2023年9月30日2023年9月20日に投稿 投稿者 元)新人監督 — コメントを残すロジャー・ペンローズ9/30改訂【ブラックホールにおける特異性を示しノーベル賞を受賞】 こんにちはコウジです! 「ペンローズ」の原稿を改定します。 今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。 初見の人が検索結果を見て記事内容が分かり易いように再推敲します。SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを チェックし続けてます。ご意見・関連投稿は歓迎します。 【スポンサーリンク】 【1931年8月8日生まれ ~ (ご存命中)】 芸術家肌のペンローズ その名はロジャー・ペンローズ;Sir Roger Penrose OM FRS。英国の物理学者ですが、まだご存命の方なので簡単に取り上げたいと思います。有名人のブライアンとは少し系統が違う気がするのです。 (芸能系ではない純理論の学者さんです。ムツゴロウさんとも雰囲気が違いますね)ロジャー・ペンローズは精神科医にして遺伝学者の父を持ち、父方母方共に沢山の学者、芸術家がいる家庭に生まれました。ロジャー自身も学者としてケンブリッジに進みます。ホーキングと共にブラックホールにおける特異点を示し、 後に2020年のノーベル賞を受賞します。授賞理由は 「ブラックホールと相対論の関係」に対しての評価でした。 ペンローズの研究業績研究業績で気になってしまうのは認識に関する仮説に関してです。脳内での活動については個人的に昔から気になっている部分ではあるのですが、ロジャー・ベンローズの話の展開に、ほんの少しの違和感を覚えるのです。ロジャーの主張は著書:皇帝の新しい心_で示されているのそうですが脳内の情報処理には量子力学が関わる。即ちユニタリー発展(U)と波束の収束(R)が含まれている仮定のもとに、片方のRに対する議論が欠けているという立場で話を進めているのです。無論、脳内の活動は大きさスケールで考えた時に量子力学の対象となると思えます。脳内の伝達物質の一つは情報を与える電子であったりするからです。その系統の話をきちんと読み通してはじめて分かる話なのか、考え落としを含んでいる危うい話なのか、失礼ながら気になってしまうのです。本稿の中で私が使っている「違和感」が本物の違和感なのか取り越し苦労の違和感なのか確かめたいと思います。その意味で非常に興味深いです。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近全て返事が出来ていませんが 全て読んでいます。 適時、改定をします。nowkouji226@gmail.com2021/07/02_初回投稿 2023/09/30_改定投稿(旧)舞台別のご紹介 纏めサイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 イギリスのご紹介へ ケンブリッジのご紹介へ 力学関係のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】(2021年11月時点での対応英訳)Artist skin pen roseIts name is Roger Penrose OM FRS.He’s a British physicist, but he’s still alive, so I’d like to take a quick look. He feels a little different from the celebrity Brian.(I’m a non-entertainment scholar of pure theory. The atmosphere is different from that of Mr. Mutsugoro.)Roger Penrose was born into a family with a psychiatrist and geneticist father, and many scholars and artists on both his paternal and maternal sides. Roger himself goes to Cambridge. He, along with Hawking, showed his singularity in black holes and later won the 2020 Nobel Prize. The reason for his award was his appreciation for the relationship between black holes and relativity.Penrose research achievementsWhat is worrisome about his research achievements is the cognitive hypothesis. I’ve always been concerned about activities in the brain, but I feel a little uncomfortable with the development of Roger Ben Rhodes’ story. The claim is shown in Roger’s book: The Emperor’s New Heart, but quantum mechanics is involved in information processing in the brain. That is, under the assumption that unitary development (U) and wave packet convergence (R) are included, we are proceeding from the standpoint that there is a lack of discussion on one R. I’m rude and worried whether it’s a story that can only be understood by reading through the story of that system properly, or a dangerous story that includes oversight. I would like to confirm whether the “uncomfortable feeling” I use in this article is a genuine uncomfortable feeling or a discomfort of having a hard time moving. In that sense, it’s very interesting.〆
2023年9月29日2023年9月19日に投稿 投稿者 元)新人監督 — コメントを残すロバート・シュリーファー 9/29改訂【超電導を理論化したBCS理論を提唱】 こんにちはコウジです! 「シュリーファー 」の原稿を改定します。 今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。 初見の人が検索結果を見て記事内容が分かり易いように再推敲します。SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを チェックし続けてます。ご意見・関連投稿は歓迎します。 【スポンサーリンク】 【1931年5月31日 ~ 2019年7月27日】 BCS理論を構築したシュリーファーBCS理論を作った3人の中の一人がシュリーファーであって、BCS理論でのSはシュリーファのSです。BCS理論自体の説明は他のメンバーである バーディーン、クーパーのご紹介の中で 解説していますので繰り返しません。 超伝導を微視的に解説した理論です。 シュリーファーと超電導の研究シュリーファは少年時代は手作りロケットを制作したり、アマチュア無線が好きだったりする電子工学好きな少年でした。そんなシュリーファはMIT(マサチューセッツ工科大学)で半導体の研究を当初進めていました。特に半導体表面での電子の振る舞いを研究していたのです。そして後に超伝導現象の研究に移ります。シュリーファ達がBCS理論をまとめた後、世界での研究は常温での超伝導実現に向けた研究が進んでいます。常温高圧環境下で現象を起こしたりする試みがなされていて、マイナス百数十ケルビンまで転移温度は近づいてきています。現実には実現が難しい様な高圧をかけた時に、常温で超電導現象が実現した報告もあります。私が研究していた時代には青学の秋光先生や東工大の細野先生が挑んでいました。それぞれご存命かと思われますので詳細は控えます。科学史と言うより最前線に近いかと思えますので。ご本人達にしてみれば「今でも研究してますよ!」って気持ちもあるのではないかとと思えるのです。 シュリーファーの晩年話し戻って、シュリーファは1957年から米国代表の立場で英国バーミンガム大学とコペンハーゲンのボーア研究所で超電導の研究を続けています。そして残念な事に、晩年に自動車事故を起こし人を殺めてしまい、懲役を課されています。カリフォルニア州サンディエゴにある刑務所で懲役に服しました。素晴らしい研究のセンスとうっかりミスを犯してしまう性格は共にシュリーファの人生に影響を与えました。出来れば緊張感を持って生活を送って頂きたかったです。こんな話をするのは事故当時シュリーファは免許停止中だったからです。立場のある人間であれば尚更、責任を持った行動が求められます。それだから、この話を知ってとても残念です。バーディン教授の人を集める性格とシュリーファー教授の人を遠ざけてしまう性格は対象的に思えてしまうのです。バーディンは仲間とトランジスタを開発して、別途BCS理論をつくりあげて仲間の輪を広げました。その過程で出会った日本人、中嶋貞雄をアメリカに呼んで、もてなしていたりします。朗らかなアメリカ人のイメージです。反面、シュリーファーは立派な立場をいくつも受けた後に人を殺めてしまいました。朗らかなアメリカ人として単純に語れない人生です。こんな話を我々は大きな教訓として考えるべきだと思います。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 時間がかかるかもしれませんが 必ず返信・改定をします。nowkouji226@gmail.com2020/09/17_初稿 2023/09/29_改定舞台別のご紹介へ 時代別(順)のご紹介 アメリカ関連のご紹介へ イギリス関係のご紹介へ オランダ関係のご紹介へ 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】(2021年11月時点での対応英訳)Schrieffer of BCS theoryOne of the three who created the BCS theory is Schrieffer, and the S in BCS theory is Schrieffer’s S.Research on Schrieffer and superconductivityWhen he was a boy, Shrifa was a boy who loved electronics, making handmade rockets and ham radio. Such Schrifa was initially conducting research on semiconductors at MIT (Massachusetts Institute of Technology). He was especially studying the behavior of electrons on the surface of semiconductors. And he later moved on to study superconducting phenomena.After Schrifa et al. Summarized the BCS theory, research in the world is progressing toward the realization of superconductivity at room temperature. Attempts have been made to cause phenomena in a normal temperature and high pressure environment, and the transition temperature is approaching to minus one hundred and several tens of Kelvin.There is also a report that the superconducting phenomenon was realized at room temperature when a high voltage that was difficult to realize in reality was applied. When I was studying, Professor Akimitsu of Seigaku and Professor Hosono of Tokyo Institute of Technology were challenging. I will refrain from detailing each of them as they may be alive. I think it’s closer to the front line than the history of science. For the people themselves, I think they may have the feeling that they are still researching!Schrieffer’s later yearsReturning to the story, Schrifa has been studying superconductivity at the University of Birmingham in the United Kingdom and the Bohr Institute in Copenhagen since 1957. And unfortunately, in his later years he had a car accident, killed a person and was sentenced to imprisonment. He was sentenced to jail in San Diego, California. Both his great sense of research and his inadvertent mistaken personality have influenced Shrifa’s life. He wanted him to live a life with a sense of tension if possible. I tell this story because Shrifa was out of license at the time of the accident.If you are a person in a position, you are even more required to act responsibly. So I’m very sorry to know this story. The character of gathering Professor Bardeen and the character of keeping Professor Schrieffer away seem to be symmetrical. Bardeen developed a transistor with his companions and created a separate BCS theory to expand the circle of his companions. I invite Sadao Nakajima, a Japanese who I met in the process, to the United States for hospitality. It is an image of a cheerful American. On the other hand, Schrieffer killed a person after receiving several good positions. It’s a life I can’t talk about as a cheerful American. I think we should consider this story as a big lesson.〆
2023年9月28日2023年9月18日に投稿 投稿者 元)新人監督 — コメントを残す有馬朗人_9/28改訂【ゆとり教育の推奨|複雑な原子核の状態を簡易に数式化】 こんにちはコウジです! 「有馬朗人」の原稿を改定します。 今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。 初見の人が検索結果を見て記事内容が分かり易いように再推敲します。SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを チェックし続けてます。ご意見・関連投稿は歓迎します。 【スポンサーリンク】 【1930年9月13日 ~ 2020年12月6日】 有馬氏へお悔やみ東大学長を務めた有馬朗人氏が2020/12/8に亡くなりました。享年90歳。謹んでお悔やみを申し上げます。有馬朗人は原子核物理学の世界で業績をあげ、特に 有馬・堀江理論(配位混合の理論)、 相互作用するボゾン模型の提唱、 クラスター模型への貢献、 の3つの業績が大きな業績です。有馬朗人の業績特に相互作用するボゾン模型は有馬朗人が オランダの研究機関に居た1974年に発表していて、 別名で「相互作用(する)ボソン近似」の名でご存知の方も多いのではないでしょうか。 粒子の入れ替えに対して波動関数の符号が 反転しない対象粒子に対して、いわゆる 「第二量子化」された時の議論で 有馬朗人の考えた近似は使われます。以上の説明は一般の人には分かりづらいかもしれませんが 原子核の状態を記述するには古典的な(ニュートン的な)記載 では不十分で、波動関数を使うだけではなくて群論や 電磁気的な側面を考慮して議論を進めていきます。そして、有馬さんは現象を嚙砕いて数式化して 難しい原子の世界を簡単な数式で表現したのです。 また、政界においても活躍され、 特にゆとり教育の推奨が知られています。 有馬朗人が勧めたかった当初の教育は 世界史と日本史を共に学ぶ事で 知識をより豊かに身に着けていく様な 試みであって、現場に話が伝わった時点では 全く別の解釈として伝わっていました。 有馬朗人はその解釈を非常に 遺憾に感じて居たようです。他にも色々と語りたかったでしょう。 ご冥福をお祈りします。〆 以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点には適時、 返信・改定をします。nowkouji226@gmail.com2020/12/07_初稿投稿 2023/09/28_改定投稿【スポンサーリンク】(旧)舞台別のご紹介 纏めサイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 日本関連のご紹介 東大関連のご紹介 (2021年11月時点での対応英訳)Condolences to Mr. ArimaAkito Arima, the president of the University of Tokyo, died on December 8, 2020. He is 90 years old. We would like to express our deepest condolences. Akito Arima has made great achievements in the world of nuclear physics, and is particularly famous for his three achievements: Arima-Horie theory (theory of mixed coordination), proposal of interacting boson models, and contribution to cluster models.Achievements of Akito ArimaIn particular, the interacting boson model was announced by Akito Arima in 1974 when he was at a research institute in the Netherlands, and many of you may know it under the alias of “interacting boson approximation”. ..Akito Arima’s approximation is used in the discussion of so-called “second quantization” for objects whose wavefunction signs do not invert with respect to particle replacement. It wasIt is also active in the political world, and is especially known for recommending Yutori education. The initial education that Akito Arima wanted to recommend was an attempt to acquire more knowledge by studying both world history and Japanese history, and when the story was conveyed to the field, it was a completely different interpretation. It was transmitted as. Akito Arima seems to have felt very regretful about his interpretation.He would have wanted to talk a lot more. He prays for souls.〆
2023年9月27日2023年9月17日に投稿 投稿者 元)新人監督 — コメントを残すレオン・クーパー_9/27改訂【26歳でクーパ対|超電導理論での電子挙動をモデル化】 こんにちはコウジです! 「クーパー」の原稿を改定します。 今回の主たる改定はタイトルの再考です。ベートーベンは居ない時代。 初見の人が検索結果を見て記事内容が分かり易いように再推敲します。SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを チェックし続けてます。ご意見・関連投稿は歓迎します。 【スポンサーリンク】 【1930年2月28日 ~(ご存命中)】 クーパと超電導初めに、本稿は関連用語の解説が中心となリます。 今後も含め分かり易い内容にしたいので 超伝導現象を科学史の観点から改めて まとめ直した方が有益だろうと感じたからです。既に内容をご承知の方にはしつこく感じるかと。 そうでしたらごめんなさい。読み飛ばしてください。クーパーはジョン・バーディーン等と共にBCS理論を確立しました。 クーパーはユダヤ系です。賢い人達ですね。そもそも BCS理論の大事な考え方であるクーパー対という 考え方をクーパーは26歳の時に纏めています。さて、本題です。1911年のK・オンネスの発見により 通常の伝導性とは異なる超伝導状態が存在すると明らかに なりました。定量的には絶対零度近くの ‐273℃=ゼロ・ケルビン(k) に近づくと超伝導現象が起きます。その時は抵抗値ゼロです。例えばニオブ(Nb)は9.22ケルビンで 超伝導状態になります。超伝導状態への 転移を上手く説明した理論がBCS理論で あって、BCSでのCはクーパーの名前に 由来します。超電導の別の側面 ここで別の側面から超伝導状態を考えます。温度を下げ相転移温度で現象が起きると電流を流した時に抵抗値がゼロになりますが同時に相転移温度で磁界に対して変化が生じます。現時点での超電導現象の応用としてリニアモーターカーがあげられます。細かくは超伝導体の内部で内部磁場がゼロになり、外部からの磁界を遮断します。超伝導状態になった時に磁石が浮かぶ写真は有名な例えですね。更に磁石は極性を持ちますから、ラダーと呼ばれる軌道で極性を切り替えていく事でリニアモーターカーは進むのです。この完全反磁性またはマイスナー効果と呼ばれる現象は超伝導現象での特徴の一つです。ここで関連して磁力線について整理したいと思います。ご存知の通り磁石はN極とS極からなり磁力を持ちます。一般的に模式図で示される様に磁力線は片方から他方へゆったりした曲線で繋がっていきます。所が超伝導現象では内部へ磁力線が侵入出来ない様な現象が起きます。相転移の前後で形が突然変わります。更には変化の違いで第一種超伝導体 と第二種超伝導体に物質によって分かれます。これらの現象を理解する為にクーパー等が確立したBCS理論が基礎になっていくつのです。クーパーのアイディアは電子が対(つい)になるというもので、対になった電子がスピンを打ち消しあって超電導状態を作るというものです。その電子の対は今でも超電導の学者達の間で「クーパ対」と呼ばれています。この考えが発展していき、現代では相転移の温度がどんどん高くなっています。実用上は常温常圧下で相転移を起こすことが大事になっていますので液体ヘリウムよりも安価な液体窒素で冷やせる事が望ましいのです。実際、液体窒素の沸点は−196℃ですので現在は、液体窒素で冷やす事で相転移を実用出来る素材を中心に研究が行われて居ます。そして、現在では現象発生に対して「ゆらぎ」のメカニズムをより解明していこうという取り組みが進んでいます。さらなる今後の進展に期待しましょう。【スポンサーリンク】〆以上、間違い・ご意見は 以下アドレスまでお願いします。 時間がかかるかもしれませんが 必ず返信・改定をします。nowkouji226@gmail.com2020/09/16_初回投稿 2023/09/27_改定投稿舞台別のご紹介へ 時代別(順)のご紹介 アメリカ関連のご紹介へ 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】(2021年11月時点での対応英訳)Cooper and superconductivityFirst, this article focuses on explanations of related terms. I wanted to make the content easy to understand, including in the future, so I felt that it would be useful to reorganize the superconducting phenomenon from the perspective of the history of science.Do you feel persistent to those who already know the contents? If so, I’m sorry.Cooper established the BCS theory with John Bardeen and others. Cooper is of Jewish descent. He’s smart people, aren’t he?In the first place, Cooper summarized the idea of Cooper pair, which is an important idea of BCS theory, at the age of 26.Well, the main subject. The discovery of K. Onness in 1911 revealed that there is a superconducting state that is different from normal conductivity. Quantitatively, a superconducting phenomenon occurs when approaching minus 273 ° C = zero Kelvin (k) near absolute zero. At that time, the resistance value is zero. For example, niobium (Nb) becomes superconducting at 9.22 Kelvin. The theory that well explains the transition to the superconducting state is the BCS theory, where C comes from Cooper’s name.Another aspect of superconductivityNow consider the superconducting state from another aspect. When the temperature is lowered and a phenomenon occurs at the phase transition temperature, the resistance value becomes zero when a current is passed, but at the same time, the phase transition temperature changes with respect to the magnetic field.The current application is a linear motor car. In detail, the internal magnetic field becomes zero inside the superconductor, blocking the external magnetic field. The picture of a magnet floating when it is in a superconducting state is a famous analogy. Furthermore, since magnets have polarity, the linear motor car advances by switching the polarity in a trajectory called a ladder. This phenomenon called the complete antimagnetism or the Meissner effect is one of the characteristics of the superconducting phenomenon.Here, I would like to organize the lines of magnetic force in relation to this. As you know, a magnet consists of N pole and S pole and has magnetic force. Generally, as shown in the schematic diagram, the lines of magnetic force are connected by a loose curve from one side to the other.However, in the superconducting phenomenon, a phenomenon occurs in which the lines of magnetic force cannot penetrate inside. The shape changes suddenly before and after the phase transition. Furthermore, it is divided into type 1 superconductors and type 2 superconductors depending on the substance due to the difference in change. The BCS theory established by Cooper et al. Is useful for understanding these phenomena.This idea has evolved, and the temperature of the phase transition is getting higher and higher in modern times. In practice, it is important to cause a phase transition under normal temperature and pressure, so it is desirable to cool it with liquid nitrogen, which is cheaper than liquid helium.In fact, since the boiling point of liquid elements is -196 ° C, research is currently being conducted focusing on materials that can be used for phase transition by cooling with liquid nitrogen. At present, efforts are underway to further elucidate the mechanism of “fluctuation” in response to the occurrence of phenomena. Let’s look forward to further progress.
2023年9月13日2023年9月15日に投稿 投稿者 元)新人監督 — コメントを残す大森賢治氏が冷却原子方式に挑む【超電導の実現へ向けて新しい方式を提案】 はじめに本稿は2023年9月13日の日経新聞に掲載された記事を骨子として、 著者であるコウジ独自の関心に従い追記した内容となっています。量子コンピュータの実現へ量子コンピューターの実現に向けて 各国が独自の技術を競い合う中で、 単一原子 に着目した 原子冷却方式と呼ばれる 方式に 日本の技術者が挑戦しています。アメリカの学会で 成果を発表したところ 反響著ししく、 新たな成果が期待されています。米ロードアイランド州のサルベレジーナ大学で 開かれた量子制限に関する研究会で、 日本人の大森賢司さんが議長を務めました。この合同研究かは 90年以上の歴史を持ち 特にジョン・マスティース米カリフォルニア 大学教授 ら 著名な学者が参加していることで有名です。今回160人の規模で会議が開かれています 大森さんらが手がける冷却原子方式の量子コンピューターは 実用化で先行する超電導方式、光方式に続く 第3の量子コンピューターと呼ばれています。マティニス教授も絶賛昨年8月に 大森教授らが開発した 研究成果を マティニス教授は 主に評価しています。 計算速度を上げるためにゲート操作時の 原子間の距離を十分に近づける事が必要なのに対して 超高速のパルスレーザーを照射するという 独自の方式で実現した結果です。操作スピードは従来方式に比べ2桁早くなり Google が超電動方式で2020年に発表した記録を しのいでいます。どこにメリットがあるか第1のメリットとしては現在主流となってる超伝導方式の 量子コンピューターと異なり冷却器が不要という点です。 装置が必要で稼動できるということが大きな特徴です。 新しい方式では大規模化が難しく好ましい量子状態が 長時間維持できるという所が大きな特徴です。また大規模化が容易で量子状態を長時間維持できる 特徴があります。ただし計算する時の冷凍操作に 時間がかかることが大きな問題点でした。卓越したアイディア2010年頃に大森教授が各界で評価を受けた内容は「通常のコンピューターのように電荷で情報を担う」のではなくて波動関数が情報の担い手として活躍する仕組みです!!超高速の分子コンピューターと呼ばれます。分子にアト秒間隔で2つのレーザーパルスを与え反応を見ます。1アト秒とは100京分の1秒、一秒間に地球を7周半の距離を進む光がやっと0.3 nm 進めるくらいの非常に短い時間です。その感覚で情報を与える仕組みが波動関数に影響を与えます。その他の量子コンピュータ前日した光学方式は技術として先行しており研究成果が多数あります。 また理科学研究所で導入しているような量子ビット方式のコンピューターは マイナス百ケルビン以下に冷却する必要があり 計算組織を 適切な状態に維持することはとても難しいです。また計算時間の 十分な 確保も大きな課題です。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2023/09/13‗初稿投稿旧舞台別まとめへ 舞台別のご紹介へ 時代別(順)のご紹介 力学関係へ 電磁気関係へ 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】