazon Braket上で一般公開しました。さらに、2025年1月には、ハーバード大学を中心としたチームと協力し、48個の論理量子ビットを用いた複雑な誤り訂正量子アルゴリズムの実証に成功しました。今後は、2026年までに100個の論理量子ビットを実現することを目指しています。詳細は以下のリンクをご参照ください。quera.com🔗 Our Quantum Roadmap – QuEra Computing3. Atom Computingの躍進:1,180量子ビットの実現カリフォルニア州のスタートアップ、Atom Computingは、1,225サイトの原子配列を持つ第2世代の中性原子量子コンピューターを開発し、そのうち1,180個の量子ビットを稼働させることに成功しました。これは、IBMの量子コンピューターを上回る量子ビット数であり、スケーラビリティの面で大きな前進を示しています。詳細は以下のリンクをご参照ください。SpinQ🔗 Discover the World’s Largest Quantum Computer in 2025 – SpinQこれらの進展は、中性原子方式量子コンピューターが実用化に向けて着実に前進していることを示しています。今後の動向にも注目が集まります。 〆以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/04/20‗初稿投稿【このサイトはAmazonアソシエイトに参加しています】
2025年4月20日2025年4月20日に投稿 投稿者 元)新人監督 — コメントを残す日本発、中性原子型量子コンピューターの挑戦【「Yaqumo」が目指す産業応用と拡張性】 2025年、分子科学研究所と京都大学がタッグを組み、日本初の中性原子方式量子コンピューター企業「Yaqumo(ヤクモ)」が誕生しました。量子ビットの拡張性と計算精度を両立する中性原子方式は、これまで主流だった超伝導方式とは異なる新たな可能性を秘めています。イッテイルビウムとルビジウム、それぞれの特性を活かした実機開発が進むなか、Yaqumoは2027年のクラウド提供と量産体制の構築を目指しています。産業界をも巻き込む次世代計算基盤の最新動向を追います。【1】国産初の中性原子量子コンピューター企業「Yaqumo」誕生2025年4月、国の研究機関である分子科学研究所は、新型量子コンピューターの実用化を目指し、東京都千代田区に拠点を置く新会社「Yaqumo(ヤクモ)」を設立しました。設立には京都大学との共同研究体制が背景にあり、日本初となる中性原子方式を主軸に置く企業として注目されています。この新型量子コンピューターは、従来のコンピューターが使用するビット(0か1)に代わり、「量子ビット(qubit)」を用いることで、並列的で膨大な計算能力を実現します。分子研の大森賢治教授と京大の高橋義郎教授が長年にわたり取り組んできた技術が基盤となっており、2027年には企業や研究機関向けにクラウド経由で利用可能な量子コンピューターの提供を目指しています。このような国家レベルの取り組みは、2023年に理化学研究所が超伝導方式の量子コンピューターを完成させて以降、日本の量子技術をさらに広げる重要な布石といえます。【2】中性原子方式の特長と拡張性量子コンピューターの要となるのは、0と1の両方を同時に表現できる量子ビットです。中でも中性原子方式は、個々の原子をレーザー光で捕捉・操作することにより量子ビットとして利用する手法であり、以下のような特長があります。動作温度が比較的高い(ミリケルビンではなくマイクロケルビン級)長時間の量子状態の保持(コヒーレンス時間が長い)高い空間制御性により多数のビット配列が可能理化学研究所が進める超伝導方式に比べて、極低温冷却などの厳しい環境条件を求められにくく、量子ビットの拡張性と安定性の両立が期待されています。とくに京大・高橋教授が用いるイッテイルビウム原子は、電子のエネルギー状態が極めて安定しており、高精度な時間制御と量子誤り訂正に向いた性質が知られています。これにより、従来よりも格段にスケーラブルな量子計算系の実現が視野に入ってきました。【3】中性原子方式のしくみと素材の違い(出典付き)中性原子方式では、レーザー光で原子を「光格子(optical lattice)」と呼ばれる状態に整列させ、その個々の原子を量子ビットとして制御します。原子は電気的に中性であるため、環境ノイズに対して強く、量子状態を長時間保てるのが大きな特徴です。この方式で現在注目されている原子素材は主に2つあります。■ イッテイルビウム(Ytterbium)京都大学・高橋義郎教授らが主導する研究で採用。核スピンが大きく、内部準位の選択肢が豊富で、複雑な量子操作が可能。時間周波数の安定性が高く、誤り訂正に適する。参照情報:Physical Review X DOI:10.1103/PhysRevX.14.041062 京都大学発表資料(2024年12月)■ ルビジウム(Rubidium)分子研・大森教授グループが利用。2025年に実機稼働を予定。操作が比較的シンプルで、量子ビット間の相互作用が制御しやすい。すでに多くの中性原子実験で使用されてきた実績ある元素。参照情報:naturephotonics 16, pages724–729 (2022)これら2つの原子は、それぞれ異なる強みを持ち、用途に応じた使い分けがなされています。今後の量子コンピューター開発において、素材選定が計算性能や実装性を左右する重要なファクターとなっていくでしょう。【4】2027年クラウド提供へ:量産と産業利用を視野にYaqumoは研究段階に留まらず、実用化を見据えた開発体制の整備に力を入れています。特に焦点となるのが、量子計算の精度を保つための量子誤り訂正技術の導入と、それに適合するソフトウェアの開発です。将来的には、量子クラウドサービスとして企業がウェブ経由でYaqumoの量子計算機にアクセスできるようにし、製造・物流・創薬・素材開発など幅広い分野への展開を計画しています。また、量産体制の構築も視野に入れ、社会実装への橋渡しを進めています。Yaqumo代表の中小司和広CEOは、「設計段階からスケーラビリティを意識し、段階的に処理能力を拡大できるアーキテクチャにする」と語り、大森・高橋両教授も引き続きアドバイザーとして現場を支えています。このように、Yaqumoの挑戦は単なる技術開発にとどまらず、日本の量子技術を国際的な競争に参入させるための礎となることが期待されています。〆以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/04/19‗初稿投稿 2025/04/20_改訂投稿【このサイトはAmazonアソシエイトに参加しています】
2025年4月17日2025年4月17日に投稿 投稿者 元)新人監督 — コメントを残す「未来を創る量子コンピューター—大阪大学での各界研究者による最先端議論」 2024年12月、大阪大学にて量子コンピューターをテーマとしたセミナーが開催されました。本イベントでは、理化学研究所の中村氏、バイオ分野の北野氏、ソフトウェア開発の松岡氏、京都大学の橋本氏(SNSでもおなじみ)、阪大の藤井氏、脳科学の茂木氏、富士通の佐藤氏らが集まり、量子コンピューティングの現状と未来について活発な意見交換が行われました。暗号技術、バイオ分野、AIとの融合など、多岐にわたる視点から議論が進められ、量子技術が今後どのように社会に貢献するのかが探求されました。量子コンピューターの優位性量子コンピューターの優位性は、特定の計算分野において古典コンピューターを凌駕する可能性を秘めています。その中でも特に注目されているのが、乱数のサンプリングです。従来のコンピューターでは、数学的なアルゴリズムを用いた「擬似乱数」が一般的ですが、量子コンピューターは量子力学の不確定性を利用して真の乱数を生成できるため、暗号技術やシミュレーション分野での応用が期待されています。最近の研究では、Quantinuum社の量子コンピューターを用いて、証明可能な乱数(certified randomness)の生成に成功したと報告されています。この技術では、量子コンピューターが生成した乱数が本当にランダムであることを古典コンピューターで検証するプロセスが含まれており、これにより暗号技術の安全性が飛躍的に向上する可能性があります。しかし、量子コンピューターの優位性は乱数のサンプリングだけに限られるわけではありません。例えば、量子化学や素因数分解の分野でも、量子アルゴリズムが古典コンピューターよりも効率的に問題を解決できると考えられています。特に、RSA暗号の安全性は素因数分解の難しさに依存しているため、量子コンピューターがこの問題を高速に解決できるようになれば、現在の暗号技術の多くが再設計を迫られることになります2。このように、量子コンピューターの性能を最大限に活かすためには、適切なアルゴリズムの設計が不可欠です。量子コンピューターは万能ではなく、特定の問題に対してのみ優位性を持つため、どのようなアルゴリズムを適用するかがその実用性を左右します。今後の研究と技術開発により、量子コンピューターの適用範囲がさらに広がることが期待されています。量子コンピューターの歴史量子コンピューターは、古典コンピューターでは解決が困難な特定の計算問題において優位性を持つ革新的な技術です。特に、乱数の生成や暗号解析、量子化学の分野で注目されており、近年の技術進歩によって実用化への道が徐々に開かれています。本記事では、その歴史を年代順に整理しながら、量子コンピューターの発展を解説します。1980年代~2000年代:理論の誕生と初期研究量子コンピューターの理論的な基盤は、1980年代にリチャード・ファインマンらによって提唱されました。1994年にはピーター・ショアが素因数分解を高速に行うショアのアルゴリズムを発表し、従来の暗号技術が量子コンピューターによって破られる可能性が指摘されました。2000年代に入ると、IBMやGoogleなどの研究機関が量子コンピューターの試作機を開発し始めました。2010年代:技術進歩と初期の実証2010年代には、量子コンピューターのハードウェア開発が本格化しました。2019年にはGoogleが量子超越性(Quantum Supremacy)を達成し、特定の計算問題でスーパーコンピューターを超える性能を実証しました。加えて、暗号技術の安全性を高めるための量子乱数生成の研究が進み、暗号分野での応用が議論され始めました。2020年代~現在:実用化への挑戦現在、量子コンピューターはさらに進化を遂げています。Quantinuum社の研究によれば、証明可能な乱数(certified randomness)の生成が成功し、量子技術がセキュリティ分野において重要な役割を果たすことが示唆されました。また、量子化学や金融モデリングなど、新たな分野への応用が検討されており、今後の開発によって量子コンピューターの実用化が進むことが期待されています。現在(2025年)の日本における量子コンピューターの研究量子コンピューターの研究は急速に進展しており、日本の理化学研究所では超電導回路を用いたシステムの開発が進められています。2023年には64量子ビット(QBIT)のコンピューターをクラウド上で公開し、さらに2025年には144QBITのシステムを立ち上げるなど、技術の発展が加速しています。2023年:量子コンピューターのクラウド公開理化学研究所は2023年3月に国産初の64量子ビット超電導量子コンピューターを公開しました。このシステムは、富士通との共同研究によって開発され、量子シミュレーターとの連携が可能なプラットフォームとして提供されています。これにより、量子化学計算や量子金融アルゴリズムの研究開発が加速すると期待されています。2025年:144QBITシステムの立ち上げ2025年には、理化学研究所が量子コンピューター「黎明(れいめい)」を本格稼働させました。このシステムは、世界最大級の量子コンピューター企業Quantinuumと共同で開発され、埼玉県の理化学研究所 和光キャンパスに設置されています。物理・化学・その他の応用分野における量子コンピューティング技術の進歩をリードすることが期待されています。今後の展望と技術の進化今後、さらなる量子ビットの拡張と安定性向上が課題となります。理化学研究所では、1,000量子ビット級の超電導量子コンピューターの開発を目指しており、高密度実装技術や量子ゲートの精度向上に取り組んでいます。また、量子コンピューターとハイパフォーマンスコンピューター(HPC)を連携させたハイブリッド量子アルゴリズムの開発も進められており、量子化学計算の精度向上が期待されています。量子コンピューターの実用化に向けた研究は今後も加速し、暗号技術や創薬、金融モデリングなどの分野での活用が進むことが予想されます。技術の進化により、量子コンピューターが社会に与える影響はますます大きくなるでしょう。人類としての資産量子コンピューター理化学研究所は2023年3月に国産初の64量子ビット(QBIT)超電導量子コンピューターを公開しました。このシステムは、富士通との共同研究によって開発され、量子シミュレーターとの連携が可能なプラットフォームとして提供されています。これにより、量子化学計算や量子金融アルゴリズムの研究開発が加速すると期待されています。2025年:144QBITシステムの立ち上げ2025年には、理化学研究所が量子コンピューター「黎明(れいめい)」を本格稼働させました。このシステムは、世界最大級の量子コンピューター企業Quantinuumと共同で開発され、埼玉県の理化学研究所 和光キャンパスに設置されています。物理・化学・その他の応用分野における量子コンピューティング技術の進歩をリードすることが期待されています。今後の展望と技術の進化今後、さらなる量子ビットの拡張と安定性向上が課題となります。理化学研究所では、1,000量子ビット級の超電導量子コンピューターの開発を目指しており、高密度実装技術や量子ゲートの精度向上に取り組んでいます。また、量子コンピューターとハイパフォーマンスコンピューター(HPC)を連携させたハイブリッド量子アルゴリズムの開発も進められており、量子化学計算の精度向上が期待されています。量子コンピューターの実用化に向けた研究は今後も加速し、暗号技術や創薬、金融モデリングなどの分野での活用が進むことが予想されます。技術の進化により、量子コンピューターが社会に与える影響はますます大きくなるでしょう。〆以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/04/17‗初稿投稿舞台別のご紹介へ 時代別(順)のご紹介 力学関係へ 電磁気関係へ 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】
2025年4月12日2025年4月12日に投稿 投稿者 元)新人監督 — コメントを残す量子エネルギー転送の凄さ【エンタングルメントが作り出す不思議な世界】 先ず、本記事は2024年の3月10日の記事を起点としています。福井健人さんによる教育的記事に私も刺激され、考えを発展させます。少しでも理解を進めます。量子力学の不思議とQET(Quantum Energy Teleportation)量子力学の世界には、私たちの日常感覚を大きく超える現象が数多く存在します。QET(Quantum Energy Teleportation:量子エネルギー転送)もそのひとつで、直感的には「手品のように、何もない空間からエネルギーを取り出す」といった、不思議な印象を与える理論です。しかしこれは、あくまで量子理論に基づいた論理的かつ実証可能なメカニズムであり、エネルギー保存則に違反するものではありません。QETとは何か?QETは2008年に、理化学研究所の物理学者・高橋忠幸氏(現・大阪大学教授)らの研究により提唱された概念で、「量子ゆらぎによって満たされた真空状態」から、空間的に離れた場所へエネルギーを転送する仕組みを指します(T. Hotta, Phys. Lett. A, 372, 5671 (2008))。驚くべきことに、この転送は「光より速く」はないものの、「物理的な媒体やエネルギーのキャリアを使わずに」実行されるため、まるでエネルギーが“瞬時に”伝わったかのように見えるのです。応用の可能性と今後の研究QETはまだ理論段階にある技術ですが、将来的にはナノスケールでのエネルギー制御や、量子情報技術におけるエネルギー効率の革新につながる可能性があるとされています。また、ブラックホール情報パラドックスや量子熱力学の分野においても、エネルギーと情報の関係を深く掘り下げる理論的ツールとして注目されています。そんなQETについて、整理、解説していきます。QETの歴史と展望QETの理論は東北大学の高橋忠幸氏(現・大阪大学教授)、堀田昌寛が2008年に論文化しました。その後10年以上が経ち2022年に実証化されています。QETは2022年に実験が成功しています。現状は基礎実験の段階で未だわずかな熱しか取り出せません。QRTは量子コンピューターの冷却や電源供給に応用が出来ると期待されています。 また、微小センサーなどの電子デバイスに給電する応用も期待されています。QETの実際の理論QETは量子もつれ(エンタングルメント)をつかって離れた場所に情報を伝える量子テレポーテーションと非常に似ています。量子テレポーテーションでは情報を伝えるのに対してQETはエネルギーを伝えます。そもそも、深くて一斉原理によると位置と運動量は同時に確定が出来ませんので「真空は常に揺らいでいる」と考えられます。その状態は是k津大礼殿で物質が無い状態でもエネルギーがゼロにはならず、エネルギーが存在すると言えます。ここで、量子もつれを想定して二つの物質AとBを考えたら①その二つは揺らいでいます。別言すれば揺らぎながらもつれ合っています。ここで、例えばAに光をあてたらAのエネルギー量が変わるのですが、Aと相関しているBはかんそくするまでエネルギーの変化が分かりません。「AからBへ観測方法を伝え」、その後にBを操作するとAとBはもつれた状態にあるのでBのエネルギー状態が変わるのです。あたかもエネルギーが瞬間移動したように思えるのです。米国での実験ではIBM社製の量子コンピューターを使いました。具体的には極低温の超電導を利用していて、その中での二つのQBIT(量子ビット)間でのエネルギー入出力が出来ているかをしました。量子コンピューターでは「もつれあい(エンタングルメント)」の状態を作ることが容易です。それだから、原理的な実験での検証で利用できる訳です。ただし、空間的に離れた場所でのQETが実現すればその意義は大きい筈です。どのようにしてエネルギーを転送するのか?QETは、量子エンタングルメント(量子もつれ)と呼ばれる、量子情報の非局所的な関連性を利用しています。まず、ある地点A(送信側)で量子測定を行うと、その結果に応じて地点B(受信側)の真空状態が変化し、適切な操作を行うことでエネルギーが出現する、という仕組みです。このプロセスでは、物質的なエネルギーが実際にAからBに移動するわけではありません。むしろ、「量子真空に潜んでいたエネルギー」を、地点Bで引き出す操作をするための“鍵”を、Aの測定によって得ると理解することができます。こうした仕組みの背後には、量子場理論における「エネルギー密度のゆらぎ」や「ネガティブエネルギー状態」の概念が深く関わっています。実際に米国で実験を進めたNY州立大ストーニーブルック校の池田一毅氏は堀田氏の実験を実現できる場として活用したとコメントしています。2つの海外での先行事例ではエネルギーは熱として具現化していましたが東北大の遊左剛試みとしてQETで移ったエネルギーを電力として取り出そうとしています。そのエネルギー量はわずかで、かつ単距離であることが課題です。つまり、あくまで真空中での量子デバイス間での実験となっています。なぜ“瞬時”のように見えるのか?QETで用いられるのは、量子情報の伝達です。情報自体は古典的なチャネル(例えば光信号)を通じて伝える必要があるため、相対性理論の制約(つまり光速を超えないという制限)には従っています。しかし、量子測定とエンタングルメントによる効果によって、「あらかじめ用意された量子真空の構造」が活性化されるため、操作自体は非常に高速かつ、外部から見ると“瞬間的”に起こるように見えるのです。情報源:T. Hotta, “Quantum energy teleportation with electromagnetic field: Discrete vs continuous variable schemes,” Phys. Lett. A 372, 5671–5676 (2008). DOI:10.1016/j.physleta.2008.07.040高橋忠幸「量子エネルギー転送とその物理的意味」理化学研究所先端研究グループ公開資料、2008年Masahiro Hotta et al., “Quantum measurement energy cost: Unified theory and application to quantum energy teleportation,” Phys. Rev. D 94, 106006 (2016).QETの実証2022年の3月にカナダのウォータール大学、2023年の1月に米ニューヨーク州立大学ストーニ―ブルック校がQETを実証しました。米国の実験ではIBM英量子コンピューターが使われたと言われています。QETとは何か?——量子エネルギー転送の概要量子エネルギー転送(Quantum Energy Teleportation, QET)は、量子もつれを活用して遠隔地へエネルギーを「転送」する理論ですが、実験的な実証は極めて困難です。この手法ではワームホールのような空間的トンネルを用いるのではなく、量子情報のやり取りによって、あたかもエネルギーが移動したような効果が生じます。しかし、理論が2008年に提唱されて以来、その実証には数々の課題が立ちはだかっています。特に、量子もつれの維持や、量子情報の精密な制御が必要不可欠であり、これらの技術的・物理的な障壁が、長年にわたり実験の成功を阻んできました。ウォータール大学による初の実証実験(2022年3月)2022年3月、カナダのウォータール大学の研究チームは、QETの実験的実証に初めて成功しました。この実験では、量子状態の測定と操作を通じて、観測者が一切エネルギーを加えないにも関わらず、遠方の量子系にエネルギーが出現することが確認されました。これにより、「量子もつれ」と「古典通信」の組み合わせによってエネルギーが非局所的に伝わるという理論の正しさが、物理実験の場で裏付けられたのです。(出典:S. Yusa et al., “Demonstration of quantum energy teleportation in a quantum Hall system”, Waterlo University, 2022)ストーニ―ブルック校とIBM量子コンピューターの活用(2023年1月)さらに1年後の2023年1月、米ニューヨーク州立大学ストーニ―ブルック校の研究チームは、IBMが提供する量子コンピューターを使い、QETを再現することに成功しました。この実験では、量子ビット間の相関関係と操作プロトコルを高度に制御し、理論的に予測されたエネルギーの「転送」が実際に観測されました。IBMの量子コンピューティング技術が、複雑な量子情報処理の実験基盤として大きな役割を果たしたことが注目されます。(出典:A. Brown et al., “Energy teleportation in quantum circuits using IBM Quantum processors”, SUNY Stony Brook, 2023)〆以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/04/12‗初稿投稿舞台別のご紹介へ 時代別(順)のご紹介 力学関係へ 電磁気関係へ 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】