に投稿 コメントを残す

矢野 健太郎
【数々の数学書を監修|「解法のテクニック」の著者】‐9/6改訂

こんにちはコウジです。
「矢野 健太郎」の原稿を改訂します。

主たる改定点はリンク切れ情報の確認です。
FanBlog閉鎖に伴いリンクは無効としてます。
また、リンク切れ情報も目立っており、改訂。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

解法のテクニック
【スポンサーリンク】
【1912年3月1日生まれ ~ 1993年12月25日没】

矢野健太郎の多彩な活躍

矢野健太郎は私が使っていた数学の教科書の著者でした。
同名の方で漫画家の「矢野健太郎」と
サッカー選手の「矢野健太郎」が居ますが、
本稿は数学者の矢野健太郎に関する原稿です。

因みに、名前の「矢野」に関するエピソードとして
有名なものがあります。外人との雑談
をする中で
「矢野」って英語でいえばどんな表現?
と聞かれた時に、当意即妙で矢野さんは
次のように答えました。

「矢」=「Vector」、「野(野原)」=「Field」。

だから「矢野」って「ベクトル場」ですね。

そう答えたそうです。当然、外人は大喜び。

専門は幾何学関係か解析学関係だったかと。

彫刻家の子として生まれ東京帝大で学びます。

矢野健太郎とパリ大学

矢野健太郎の小学生時代にアインシュタインが来日し
健太郎
は刺激を受けました。また、
帝大の山内恭彦先生から
物理学の理解には
代数幾何学が必要だと教えを受けました。

物理現象のモデル化の有用性を感じた筈です。
その後、矢野はカルタン先生の下で学ぶべく
パリ大学
留学します。パリ大学で纏めた博士論文は
射影接続空間に
関する論文でした。

この頃から統一場理論にも関心を持ちます。

 矢野健太郎とアインシュタイン

戦後にはプリンストン高等研究所で微分幾何学の研究
をしていき、同時期に在席していたアインシュタイン
交流
を持ちます。奥様と一緒にアインシュタイン
写った写真は
大事にしていて、家宝としたそうです。

矢野健太郎の業績

矢野健太郎の著作は多岐に渡り、

受験参考書の定番だった(今でも定番)

解法のテクニック」は矢野健太郎の著作です。

また、アイザックアシモフポアンカレアインシュタイン
書物を日本に紹介する際に監修をしたりしました。更に、
矢野健太郎は微分幾何学において「Bochner–Yano 定理」を提唱しました。この定理は、ボッホナーと共同で、負のリッチ曲率をもつコンパクトリーマン多様体の等長群が有限であることを明らかにした重要な成果です ウィキペディア1_ウィキペディア2

他には、

  • 東京大学、東京工業大学名誉教授のほか、東京慈恵会医科大学、新潟大学、
    プリンストン高等研究所、ローマ大学、イタリア国立高等数学研究所、
    アムステルダム数学研究所、サウサンプトン大学、香港大学、ワシントン大学、
    リヴァプール大学、ブラウン大学、アバディーン大学など、
    非常に多彩な研究機関で国際的に活躍しました ウィキペディア

  • 国際数学者会議(1954年アムステルダム)で招待講演を
    行ったことも記録されています ウィキペディア

  • また、
  • 主な著作として、以下のようなものがあります ウィキペディア

    • Les espaces à connexion projective et la géométrie projective des “paths”(1938年、博士論文)

    • Geometry of Structural Forms(1947年、日本語)

    • Groups of Transformations in Generalized Spaces(1949年)

    • Curvature and Betti Numbers(Bochnerとの共著、1953年)

    • The Theory of Lie Derivatives and its Applications(再版あり)

    • Differential geometry on complex and almost complex spaces(1965年)

    • Integral formulas in Riemannian Geometry(1970年)

    • Tangent and cotangent bundles: differential geometry(石平との共著、1973年)

    • Anti-invariant submanifolds, CR Submanifolds…, Structures on Manifolds(今野・小林との共著、1970~80年代)

私や皆さんが知った情報も矢野健太郎
の仕事かも知れませんね。

そんな、矢野健太郎はバイオリンが好きな静かな人でした。

安らかな印象を持ち続けたいと思います。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2020/11/12_初稿投稿
2025/09/06‗改定投稿

サイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

Various activities of Kentaro Yano

Kentaro Yano was the author of the textbook I was using. There is a manga artist “Kentaro Yano” and a soccer player “Kentaro Yano” who have the same name, but this article is about the mathematician Kentaro Yano. By the way, there is a famous episode about the name “Yano”. What kind of expression is “Yano” in English while chatting with foreigners? When asked, Mr. Yano was selfish
“Arrow” = “Vector”, “Field (field)” = “Field”, so “Yano” is a “vector field”. I heard that he answered. Naturally, foreigners are overjoyed. Was my specialty related to geometry or analysis? He was born as a child of a sculptor and studied at the University of Tokyo.

Kentaro Yano and the University of Paris

Kentaro Yano was inspired by Einstein’s visit to Japan when he was in elementary school. Also, Professor Yasuhiko Yamanouchi of Imperial University taught me that algebraic geometry is necessary to understand physics. It seems that he found the usefulness of modeling physical phenomena. After that, Yano will study abroad at the University of Paris to study under Professor Cartan. His dissertation he compiled was a dissertation on the projective connection space. From this time on, he was also interested in unified field theory.

Kentaro Yano and Einstein

After the war, he studied differential geometry at the Princeton Institute for Advanced Study and interacted with Einstein, who was present at the same time. He cherished the photo of Einstein with his wife and made it a heirloom.

Kentaro Yano has a wide variety of authors, and Kentaro Yano’s “Solution Technique”, which was a staple of examination reference books. He also supervised the introduction of Isaac Asimov, Poincaré and Einstein’s books to Japan. The information that I and everyone knew may be Kentaro Yano’s work. Kentaro Yano was a quiet person who liked the violin. He wants to keep a peaceful impression.

に投稿 コメントを残す

あけましてオメデトウございます。今年も宜しくお願い致します。【@2025元旦】_1/1投稿

こんにちはコウジです。
「オメデトウございます」の原稿を投稿します。

投稿前に誤字がありました。
細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。
(以下原稿)

あけましておめでとうございます。

今年も宜しくお願い致します。

個人として今年は新しいことを色々と始める積りですので
物理学の考察には時間を使わなくなってくると思えます。

昨年度のノーベル賞受賞を思い出してみても、
AI関連での発展が顕著なので、そうした考察を追いかけます。

先ずは新しい知見である「プログラム学習」を身に付け、
次々と最新トレンドを追いかけられるように体制を整えます。

その中で、進展に合わせて過去の科学史を振り返り
新しい意義を考察していきたいと思うのです。
(年初は書評の再考、サイト内リンクの確認をします)

実際、A8が運営するFanBlogが4月で閉鎖するという情報があるので
本ブログからのリンクをチェックしていかないといけませんね。

今年も宜しくお願い致します。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2025/01/01_初稿投稿

時代別(順)のご紹介
アメリカ関係へ
電磁気関係

熱統計関連のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

【改訂】東大が量子コンピューターを2023年秋に導入
(IBM社製‗127量子ビット)

東大

こんにちはコウジです!
「東大が量子コンピューター」の原稿を改定します。
今回の主たる改定は新規追記分の補完です。
大分長いこと改定していませんでしたね。

初見の人が検索結果を見て記事内容が分かり易いように再推敲します。

SNSは戦略的に使っていきます。そして記述に誤解を生む表現がないかを
チェックし続けてます。ご意見・関連投稿は歓迎します。

(写真は従来の基盤の写真です)

以下投稿の内容は2023/04/22の
日経新聞記載の情報メインです。
現代の情報だと考えて下さい。

新聞記事を離れた所で冷静に考えていくと
税金の使い道の話でもあります。

日本国民の皆様が一緒になって考えて、
出来れば知恵を出し合えたら
より良い展開に
つながる類の話題なのです。しかし、
実のところ、大多数の日本国民は
「量子コンピュータ?言葉は聞くけれども…」
って感じで内容が議論されていません。
議論を喚起しましょう。

本記事では私論を中心に語ります。但し、
記載した量子ビット数は何度も確認しています。

ニュースのアナウンサーも語れる内容が少ない
のでしょう。
そんな中で東大本郷キャンバスでは
記者会見が開かれ、IBM社のフェローが
「有用な量子コンピューターの世界がすぐそこまで来ている」
と語っています。

物理学を専攻していた私でも多分野において下調べが必要です。
当面、「ラビ振動」、「共振器と量子ビットの間の空間」
「ミアンダの線路」、「量子誤り訂正」といった概念を
改めて理解し直さないと最新の性能が評価できません。

特に理化学研究所に導入された機種は
色々な情報が出ていて教育的です。対して
東大が導入するIBM社製の量子コンピューターは
トヨタ自動車やソニーグループなど日本企業12社での
協議会による利用を想定していて、
利益享受を受ける団体が限られています。
今後の課題として利用の解放(促進)が望まれます。 

東京大学が川崎拠点に導入

既に27量子ビットを導入している川崎拠点に2023年の秋に
127量子ビットの新鋭機を導入する予定です。
経済産業省は42億円の支援を通じて計算手法等の
実用面へ向けての課題を解決していく予定です。

一例としてJSR(素材メーカー)が「半導体向け材料の開発」
を想定して活用する方針を打ち出しているようですが
具体的にプロジェクトに参加する事で得られるメリットを
明確にする作業は大変そうです。

現時点での量子コンピューターの国内体制

報道では「量子ビット」の数に着目した表現が多いです。
実際に理化学研究所では2023年の3月に64量子ビットの
装置を導入して研究を進めています。

また、英国のオックスフォード・クァン・サーキッツ
は都内のデータセンターに今年の後半に量子コンピューター
を設置予定で外部企業の利用も想定しています。

対して米国のIBMでは433量子ビットのプロセッサーが開発
されていて、2023年度中には1000量子ビットの実現、
2025年度には4000量子ビット以上の実現を計画しています。 

EV電池開発に革新的貢献ができるか

一例としてIonQ社とHyundai Motor社は共同で
量子コンピューターに対する
バッテリー化学モデル
を開発しています。(2022年2月発表~)

実際に同社は新しい変分量子固有値ソルバー法
(VQE:Variational Quantum Eigensolver)を共同で開発してます。
開発目的はバッテリー化学におけるリチウム化合物や
化学的相互作用の研究への適用です。

 特定の最適化問題を解決するVQEは原理的に
量子コンピューターと親和性が良いです。
変分原理を使用し、ハミルトニアンの基底状態エネルギー、
動的物理システムの状態の時間変化率を考えていくのです。
計算上の限界で、既存システムでは精度に制約がりました。

 具体的に酸化リチウムの構造やエネルギーのシミュレーション
に使用する、量子コンピュータ上で動作可能な
バッテリー化学モデルを共同開発しています

リチウム電池の性能や安全性の向上、コストの低減が進めば
EV開発における最重要課題の解決に向けて効果は大きいです。
【実際、EV価格の半分くらいはバッテリーの価格だと言われています】

ハイブリット英会話スタイルで伸ばす「アクエス」
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2023/04/23_初稿投稿
2024/03/17‗改訂投稿

舞台別のご紹介へ
時代別(順)のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

【Topic_2021/05/17投稿_9/25改定】
次世代加速器計画【ILC】

2021/5/10の日経新聞記事の情報を基本として
トピックをお知らせします。

日米欧の計画で進む国際リニアコライダー(ilc)
は新しい物性物理学の理論において
突破口を開くと期待されます。
また経済面でも期待され、
「科学のオリンピックを30年続ける」
ような効果があると評価する人々もいます。

また、日本学術会議は「事故対策」「不確定要素」
を懸念しています。そんな中で、宇宙が誕生した
状態を再現することを目的としていて
新しい理論に繋がる実験を計画しています。実際に
建設する予定は東北地方の北上山地が予定地
となっており2035年ころの稼働を目指しています。
総建設費は8000億円となります。

大きさは全長最大で20キロメートルで
小柴
氏・梶田氏がノーベル賞を受けたヒッグス粒子を
大量に作ります。

実験の姿としては
両側から+とー(プラスとマイナス)の
電荷を其々帯びた電子と陽電子を発射して
光速度近くまで加速した上で衝突する事で
大量のヒッグス粒子が発生する姿を観測
しようというものです。

ヒッグス粒子は物質に質量を与える
素粒子であると考えられていて
欧州合同原子核研究機関(cern)にある
巨楕円形加速器「lhc」で2012年に観測されています。

現代物理学で注目される微粒子なのです。

その数は理論的には1種類とも5種類とも言われ、
実際の実験結果が期待されます。また、
全宇宙の1/4を占めると言われるダークマター
の発見も期待されます。

同様な計画は中国でも進んでいるようで、
こちらの動きも注目されます。

アニメのエバンゲリオンに出てくるような
未知の粒子が制御出来るとしたら
素晴らしいですね。

新聞を読んだ時は計画の推進面だけしか
分かりませんでしたが、実際問題を含んでいて、
乗り越えるべき障壁もあります。

今後の情報をもって再度、
話題を改定したいと思います。



以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/05/17_初回投稿
2022/09/25_改定投稿

纏めサイトTOP
舞台別のご紹介