松山基範【1884年10月25日 – 1958年1月27日_地磁気の反転を兵庫県の玄武岩の磁気測定で発見】

地球の歴史は常に変化に満ちています。その中でも特に人々を驚かせたのが「地磁気の逆転」という現象です。コンパスの針が指す北と南が、ある時代には逆だったという事実。この重要な発見を最初に科学的に示したのが、日本の地球物理学者 松山基範(まつやま・もとのり)博士 でした。1926年、兵庫県豊岡市の「玄武洞」で採取した玄武岩を調べた松山博士は、その岩石の磁化方向が現在とは逆であることを突き止めました。1929年の論文発表は、世界で初めて地磁気逆転を証明したものとして知られています。その後、この研究は「チバニアン」認定の科学的根拠の一つともなり、古地磁気学という新しい学問分野を切り開くきっかけとなりました。本稿では、発見の経緯、玄武岩と磁化のメカニズム、地磁気逆転の仕組み、そして松山博士の人物像をたどりながら、この偉業の意義を改めて振り返ります。


1. 発見の経緯とその意義

1-1 玄武洞での観察

1926年、京都大学の 松山基範博士 は、豊岡市にある「玄武洞」の約160万年前の玄武岩を調査しました。その結果、岩石の残留磁化が現在の地磁気と逆を向いていることを確認しました。この観察は当初、大きな注目を集めませんでしたが、1929年に論文として発表されると、地磁気が過去に反転していたことを示す最初の科学的報告となりました(Matsuyama, 1929)。

1-2 その後の評価

発表当時、学界は懐疑的でしたが、後の研究で裏付けられ、現在では地磁気逆転は確立した学説となっています。松山の名は「松山逆磁極期(Matuyama Reversed Chron)」として、地質学の標準的な時間区分に刻まれました。

まとめ(約200字)

松山博士が玄武洞で行った観察は、当時は小さな発見に見えましたが、のちに地球科学全体を変える基盤となりました。科学の進展は時に「時代が追いつくまで」評価されないことを示す好例でもあり、松山の研究はチバニアン認定にもつながる現代的な意義を持ち続けています。


2. 地磁気逆転のメカニズム

2-1 地球の磁場をつくる「ダイナモ作用」

地球の磁場は、外核の液体金属(主に鉄とニッケル)の対流によって生じる「地球ダイナモ作用」で生み出されています。この流れが変動すると、磁場の強さや方向も変化し、時には逆転が起こると考えられています(Glatzmaier & Roberts, 1995)。

2-2 逆転の周期性と特徴

地磁気逆転は完全に周期的ではなく、不規則に発生します。例えば「松山逆磁極期」は約260万年前から78万年前にかけて続きました。逆転の間隔は数十万年から百万年以上に及ぶこともあり、近い将来の逆転可能性についても議論されています。

2-3 現代観測との関連

現在、地磁気は弱まりつつあり、これが「逆転の前兆ではないか」との議論も存在します。しかし研究者の間では「弱まってもすぐに逆転するとは限らない」とされています(NASA, 2018)。

まとめ(約200字)

地磁気逆転は地球ダイナモ作用の自然な結果として生じる現象であり、地球の歴史を刻む「周期的な鼓動」ともいえます。松山博士の発見は、単なる岩石観察にとどまらず、この地球規模のダイナミズムを示す先駆的証拠となったのです。


3. 玄武岩と磁化のメカニズム

3-1 岩石に残る「自然残留磁化」

溶岩が冷えて固まるとき、岩石中の磁性鉱物(主に磁鉄鉱)が周囲の地磁気の方向に並び、その方向を保持します。これを「自然残留磁化(NRM)」と呼びます。

3-2 玄武岩の特徴

玄武洞の岩石は玄武岩であり、磁性鉱物を多く含むため、過去の地磁気を記録するのに適しています。玄武洞の柱状節理は景観的にも知られていますが、科学的にも「天然の磁気テープ」として大きな価値を持ちます。

3-3 測定方法の進化

松山博士の時代には限られた測定技術しかありませんでしたが、現在では高感度の磁力計や放射年代測定と組み合わせて、より正確な古地磁気解析が行われています。

まとめ(約200字)

玄武岩は地球の過去を記録する「天然の磁気メディア」といえる存在です。松山博士は、この岩石が示す微妙な磁化の向きに注目し、そこから地球規模の逆転現象を導き出しました。シンプルながらも深い洞察が科学の大発見につながった好例といえます。


4. 松山基範の人物像

4-1 学歴と経歴

松山基範(1884–1958)は京都大学で地球物理学を学び、地磁気や地球電気学の研究に従事しました。1929年の発表によって世界的に名を残しましたが、日本国内では長らく過小評価されてきました。

4-2 人柄と研究姿勢

松山博士は慎重で実直な研究者として知られ、地味ながらも着実に観察と実験を重ねるタイプでした。その誠実な姿勢が、確かなデータをもとにした地磁気逆転の発見につながったといえます。

4-3 功績と評価

彼の業績は死後に再評価され、「松山逆磁極期」という名が国際的に採用されることで、その価値が世界的に認められることとなりました。

まとめ(約200字)

松山博士は名声を追うよりも観察と実証を重んじる研究者でした。彼の真摯な姿勢が時代を超えて評価され、現在では「古地磁気学の父」として世界的に知られる存在となっています。


参考図版(イメージ)

図版内容
玄武洞の柱状節理(約160万年前の玄武岩)
地磁気逆転の概念図

全体のまとめ

松山基範博士が1926年に玄武洞で発見した「逆向きの磁化」は、やがて地球の磁場が反転するという壮大な事実を示す最初の証拠となりました。この研究は当時すぐには理解されませんでしたが、のちに古地磁気学という新しい分野を開き、チバニアン認定にもつながりました。地磁気逆転のメカニズム、玄武岩の残留磁化、そして松山博士の誠実な人柄をたどることで、科学における「一見小さな観察」がどれほど大きな発見を導くかを実感できます。松山の名は、今も地質年代の中に生き続けています。


参考文献

  • Matsuyama, M. (1929). “On the Direction of Magnetization of Basalt in Japan, Tyosen and Manchuria.” Proc. Imp. Acad. 5: 203–205.

  • Glatzmaier, G. A., & Roberts, P. H. (1995). “A three-dimensional self-consistent computer simulation of a geomagnetic field reversal.” Nature, 377, 203–209.

  • NASA (2018). Earth’s Magnetic Field Is Weakening. https://www.nasa.gov

  • 豊岡市公式サイト「玄武洞公園」 https://www.city.toyooka.lg.jp

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2025/10/13‗初稿投稿

舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係
京都大学関連のご紹介へ