に投稿 コメントを残す

A・J・フレネル
5/22改訂【光が横波であると説明しての偏向や屈折を説明】

パリの夕暮れ

こんにちは。コウジです。
フレネルの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

ナポレオンのポスター
【スポンサーリンク】
【1788年5月10日 ~ 1827年7月14日】

フレネルとナポレオン

その名はオーギュスタン・ジャン・フレネル;
Augustin Jean Fresnelです。

フランスのノルマンディー地方で
建築家の父のもとに生まれます。
ナポレオン時代に生きた人で、
ナポレオンの運命で人生を大きな影響を受けました。
物理学者としてナポレオンに関わった
ヴォルタとは対照的です。
ヴォルタはナポレオンに好かれていて
伯爵の栄誉を受けています。

それに対してフレネルはナポレオンの
敵方についているのです。先ず、
フレネルは国立土木学校を卒業後に
色々な地方の地方の現場に赴任して
建設の仕事の経験を重ねます。

その傍らで関心のあった
光学関係の知見を得ていきます。
1815年におけるナポレオン・ボナパルトの
エルバ島脱出の際には国王勢の味方
となりましたが、その為にナポレオン施政下では
軟禁生活を余儀なくされます。
私見(しけん:私の考え)では、
この時の時間の過ごし方が少しニュートン
似ている気がしてしまいます。

実際にニュートンはペスト流行時に
学術交流できない時間を活用して
プリンキピアに繋がる思索の時間を作り、
まとめ上げました。

フレネルはナポレオン施政時の軟禁生活の
時間を使って光学の研究を進め、
波動性による考え方を確立して
回析現象を示したのです。

ニュートンもフレネルも共に
暗黒時代に光への道筋を模索しました。 

ナポレオンの百日天下が終わり、ルイ18世が再び即位すると
フレネルは復職しパリにて技師としての仕事を再開しました。

フレネルと光 

パリでの仕事としてフレネルは生活の為の仕事をし乍ら光学の研究を続けました。クリクリスティアーン・ホイヘンストマス・ヤングらなどによると光の伝番についての当時、縦波だろうと考えられていました。つまり、光は波動(波)として考えられますが、光は音波と同様に媒質(実は真空でも伝わります)を伝わる時は「縦波」であると考えられていたのです。それに対してフレネルは、偏光の説明を突き詰めて、光の波動説を実証したうえで、光が横波であると考えたのです。
『ここでの「縦波」や「横波」は進行方向に対してそれぞれ
「平行」が「垂直」であるかに対応します。』

こうしたフレネルの光学理論は、複屈折現象などを上手く説明しました。またフレネルは、地球のような移動体での光路差について研究していきました。それはマイケルソン・モーレーの実験に繋がり、特殊相対論に示唆を与えたと言われています。

フレネルは光学理論をまとめあげ、1823年に「反射が偏光に与える諸変形の法則に関する論文」として発しました。この功績は広く称えられ、、フランス科学アカデミーの会員に選ばれたほか、物理学の世界で次々と認められました。

最後にフレネルはとても病弱でした。
残念な事に結核を患い39歳で若くして亡くなってます。



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/10/05_初版投稿
2024/05/22_改定投稿

旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
電磁気関係
量子力学関係

力学関係のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

Fresnel and Napoleon

Its name is Augustin Jean Fresnel. Born to an architect’s father in the Normandy region of France. A man who lived during the Napoleonic era, Napoleon’s fate greatly influenced his life. First, after graduating from the National Civil Engineering School, Fresnel will be assigned to various local sites to gain experience in construction work. Beside him, he gains optics insights that he was interested in. He became an ally of the royal family when

Napoleon Bonaparte escaped from Elba Island in 1815, which forced him to live under house arrest under Napoleon’s administration. In my opinion, the way I spend my time at this time is a bit like Newton. In fact, Newton made use of the time when academic exchange was not possible during the plague epidemic to create and organize a time for thinking that would lead to Principia. Fresnel used his time under house arrest during Napoleon’s administration to study optics, establishing a wave-based mindset and showing the phenomenon of diffraction.

When Napoleon’s Hundred Days ended and Louis XVIII reigned, Fresnel returned to work and resumed his work as his engineer in Paris.

Fresnel and light

As his work in Paris, Fresnel continued his optics research while working for a living. It was thought that the thoughts of Christiaan Huygens and Thomas Young on the transmission of light at that time would be longitudinal waves. In other words, light can be thought of as a wave, but when it travels through a medium (actually, it can also be transmitted in a vacuum) like sound waves, it was thought to be a “longitudinal wave.”

Fresnel, on the other hand, scrutinized the explanation of polarized light, demonstrated the wave theory of light, and thought that light was a transverse wave.
“The” longitudinal wave “and” transverse wave “here correspond to whether” parallel “is” vertical “with respect to the traveling direction. 』\

Fresnel’s optical theory explained the birefringence phenomenon well. Fresnel has also studied optical path lengths in mobile objects such as the Earth. It is said that it led to Michelson-Morley’s experiment and gave suggestions to special relativity.

Fresnel summarized the theory of optics and published it in 1823 as “A Paper on the Laws of Deformation of Reflection on Polarized Lights”. This achievement was widely praised, he was elected a member of the French Academy of Sciences and was recognized one after another in the world of physics.

Finally Fresnel was very sick. He unfortunately suffered from tuberculosis and died at the young age of 39.

に投稿 コメントを残す

ハンス・エルステッド
5/21改訂【思考実験を提唱|電流と磁場を考察】

デンマーク

こんにちは。コウジです。
エルステッドの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

キルケゴールとヘーゲル
【スポンサーリンク】
【1777年8月14日生まれ ~ 1851年3月9日没】

デンマーク黄金時代の
リーダー_ エルステッド

ハンス・クリスティアン・エルステッド

; Hans Christian Ørsted

磁場の単位としてその名を残している人です。

ガウスと同じ年に生まれています。

ガウスやエルステッドの時代は電磁気学が

未開の時代だったとも言えます。

得られている知識が未だ断片的で、

全体像が見えていない状態で

手探りの把握を一つ一つ、数学的な

式化を含めて、ぐいぐい進めていたのです。また、

会社名としてもエルステッドは名を残しています。

デンマーク黄金時代と呼ばれる時代があり

その時代のリーダーでした。
思想が哲学として論じられて
哲学的論拠を考察していったのです。
そして、

エルステッドは「思考実験」の概念を
打ち出した人だと言われています。正に
パラダイムシフトを起こした人です。
具体的に思考実験の事例をあげて見ましょう。
時代と共に具体的な実験として実感できます。

ゼノンのパラドックス:
エレアのゼノン(ギリシアの哲学者)は、運動の概念を確立するために、
いくつかのパラドックスを提唱しました。たとえば、
アキレスとカメ・パラドックスは、アキレスがレースでカメに
有利なスタートを与えるならば、彼が常に残りの距離の半分を
カバーしなければならないので、彼がそれに決して追いつくことが
できないことを示唆します。これらのパラドックスは、
無限の性質と限度の数学的な概念について疑問を提起しました。

プラトンの洞穴寓話:
この思案実験(古代のギリシアの哲学者プラトンによって示される)は、
現実と認識の性質を調査します。寓話において、人々は洞穴内で鎖でつながれて、
現実として壁で影を認めます。それは、我々の認識が世界の本当の性質を正確に
意味するかどうかについて疑問を提起します。

ガリレオの落体:
ガリレオ・ガリレイは、一般運動のアリストテレスの見方に挑む為に
思案実験を行いました。彼は、異なる質量の2つの対象が同じ高さから
同時に落とされるならば、彼らが同時に地面に到着するだろうと提唱しました。
これは、より重い物がより速くなるというアリストテレスの確信を否定しました。
ガリレオの実験は、古典力学の発達への道を開きました。

ニュートンの砲弾:
アイザック・ニュートンは、軌道の運動の概念を調査するために、
この思案実験を使いました。彼は、速さを上げることで山から砲弾を
発射することを想像しました。砲弾が十分な速さで発射されるならば、
それは曲がった軌道に沿って行って、結局地球を軌道に乗って回り続ける
だろうと予測したのです。この思案実験は、重力の理解を展開するのを助けました。

ヤングのダブルスリット実験:
ヤングの実験が光の波動説‐粒子説の二元性としばしば関係しています。
それは波でまず最初に行われました。トーマス・ヤングの実験は、
2つの切れ込みを入れたゲーツを使い、結果として生じる干渉パターンを観察してみました。
この実験は光の波状の性質を示して、光が小片だけとして単にふるまう
という普通の確信に挑戦しました。

エルステッドは

コペンハーゲン中心に活躍していました。

其処は後に量子力学が出来ていく上で

重要な議論が交わされる場になります。

また、エルステッドは

童話作家のアンデルセンとは親友です。

また、エルステッドの兄弟はデンマーク

首相を務めています。

こうった「こぼれ話」が豪華な人です。

 エルステッドの業績

物理学者としての業績として大きいのは

電流が磁場を作っていることの発見です。

それは1820年4月の出来事でした。電流近傍の

方位磁針は北でない方向を向いたのです。

そこから数年の内にビオ・サバールの法則、

アンペールの法則に繋がります。

 

エルステッドが物理学と深く関わる

きっかけとなったのはドイツのリッター

という物理学者との出会いでした。

エルステッド独自のカント哲学に

育まれた思想は後の物理学にはっきりした

方向性を与えたと思えます。

エルステッドは多才な人物で、

博士論文ではカント哲学を扱っています。

他に美学と物理学でも学生時代に

賞を受けています。電流と磁場の関係も

カント哲学での思想、自然の単一性

が発想の根底にあったと言われています。

晩年は詩集を出版しています。

気球から始まった文章でした。




テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/04_初稿投稿
2024/05/21_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
デンマーク関係
電磁気学の纏め

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

【2021年8月時点での対応英訳】

 About Oersted

Hans Christian Ørsted

That person is the one who has left its name as a unit of Magnetic field. He was born in the same year as Gauss.

It can be said that the era of Gauss and Oersted was an era when electromagnetics was undeveloped. The knowledge gained was still fragmented, and I was groping for each and every one of them, including mathematical formulation, without seeing the whole picture. In addition, the name remains as the company name. There was an era called the Danish Golden Age, and Oersted was the leader of that era.

Oersted is said to have come up with the concept of a “thought experiment.” He is exactly the person who caused the paradigm shift. He was active in Copenhagen.

It will be a place where important discussions will be held later in the development of quantum mechanics.

Oersted is also a close friend of the fairy tale writer Andersen. In addition, Oersted’s brother is the Prime Minister of Denmark. Such a “spill story” is a gorgeous person.

 Job of Oersted

A major achievement of his work as a physicist is his discovery that electric current creates a magnetic field. It was an event in April 1820. The compass near the current pointed in a direction other than north. Within a few years, it will lead to Biot-Savart’s law and Ampere’s law.

It was the encounter with a physicist named Ritter in Germany that inspired Oersted to become deeply involved in physics.
I think that the ideas nurtured by Oersted’s original Kant philosophy gave a clear direction to later physics.

Oersted is a versatile person, and his dissertation deals with Kant’s philosophy. He has also received awards in his school days in aesthetics and physics. It is said that the relationship between electric current and magnetic field was based on the idea of ​​Kant’s philosophy and the unity of nature.

Oersted published a collection of poems in his later years. He was a sentence that started with a balloon.

 

に投稿 コメントを残す

ヨハン・C・F・ガウス
5/20改訂【ガウス分布|磁束密度の単位|ガウスの法則】

deutuland

こんにちは。コウジです。
ガウスの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

ガウス正規分布Tシャツ
【スポンサーリンク】
【1777年4月30日生まれ ~ 1855年2月23日没】

ドイツ生まれのガウス

ドイツのガウスは18世紀の数学者にして、物理学者にして、

天文学者です。ガウスの業績として大きいのはガウス分布、

ガウス関数、ガウスの最小自乗法、ガウスの法則等です。

物理学というより数学で仕事を残しています。 

物理では磁束密度の単位に名を残しています。

数学で出てくるガウス分布はガウスの考察した関数

で表されていて、現代でも統計データの処理

で多用されます。実際にサンプル数が多くなると

この分布での表現が適していて「データの中心値」

を真ん中にしてグラフが綺麗な左右対称の山型となります。

山の頂上と裾野の「形」がガウス分布特有の形になります。

 

また、地球磁気の研究に関連した話として、

フーリエ級数展開に関しての研究を進め、

高速な計算方法を開発しました。特に、

データ数を2倍し続ける場合についての議論を構築

していますが、それは後の時代に使われる

高速信号処理器の中での作動原理と本質的に同じものでした。

200年以上前に数学的なデシャブー現象があったのです。

ガウスの法則の導出

電磁気学の世界で出てくる「ガウスの法則とは

電荷量が取り囲む曲面から計算される。

といった有名な法則です。より細かくは

電束を「面積分」した総和が電荷密度の体積積分の総和と等しいと考えられ、その体積の内側にある電気の源を電荷と定義出来るのです。実際に電気の担い手が電荷だと考えると、地上の電位を基準として特定の等電位の導体を考えてみて、それよれり電荷密度が低い状態を正に帯電した環境、基準より電子密度が濃い状態を負に帯電した環境と考える事が出来るのです。

こういった考え方を進め、ガウスは

電気が流れていく状態を記述しました。

また、よく使われているCGS単位系の中に

ガウス単位系とも呼ばれる単位系があります。

パトロンが生活を支えたりしていたという時代背景

もありガウスは教授となる機会は無かったようですが、

デデキンドとリーマンは彼の弟子だったと言われています。

個人的にはやはり、物理学者というよりも数学者として

沢山の仕事を残してきた人ったと思います。

そして、

独逸人らしい厳密さで現象を極めたのです。



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレス迄お願いします。
問題点には適時、
改定・返信をします。

nowkouji226@gmail.com

2020/09/28_初稿投稿
2024/05/20_改定投稿


旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
ドイツ関連のご紹介へ
電磁気学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

 

【2021年8月時点での対応英訳】

Gauss of Germany 

Gauss of Germany is an 18th century mathematician, physicist and astronomer. His major achievements in Gauss are Gaussian distribution, Gaussian function, Gaussian least squares method, Gauss’s law, etc. He has left his name in physics as a unit of magnetic flux density.

The Gaussian distribution that appears in mathematics is represented by the function that Gauss considered, and is often used in the processing of statistical data even in modern times. When the number of samples actually increases

The expression in this distribution is suitable, and the graph becomes a beautiful symmetrical mountain shape with the “center value of the data” in the center. The “shape” of the top and bottom of the mountain is unique to the Gaussian distribution.
In addition, as a story related to the study of geomagnetism, Gauss proceeded with research on Fourier series expansion, and Gauss developed a high-speed calculation method. He specifically builds a debate about when he keeps doubling the number of data, which is essentially the same principle of operation in high-speed signal processors used in later times. There was a mathematical deshabu phenomenon over 200 years ago.

It is a famous law that appears in the world of electromagnetism, such as “Gauss’s law is calculated from the curved surface surrounded by the amount of electric charge.”

electrical property of surface

The sum of the surface integrals of the electric flux is considered to be equal to the sum of the volume integrals of the charge density, and the source of electricity inside that volume can be defined as the charge. Considering that the actual bearer of electricity is the electric charge, consider a conductor with a specific equipotential potential based on the electric potential on the ground. You can think of the state as a negatively charged environment. Advancing this way of thinking, Gauss described the state in which electricity is flowing.

In addition, there is a unit system called Gaussian unit system among the commonly used CGS unit systems.

Gauss did not seem to have had the opportunity to become a professor, partly because the patrons supported his life, but it is said that Dedekind and Lehman were his disciples.

Personally, I think Gauss has left a lot of work as a mathematician rather than a physicist.

And Gauss mastered the phenomenon with his unique rigor.

に投稿 コメントを残す

A=マリ・アンペール
5/19改訂【電流の仕組みを分かり易く実験で説明】

パリの夕暮れ

こんにちは。コウジです。
アンペールの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

ネジきりダイス
【スポンサーリンク】
【1775年1月20日生まれ ~ 1836年6月10日没】

 アンペールの生い立ちと足跡

その名は正確にはアンドレ=マリ・アンペール_

André-Marie Ampère。フランス・リヨンに生まれます。

当時、現象整理の進んでいなかった中で
電磁気現象の理解を深めました。
アンペールは電磁気学の創始者の一人だと言えます。

アンペールの父は法廷勤務の真面目な人だったようですが、
フランス革命時に意見を述べすぎて断頭に処せられてしまいます。
そしてアンペールは大変なショックを受けたと言われています。
革命は色々な傷跡を残していたのですね。

アンペアはアンペールの名にちなみます。また、

アンペールの名は右ねじの法則で有名です。

(右ねじの法則をアンペールの法則という時があります)

内容としては、一般的な右方向(時計方向)に

回していく事で進むような、ねじを使った例えです。

そのねじを手に取ってみた時にネジ山のイメージ

が磁場をイメージしていて、ネジが進んでいく方向が

電流の進んでいく方向をイメージしてます。

別のイメージで例えると直流電流が流れる時に

ネジの尖った方が電気の流れる方向で

ネジ山方向が磁場の発生するイメージです。

 

 アンペールの業績

アンペールの例えはとても直観的で

分かり易いと思えます。学者が陥りがちな

「独善的」とでも言えるような分かり辛い説明

ではなく、誰に伝えても瞬時に「おおぉ!!」

と感動出来る事実の伝え方ですね。

また、アンペールはこの事実を伝えるために

二本の電線を平行に使い、

電気が流れる方向を同じにしたり・反対にしたりして

その時に電線が引き合い・反発する例を示しました。

この事は電気を流した時の磁場の発生する

方向のイメージから明らかです。

電磁気学が発展していない時代に、

大衆を意識して分かり易い実験法が求められる

時代に明確な事実を示したのです。

導線の周りに発生する磁場を想像してみるとよいのです。

今でも電流の仕組みを子供に示す事が出来るような

素晴らしい実験だと思います。

目に見えない「磁場」という実在が

如何に振る舞うかイメージ出来ます。

磁場という実在がはっきり掴めていない時代に

アンペールは目に見える形で磁場を形にしたのです。

それは大きな仕事だったと言えます。後世に

そこからさらに理論は発展していくのです。



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/03_初稿投稿
2024/05/19_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
電磁気学の纏め

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2001年8月時点での対応英訳)

 Life of Ampere

The name is André-Marie Ampère to be exact. He is born in Lyon, France.

He gained a better understanding of electromagnetic phenomena and is considered one of the founders of electromagnetics, even though he was not well organized at the time. Ampere’s father seems to have been a serious court worker, but he was decapitated during the French Revolution by overstated his opinion. Ampere is said to have been very shocked. The revolution left a lot of scars, didn’t it?

The unit ampere of electric current is named after Ampere. Also, Ampere’s name is famous for the right-handed screw rule. (Sometimes the right-handed screw law is called Ampere’s law.) The content is an analogy using a screw that advances by turning it in the general right direction (clockwise direction).

Job of Ampere

When I pick up the screw, the image of the screw thread is the image of a magnetic field, and the direction in which the screw advances is the direction in which the current advances.

Another image is that when a direct current flows, the pointed screw is in the direction of electricity flow and the magnetic field is generated in the screw thread direction.

Ampere’s analogy seems very intuitive and straightforward. It’s not an incomprehensible explanation that scholars tend to fall into, even if it’s “self-righteous,” but it’s a way of telling the fact that you can instantly be impressed with “Oh.”

Ampere also used two wires in parallel to convey this fact, and showed an example in which the wires attracted and repelled when the directions of electricity flow were the same or opposite.

This fact is clear from the image of the direction in which the magnetic field is generated when electricity is applied.

In an era when electromagnetics was not well developed, Ampere showed clear facts in an era when publicly conscious and easy-to-understand experimental methods were required.

Imagine the magnetic field that occurs around a conductor.

I think it’s still a wonderful experiment that can show children how the electric current works.

You can imagine how the invisible “magnetic field” actually behaves.

Ampere visibly shaped the magnetic field in an era when the reality of the magnetic field was not clearly understood. It was a big job. The theory develops further from there in posterity.

に投稿 コメントを残す

engrand

こんにちは。コウジです。
ヤングの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

光学の基礎
【スポンサーリンク】
【 1773年6月13日生まれ ~ 1829年5月10没】

ヤングと時代背景

イギリスのヤング(Thomas Young)は
ゲッティンゲンで医学の学位を得て
ロンドンで開業医として仕事を始めます。
20代後半で自然学の学者となり、同時に
医師として乱視や色の知覚などの研究をします。
時代としてはニュートンの体系化が進んで
物理学では応用的な研究が進んでいた時代でした。
20世紀初頭の多分野における発展が進む時代への
過渡期にあったのです。量子力学が発展していく
土壌を育んでいったのです。

ヤングの業績

ヤングの業績として大きなものは何より「光の3原色の概念」を初めとした光学の研究です。光が波動であるという事実とその波動を人体がどう感じて再現性の高い表現が出来るか、別言すれば色んな人が特定の光を感じる時に、どんなパラメターを選んで属人性の無い表現が出来るかという研究です。

お医者様としての仕事の中で、ヤングは沢山の視覚に対する質疑応答をしていき、沢山の人の共通の問題や、(乱視などの)病的な問題に対しての知見を積み重ねる中で、皆の目に入ってくる「光」という現象を考えていったのです。

そういった研究の中で光学の研究を進めて「光の波動説」の考え方を使い干渉といった現象を説明していったのです。

光の波動説再考

ここで、初学者の理解が混乱するといけないので、もう少し細かく解説します。量子力学的に考えたら光には二面性があって「粒子的な側面」も存在します。後にアインシュタインの提唱した光電効果はその側面です。また、原子核反応を考える時には「光子」の存在を考えた上で話を進めたら非常に分かりやすい説明がつく現象が沢山あります。

実際にヤングの時代にはそういった理解は無くて「光」とは「粒子」なのか「波動」なのかという二者択一の議論が主だった、と想定して下さい。おそらくそうした仮定から話を始めた方が議論が進みやすいと思えます。

量子力学以降の理解体系では観察対象の大きさが小さくなる過程で物質には二面性が出てきます。それ観測に対する問題であるとも考えられますし、現状の理解体系の「見方」なのであるとも言えます。

ヤングはそうした議論の始まりを医学の視点から入って理学の世界で分かる言葉で表現しました。その他、ヤングは音の研究で不協和音が最も少ない調律法を編み出したり、弾性体の研究でヤング率と呼ばれていく表現を駆使したりして理解を進めました。

〆最後に〆

 



【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
適時、返信・改定をします。

nowkouji226@gmail.com

2020/10/02_初稿投稿
2024/05/18_改定投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
電磁気学関連のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

Young and historical background

Thomas Young of England earned a medical degree in Göttingen and began his work as a practitioner in London. In his late twenties, he became a scholar of natural sciences and as a doctor he pursued research on astigmatism and color perception. It was an era when Newton was systematized and applied research was progressing in physics. It was in a transitional period of multidisciplinary development at the beginning of the 20th century. I would like to incorporate exchanges between such fields as the revision progresses.

Young’s achievements

The major achievement of Young is research including the concept of the three primary colors of light. The fact that light is a wave and how the human body feels that wave and can express it with high reproducibility, in other words, when various people feel a specific light, what parameters are selected to express without belonging life It is a study of whether it can be done. As a doctor, I have a lot of questions and answers about vision, and as I accumulate knowledge about common problems of many people and morbid problems (such as astigmatism), it comes to everyone’s eyes. I was thinking about the phenomenon of “light.”

In such research, I proceeded with research on optics and explained phenomena such as interference using the “wave theory of light”.

Rethinking the wave theory of light

Here, I will explain it persistently in case the understanding of beginners is confused. From a quantum mechanical point of view, light has two sides, and there is also a “particle-like side”. The photoelectric effect proposed by Einstein is one example. Also, when considering nuclear reactions, there are many phenomena that can be very explained if we proceed with the discussion after considering the existence of “photons”. Imagine that there was no such understanding in Young’s time, and there was even a debate about whether “light” was a “particle” or a “wave”. Perhaps it’s easier to discuss if you start with that assumption. In the understanding system after quantum mechanics, the smaller the object to be observed, the more two-sided the substance becomes. It can be said that it is a problem for observation, and it can be said that it is a “view” of the current understanding system.

Young expressed the beginning of such a debate from a medical point of view in words that can be understood in the world of science. In addition, Young advanced his understanding by devising a tuning method with the least dissonance in his research on sound, and by making full use of an expression called Young’s modulus in his research on elastic bodies. 〆

に投稿 コメントを残す

ジョン・ドルトン
John Dalton5/17改訂【科学的アプローチで原子論を提唱】

engrand

こんにちは。コウジです。
ドルトンの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

【スポンサーリンク】
【1766年9月6日~1844年7月27日】
_
先ずドルトンを検索で調べると同名の学校法人が出てきますが、
本記事は英国生まれの物理学者にして化学者である人物に関する記載です。
_

若き日のドルトン


ドルトンは若い時代に大変苦労をしています。

先ず、家族がクエーカー教徒であった為に
大学に入れませんでした。当時の英国は
イングランド国教会に属していない宗派は
差別を受けており、ドルトンはクエーカー教徒
だという理由で大学に入る事が出来なかったのです。
_
その業績を考えてみると
何より原子説の提唱が大きいです。
_
ドルトンが研究していた18世紀初頭の
物理学会では「物質の根源」を考えるにあたり
直接原子核に相互作用を与えて結果を
考察する理論的な土壌は乏しかったのです。
_
実際にドルトンは化学的な反応の
側面からアプローチしていき、今でいう
「倍数比例の法則」の論拠を考えていく中で、
その考え方が如何にして成立するかを考えます。
反応に関わる物質の質量比率を考えた帰結として、
原子を想定したのです。そういった考察の中では
原子の大きさが主たる関心事でなくても良いのです。

ドルトンの業績

後の原子核反応における考察では
反応に関わる距離や、反応に無関係な距離
が大事になってくるのです。
_
それに反してドルトンの時代の感心事
の中心は反応自体がいかにして想定できるかであって、
純度を高めた物質の集団同士が反応して
別の物質に変質するかという現象が感心事なのです。
_

また、定量的評価での「ジュール」という物理量

の導入でもドルトンは大きな仕事を残しています。

また、ドルトン自身が色覚異常の人だった為に

色覚の研究でも仕事を残していて

「ドルトニズム (Daltonism)」

という言葉が今でも使われています。

【スポンサーリンク】

以上、間違いやご意見があれば以下アドレスまでお願いします。
時間がかかるかもしれませんが、必ずお答えします。
nowkouji226@gmail.com

2022/01/07_初回投稿
2024/05/17_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係
ケンブリッジ関連
電磁気関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

【2022年1月時点での対応英訳】

Dalton of the young day

Dalton has a hard time very much in his younger days.

At first he was not able to enter the university because his family was a Quaker. In the U.K. at the time, the denomination which did not belong to an English national church received discrimination, and Dalton was not able to enter the university for a reason to be a Quaker.
_
A proposal of the atomism is big above all when I think about the achievements.
_
The theoretical soil which gave an atomic nucleus interaction directly on thinking about the root of the material in Physical Society of the early 19th century when Dalton studied it, and examined a result was poor.
_
He actually assumed an atom as the conclusion that thought about the mass ratio of the material concerned with a reaction while he thought about whether the way of thinking did how it, and it was established while Dalton approached it from the side of the chemical reaction and thought about a ground of “the law of multiple proportion” to say in now. The size of the atom does not need to be main interest in such consideration, too.

Business results of Dalton
Distance about reaction and the distance that is unrelated to a reaction become important for the consideration in the later nuclear reaction.
_
I meet you how the center of the feeling mind of the times of Dalton can assume reaction itself against it, and a phenomenon whether the groups of the material which raised purity react, and changes in quality to a different material is feeling mind.
_

In addition, Dalton leaves big work by the introduction of the physical quantity called “Joule” by the quantitative evaluation. In addition, because Dalton oneself was a color-blind person, even a study of the sense of color leaves work unfinished, and the word “ドルトニズム (Daltonism)” is still used.

に投稿 コメントを残す

ジャック・C・シャルル
5/5改定【温度と体積の関係を定式化|水素の気球で有人飛行】

パリの夕暮れ

こんにちは。コウジです。
シャルルの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

気球玩具
【スポンサーリンク】
【1746年11月12日生まれ ~ 1823年4月7日没】

シャルルの生い立ち

その名を全て書き下すと、

ジャック・アレクサンドル・セザール・シャルル
:Jacques Alexandre César Charles

カールという名前をフランス風に読むと
シャルルとなるそうです。

また、セザールって
ミドル・ネームもフランス風ですね。

物理学で出てくるシャルルは
フランスに生まれた発明家にして物理学者
にして数学者、そして気球乗りです。

物理学者としては
ボイル・シャルルの法則で有名ですね。

それと同時に水素を使った気球で
初めて飛行した人なのです。

シャルルの研究業績

シャルルは
①「ボイルの法則」や、
②キャヴェンディッシュの仕事の研究や
③J・ブラックら当時最新の仕事を研究していき、
「水素の物性」に着目し続けました。

水素の比重が空気に比べて、とても軽いのでシャルルなりの発想で考え、水素を気球に応用出来ると考えたのです。「水素の比重が軽い」という事実を「水素の塊は浮かぶだろう」と考えていったのです。そこでシャルルはプロトタイプの気球を設計しロベール兄弟に製作を依頼しました。パリの工房で気球を作り始めたのです。材料としてはゴムをテレピン油に溶かし、絹のシートにテレピン油を塗った物を使っています。

シャルルの有名な実験

1783年8月27日にシャルルとロベール兄弟は、今のエッフェル塔がある場所で世界初の水素入り気球の飛行試験を行いました。その場所には御爺さんだったベンジャミン・フランクリンもアメリカから見に来ていたそうです。そして、ベンジャミンフランクリンはその年の暮れには別の気球を使って有人気球の初飛行を行っています。

この時には「王家からルイ・フィリップ2世が率いた一団が見ていて、着陸時に馬で気球を追いかけ、シャルルと同乗していたロベールが気球から降りる際に気球が再び浮かないよう押さえつけた」、というエピソードが残っています。【カッコ内の引用はwikipediaから】
まさに国中の人が注目していたイベントだったのですね。

40万人がシャルルの初飛行を見たと言われています。特にプロジェクト資金集めとして募金を募ったのですが、応じた数百人は特等席で離陸を見れたそうです。その席にはアメリカ合衆国大使としてのベンジャミン・フランクリンもいました。この時代から挑戦を通じて国際交流が実現していたのですね。また、シャルルの尊敬していたジョセフ・モンゴルフィエも居たそうです。

そうした冒険家が残した法則がシャルルの法則です。
V1/T1 = V2/T2 として簡単化出来ますが、
異種気体の体積と温度の関係を簡単に
表していますね。実験、経験から事実が
導き出される良い例だといえます。


スポンサーリンク】


以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2021/01/22_初稿投稿
2024/05/15_原稿改定

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
力学関係のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

【2021年8月時点での対応英訳】

About sharles 

If you write down all the names, Jacques Alexandre César Charles

If you read the name Karl in a French style, it will be Charles. Also, the middle name of Cesar was French.

Charles’s work

Charles, who appears in physics, is an inventor, physicist, mathematician, and balloonist born in France. He is famous as a physicist for Boyle-Charles’ law. At the same time, he was the first person to fly on a hydrogen balloon.

Charles is actually

① “Boyle’s Law” and

② Research on Cavendish’s work

③ J. Black and others researched the latest work at that time,

He continued to focus on the “physical characteristics of hydrogen.”

He thought that the specific density was much lighter than that of air, so he thought of it as Charles’s idea and could apply it to balloons. So Charles designed a prototype balloon and asked the Robert brothers to make it. He started making balloons in a workshop in Paris. The material used is rubber dissolved in turpentine and coated on a silk sheet.

Charles’s famous experiment

On August 27, 1783, the Charles and Robert brothers conducted the world’s first flight test of a hydrogen-containing balloon at the location of the current Eiffel Tower. At that time, his grandfather Benjamin Franklin also came to see him from the United States. And Benjamin Franklin made his first flight of a popular balloon at the end of the year using another balloon.

At this time, “a group led by Louis Philippe II was watching from the royal family, chasing the balloon with a horse at the time of landing, and holding down the balloon so that it would not float again when Robert, who was on board with Charles, got off the balloon.” The episode remains. [Quotation in parentheses is from wikipedia]
It was an event that people all over the country were paying attention to.

It is said that 400,000 people saw Charles’ first flight. In particular, we raised funds to raise funds for the project, but it seems that hundreds of people who responded were able to see takeoff in the special seats. There was also Benjamin Franklin as the United States Ambassador to the seat. From this era, international exchange has been realized through challenges. There was also Joseph Montgolfier, whom Charles respected.

The law left by such adventurers is Charles’s law. It can be simplified as V1 / T1 = V2 / T2, but it simply shows the relationship between the volume and temperature of different gases. I think this is a good example where facts can be derived from experiments and experiences.

に投稿 コメントを残す

A・ヴォルタ 
5/14改訂【実験で静電容量を観測し電荷と電位を明確に区別】

こんにちは。コウジです。
ヴォルタの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

果物発電
【スポンサーリンク】
【1745年2月18日生まれ ~ 1827年3月5日没】

 ボルタについて

ボルタの名は正確には

アレッサンドロ・ジュゼッペ・アントニオ・

アナスタージオ・ヴォルタ伯爵

:Il Conte Alessandro Giuseppe Antonio Anastasio Volta_

という長い名前ですが日本では単純に「ボルタ」

と表現しています。以後この表記を使います。

ボルタは18世紀から19世紀にかけて活躍したイタリアの物理学者で、電池の発明者として知られています。ボルトといえば電池の指標ですよね。

ボルタは1745年にイタリア、コモ湖地域のコモ市で生まれ、1827年に同地で亡くなりました。イタリアで生まれ物理学の研究者となります。そしてイタリアで人生の幕を閉じます。

 

 ボルタの業績

特筆すべきは実験的に静電容量を観測し、

電荷と電位を明確に分けて議論する土壌を作りました。

初学者には混同されがちですが
電位と電圧(電位差)は明確に
異なる概念です。アースして低電位側を
地球の地面と同じ電位状態にした時に
完全に両者は一致しますが通常は異なります。

電位は場合に応じて変動して当然の物理量です。

電荷の蓄積である電位をボルタは定量的に表現し、
電位の差を使って電圧(電位差)を明確に
出来る様にしました。その功績は電位差の
単位であるボルトとして残っています。

ボルタはまた、電池の発明でも成果を残しました。
世界初の電気貯蔵装置の開発です。
無論、初期の電池には
危険性・貯蔵量・電圧の持続特性
といった点で現代の物と見劣り
するでしょうが電気を貯めて持ち運び
する発想は素晴らしいものです。

現代でも発展を続ける大事な技術です。ヴォルタは電気の研究に取り組み、電池の原理を確立しました。彼が発明したのは、「ヴォルタ電池」として知られる初の化学電池で、電流を生成するために化学反応を利用した装置でした。

この発明は電池技術の基盤を築き、電気学の発展に寄与しました。電池の電位差(電圧)の単位「ボルト」は、アントニオ・ヴォルタにちなんで名付けられています。

ボルタとナポレオン 

最後に意外なエピソードを残します。
ボルタはナポレオンが大好きでした。
逆にナポレオンもボルタに敬意を示します。
そんな関係ですから、ナポレオンの在位中に
ボルタは伯爵の称号を与えられています。



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/01_初稿投稿
2024/05/14_改定投稿

旧サイトでのご紹介
舞台別のご紹介
時代別(順)のご紹介
イタリア関係のご紹介
力学関係のご紹介

電磁気学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

【2021/8/14時点での対応英】

About Volta

The name of Volta is exactly the long name of Alessandro Giuseppe Antonio Anastasio Volta_: Il Conte , but in Japan it is simply expressed as “Volta”. We will use this notation hereafter. Volta was born in Italy and became a physics researcher.

Job of Volta

Of particular note is the experimental observation of capacitance and the creation of a soil for discussions that clearly separate charges and potentials. Often confused by his beginners

Potential and voltage (potential difference) are distinctly different concepts. When grounded and the low potential side is in the same potential state as the earth’s ground,They are exactly the same, but usually different. The electric potential fluctuates depending on the case and is a natural physical quantity.

The potential, which is the accumulation of electric charge, is quantitatively expressed, and the voltage (potential difference) can be clarified using the difference in potential. The achievement remains as a bolt, which is a unit of potential difference.

Volta has also been successful in inventing batteries.
He is the development of the world’s first electric storage device.
Of course, for early batteries
Hazard, storage capacity, and voltage persistence characteristics
Inferior to modern ones in that
You will do, but you can store electricity and carry it around.
His ideas he makes are wonderful.
It is an important technology that continues to develop even today.

Volta and Napoleon

Lastly,
Volta loved Napoleon.
On the contrary, Napoleon also pays homage to Volta.
Because they are such two people, during Napoleon’s reign
Volta has been given the title of Count.

 

に投稿 コメントを残す

シャルル・ド・クーロン
5/13改訂【「ねじり天秤」での実験で微細な力を考察】

パリの夕暮れ

こんにちは。コウジです。
クーロンの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

実験用分銅
【スポンサーリンク】
【1736年6月14日生まれ ~ 1806年8月23没】

 クーロンの人物像

クーロンの名前は正確には

シャルル=オーギュスタン・ド・クーロン

(Charles-Augustin de Coulomb)

と記載されます。フランス人です。調べてみると
もともとクーロンは測量の仕事などもしていました。
時代柄、色々な分野で功績を残しています。

 

 クーロンの研究生活

まず、力学的な側面では摩擦に関する研究があります。

とても意外な側面だと思えました。電磁気学で著名なクーロンが

表面状態の考察をしているのです。

電磁気の担い手はとても微細な存在、電子であるのに反して

摩擦現象はそれら微細粒子が物凄い数集まって

相互作用の複雑な運動した結果として論じられる現象なのです。

後述する「ねじり天秤」のデリケートさとは

結びつきませんでした。

 

クーロンは特定の機械が動く時点を考察しています。

「部品間での摩擦とロープの張力」を考慮して

機械全体での動きを論じています。

詳細を追いかけたらきっと

現代の我々から見ても興味深い筈です。

工学的な側面と表面物性からアプローチして

細かく考察すると面白い筈です。そして何より、

当時の視点からは革新的な研究だろうと思えます。

 

 クーロンと電磁気学

電磁気的な側面では「ねじり天秤」での実験が有名です。

微細な力を検知出来るような仕組みで導体表面

での帯電状態を計測したのです。生活の視点では、

力学は目で見て分かりやすく、電磁力学は目で見て

分かり辛いと言えます。それだから、今でも

静電気でびっくりしたり、手品の種として

電気的性質が使われたりします。

当然、今でも高電圧の配線は子供の手の

届かない所に敷設され、運用されているのです。

クーロンは結果的に電荷に働く力は距離の自乗

に反比例すると示しました。こうした電磁気学における

業績が広く認められ、クーロンの名前は電荷の単位

として今も使われています。クーロンの考えは

後の電磁気学、長い目で見れば

場の理論につながっているのです。

〆 



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
問題点に対しては適時、
返信・改定をします。

nowkouji226@gmail.com

2020/09/29_初稿投稿
2024/05/13_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
電磁気学関係
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

【2021年8月時点での対応英訳】

About Coulomb

The name of Coulomb is written exactly as Charles-Augustin de Coulomb. He is french When I looked it up, Coulomb was also doing surveying work. He has made achievements in various fields due to his time.

Coulomb job

First, on the mechanical side, there is research on friction. This fact seemed to be a very surprising aspect. Coulomb, a well-known in electromagnetism, considers the surface state.

The bearer of electromagnetism is a very fine existence, an electron, whereas the friction phenomenon is a phenomenon that is discussed as a result of the complicated movement of the interaction by gathering a tremendous number of these fine particles. It was not related to the delicacy of the “torsion scales” described later.

Coulomb considers when a particular machine will move. He discusses movement throughout the machine, taking into account “friction between parts and rope tension”. If he chases the details, it will surely be interesting to us today. It should be interesting to approach him from the engineering side and the surface physical characteristics and consider it in detail. And above all, from the perspective of those days, it seems to be an innovative research.

 Electric side of Colomb job

On the electromagnetic side, experiments with “torsion scales” are famous. He measured the state of charge on the surface of the conductor with a mechanism that could detect minute forces. From the perspective of life, mechanics is easy to understand visually, and electromagnetic dynamics is hard to understand visually. Therefore, they are still surprised by static electricity and electrical properties are used as a seed for magic tricks.

Of course, high-voltage wiring is still laid and operated out of the reach of children. Coulomb eventually showed that the force acting on the charge is inversely proportional to the square of the distance. His work in electromagnetism has been widely recognized, and the Coulomb name is still used as a unit of charge. Coulomb’s ideas led to later electromagnetism, the theory of fields in the long run.

に投稿 コメントを残す

J・L・ラグランジュ
5/12改訂【変分の原理を考案|解析力学を発展】

パリの夕暮れ

こんにちは。コウジです。
ラグランジュの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
ご覧ください。(以下原稿)

解析力学
【スポンサーリンク】
【1736年1月25日生まれ ~ 1813年4月10日没】

 

その名を全て書き下すと、

ジョゼフ=ルイ・ラグランジュ

Joseph-Louis Lagrange

ラグランジュの生きた時代

ラグランジュはイタリアのトリノで生まれ

プロイセン王国・フランスで活躍しました。

そんな彼の生きた人生は革命の起きていた時代でした。

同時代のラボエジェが処刑された事に際し
ラグランジュは何故自身が生き延びたか
自問自答したと言われています。
何故ならラグランジュはマリー・アントワネット
先生を務めていたからです。

 

ラグランジュの業績 

学問の世界でラグランジュは多大な業績を残しています。
物理学者というより数学者としての仕事に思えてしまいます。

力学体系の整理をしてラグランジュ形式と言われる
理解を進めています。私も学生時代に
ラグランユアンと呼ぶ関係を多用しました。

解析力学と呼ばれる分野で、

ラグランジュ方程式につながります。

後の数論につながる議論もしていますし、

天体に関する研究等もしています。

 

 考え方の有効性

ラグランジュの解析的な考えが有効だったのは

各種物理量を一般化して変分と呼ばれる類の

「数学的な形式」につながるからです。

後の量子力学はニュートンの作った微積分

だけではなく物理量の関係を

ラグランジュの使ったような関係で表現します。

つまり、

「ラグランジュアン」と呼ばれる数学形式を使います。

また、ラグランジュはエネルギー保存則から

最少作用の原理を導きその考えは力学に留まらずに

電磁気学・量子力学でも使われています。

こういった定式化が後の体系理解に不可欠です。

 

ラグランジュの未定乗数法や

定式化されたラグランジュアン

は誰しもが認める見事なものです。

そして、ラグランジュの名は

今でもエッフェル塔に刻まれています。

彼の残した仕事と栄誉と共に。



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。

nowkouji226@gmail.com

2020/10/02_初稿投稿
2024/05/12_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介
力学関係のご紹介

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年8月時点での対応英訳)

If you write down all the names,

Joseph-Louis Lagrange

The era of Lagrange’s life

Lagrange was born in Turin, Italy and was active in the Kingdom of Prussia, France. His life was a revolutionary era.

When his contemporary Labo Eger was executed, Lagrange might have asked himself why he survived.

Because he was a teacher of Marie Antoinette.

Lagrange’s achievements

In the academic world, Lagrange has made great achievements. He seems more like his job as a mathematician than as a physicist.

He organizes the mechanical system and promotes the understanding of what is called the Lagrangian form. I also used a lot of relationships called Raglan Yuan when I was a student.

In a field called analytical mechanics, it leads to the Lagrange equation. We are also discussing things that will lead to later number theory, and we are also doing research on celestial bodies.

Effectiveness of thinking

Lagrange’s analytical idea was effective because it generalizes various physical quantities and leads to a kind of mathematical form called variation.

Later quantum mechanics expresses not only the calculus made by Newton but also the relationship of physical quantities with the relationship used by Lagrange. In other words, it uses a mathematical form called “La Grand Juan”.
In addition, Lagrange derives the principle of minimum action from the law of conservation of energy, and the idea is used not only in mechanics but also in electromagnetism and quantum mechanics. A paradigm shift in these formulations is essential for later systems.

The Lagrange’s undetermined multiplier method and the formalized Lagrange Jean are undisputed and stunning.

And the name of Lagrange is still engraved on the Eiffel Tower. With the work and honor he left behind.