に投稿 コメントを残す

ムツゴロウさん【本名:畑 正憲】
10/12改訂【動物王国の主で九州男児の東大卒】

東大

こんにちは。コウジです。
ムツゴロウさんの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

ムツゴロウの青春記
【スポンサーリンク】
【1935年4月17日生まれ -2023年4月5日没】

 ムツゴロウさんの人生

2023年4月5日に87歳で亡くなられたばかりです。

お悔やみを申し上げると共に、ムツゴロウさんの

一面を紹介したいので投稿します。

私は少年時代に面白い人生だと思いました。

ムツゴロウさんという愛称で知られて

いますが、中身は九州男児です。

大分県でバンカラな青春時代を過ごします。

私はその様子をムツゴロウさんの著書である

「ムツゴロウの青春期」で読みました。

ムツゴロウさんが高校時代に今の奥様に出合い結ばれる様子

生き生きと描かれ、同時に東京大学を目指し

猛勉強する様子が描かれていました。

若き日のムツゴロウさん

ムツゴロウさんが九州で高校生活を送っていた時代に

「君等が知っちょるか知らんか(私は)知らんが」

という口癖の先生が居て、
物理学への魅力を伝えていて、
若き日のムツゴロウさん達が集まって
話を聞いていて、
友達同士で話して共鳴して
奮起するストーリーで
す。そしてムツゴロウさんは
猛勉強するのです。小説の終わりでは東大に合格します。

後で時間を作りムツゴロウの青春期に続く著作の結婚紀、冒険記等も読んでみたいと思っていますが、ムツゴロウさんは東京大学を卒業後に文筆での人生を選び、当時の学研社で活動を始めます。そこに至るまでに色々と考えたと思います。

東大で在学中には駒場寮で暮し、医学・動物学・等を学びます。そもそも物理学科という呼び方ではなく東大はⅠ類・Ⅱ類・・・と分けていたので(私が知ってた時代。)対象が無機質の剛体であろうがアメーバであろうが研究対象といえば研究対象な訳です。最高学府の頂点として東大は様々な学科を少数精鋭で網羅しています。そもそも微視的な視点に立ち見てみたら其々に性質があり、寿命があるのです。

「意志を持ってるかもしれないアメーバ」

だったり

「デコヒーレンスしていく量子素子」

を研究している訳です。そんな見方も出来ますよね。
話戻ってムツゴロウさんですが、もっと時間をとって調べて書き足していきたいです。彼の人生は喜びと失望に満ちています。徹夜でマージャンをしたり(プロ級の腕前)、事業で破産をしたり、お子さんの性格で思い悩んだりしていました。そんな中でムツゴロウさん突き進んでいました。いつまでも見続けていたい生き様でした。
訃報を聞き非常に残念です。

ムツゴロウさんには
6億円あると言われていた借金がありましたが、
それも全て返済して晩年まで動物に関わっていました。
リンク:有限会社ムツ牧場

2023/9/5に発売される
「ムツゴロウさんの最後の動物回顧録」
の発売に合わせて日経新聞に回顧録が掲載されて
ました。
ライオンに食いちぎられた指で最後の原稿を書いていた
そうです。「学びたい!!」「伝えたい!!」
という情熱が伝わってくる人でした。 

以上、間違い・ご意見は
次のアドレスまでお願いします。
問題点には適時、
返信改定を致しします。

nowkouji226@gmail.com

2020/11/14_初稿投稿
2024/10/12_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Mutsugoro’s life

2021/08/21 I am sorry that I am alive as of now, but I would like to introduce one side of Mr. Mutsugoro, so I will post it.
I thought it was an interesting life when I was a boy.

Known by the nickname of Mr. Mutsugoro, the contents are Kyushu boys. He spends his youth in Oita prefecture. I read the situation in Mr. Mutsugoro’s book “Mutsugoro’s Youth”. It was a lively picture of Mr. Mutsugoro meeting his current wife in high school, and at the same time, a picture of studying hard toward the University of Tokyo.

Young mudskipper

There was a teacher who had a habit of saying, “Do you know or don’t know (I) don’t know?”, Telling the charm of physics, and young mudskippers gathered and listened. I think it was a source of excitement by talking with friends and resonating with each other. And study hard.

Later, I would like to make time to read the marriage history and adventures of Mutsugoro’s youth, but Mr. Mutsugoro chose his life as a writer and started his activities at Gakken at that time. I think he thought a lot before he got there.

At the University of Tokyo, I live in Komaba Dormitory and study medicine, zoology, etc. In the first place, the University of Tokyo is not called the Department of Physics, but it is divided into Class I, Class II, etc. (the era I knew). That’s why.

As the pinnacle of the highest school, the University of Tokyo covers various departments with a small number of elites. In the first place, if you look at it from a microscopic point of view, each has its own characteristics and has a limited lifespan. I am studying “amoeba that may have a will” or “nucleus that has a half-life”. You can see that as well.

Returning to the story, Mr. Mutsugoro, I would like to take some time to investigate and add. Because his life was full of joy and disappointment. Under such circumstances, Mr. Mutsugoro was pushing forward. I feels that he is a way of life that he wants to keep watching for a while.

Mr. Mutsugoro had a debt that was said to be 600 million yen, but he repaid all of it and he is still involved in animals.
Link: Mutsu Ranch Co., Ltd.

に投稿 コメントを残す

J・J・サクライ
10/11改訂【ハーバードを首席で卒業し、夭折てしまった天才物理学者】

BERKELEY, CA -

こんにちは。コウジです。
J・J・サクライの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

現代の量子力学
【スポンサーリンク】
【1933年1月31日生まれ ~ 1982年11月1日没】

Jサクライとアメリカ

Jサクライの日本語表記は

「桜井純」で日本の東京生まれの人です。

私が使っていていた教科書でカタカナ表記でしたので個人的には
カタカナ表記がしっくりきて、好きです。ミドルネームに由来する
と思われますが、
もう一つ「J」をつけて記載する事が多いです。
何故ミドルネームがJなのかは未だ調べています。

(以下、少し呟いてみます)よく言及されるのですが、
英国の物理学者J・J・トムソンを真似て「J」に由来する
という一説があります。ただ、科学史の観点から私は納得いきませんでした。

「電子線を考え抜いたトムソン(別途、トムソン卿って人が居ます)」と「相互作用に対して考え抜いていた桜井さん」は物凄く似通った所があるのですが、それを裏付ける一次情報が得られていないのです。探すことに時間を使わない言い訳としては、桜井さんは日本での活躍が少なく、夭折してる(早くに亡くなっている)という事情もあって日本における交流が少ないと予想出来るからです。仮にご家族が追記集をまとめたりしていたら読んでみたいのですが、そういう類の話も聞きません。

そもそも、そういった話が聞かれない時点で仮に、
ご遺族が居たとしてもJJサクライの「J」についての由来は明らかにしたくないと
考えている場合も予想されるからです。
追及点を掘り下げる際の
科学史での難しい所を実感しました。
(そして、文字を小さくして呟いてみました)

いずれにせよJJサクライの響きは良いですね。

JJサクライは新制高校に在学していた16歳の時に留学生選抜試験に合格し、アメリカに渡りました。学問好きの少年だったのでしょう。その後、ニューヨークにある高校を卒業した後に、ハーバードを主席で卒業しています。

JJサクライと弱い力

その後、JJサクライはコーネル大の大学院で研究を進め、在学中に弱い相互作用の考えを提唱しています。彼の研究では弱い相互作用と強い相互作用が出てくるので少し言及します。そもそも自然界には4つの力があると言われていて、ここでの2つは4つの内の2つなのです。


初学者は4つの力を考える時に「力の働く範囲



力の大きさ」を別々に把握しないといけません。

 

具体的に弱い力(相互作用)は、働く範囲が陽子直径より小さいのです。また、素粒子や準粒子がボゾンを交換して相互作用する中で、弱い力は強い力や電磁学に比べて大きさが数桁小さな力として作用します。 

弱い相互作用は標準模型での全てのフェルミ粒子とヒッグスボソンに作用します。フェルミ粒子とボーズ粒子を合わせて「素粒子」と呼びますが、相互作用の議論では素粒子間に働く力が議論されるのです。 

特にニュートリノは重力と弱い相互作用のみを使って相互作用します。弱い相互作用は束縛状態をもたらしません。重力が天文学的スケールで月と地球の間の相互作用に関与していたり、電磁力が原子間レベルで互いに力を与えあったりする束縛状態とは異なります。また、弱い相互作用とは違い強い核力は原子核の内部で非常に強い束縛状態を持ちます。別言すれば、弱い相互作用は結合エネルギーに関与しません。

まとめると、
素粒子間に働く「強い」・「弱い」の二つの力に加えて
重力と電磁相互作用で働く二つの力を考えた時に
「4つの力」がとして表現されるのです。
夫々の力は独自のメカニズムで働きます。

JJサクライの突然の他界 

JJサクライはこうしたメカニズムを

深く研究していきました。

そして49歳で突然、他界してしまいました。

1982年にCERN(欧州原子核研究機構)での会議中に
体調を崩し、にジュネーブで亡くなったそうです。
少し調べてみましたが、その死因に対しては
情報が残されていません。何はともあれ、
惜しい人材を失ったこととなり残念です。

4つの力の理解と加速器を初めとした応用研究は未だ
続いています。次々問題が出てきます。
そんな議論に
参加して欲しかったです。
謹んでご冥福をお祈り致します。

合掌。



テックアカデミー無料メンター相談
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2020/11/11_初稿投稿
2024/10/11_改定投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介

日本関連のご紹介
アメリカ関連のご紹介へ

UCBのご紹介
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

J Sakurai and America

The Japanese notation for J Sakurai is “Jun Sakurai”, a person born in Tokyo, Japan. She used katakana notation in the textbook I was using, so I personally like the katakana notation. She seems to be derived from her middle name, but she is often listed with another “J”. I’m still investigating why her middle name is J.

(Hereafter, I will mutter a little) There is a theory that it is derived from “J” by imitating the British physicist JJ Thomson. However, I was not convinced from the perspective of the history of science. “Thomson who thought out the electron beam (I’m Sir Thomson separately)” and “Mr. Sakurai who thought out about the interaction” have very similar points, but I got the primary information to support it. I haven’t.

As an excuse not to spend time searching, Mr. Sakurai is less active in Japan, and she is dying (she died early), so it can be expected that there will be little interaction in Japan. Because. I would like to read it if my family is compiling a collection of additional notes, but I do not hear such stories.

In the first place, it is expected that he does not want to clarify the origin of JJ Sakurai’s “J” even if there is a bereaved family at the time when such a story is not heard. I realized the difficult part in the history of science when digging into the pursuit point. (And she tried to make the letters smaller and muttered)

In any case, the sound of JJ Sakurai is good.

JJ Sakurai passed the international student selection test at the age of 16 when he was in a new high school and went to the United States. He must have been an academic boy. Then, after he graduated from high school in New York, he graduated from Harvard as chief.

JJ Sakurai and weak force

Since then, JJ Sakurai has been conducting research at Cornell University’s graduate school, advocating the idea of ​​weak interactions while still in school. I will mention a little because his research shows weak and strong interactions. It is said that there are four powers in the natural world in the first place, and the two here are two of the four.

When considering the four forces, beginners must grasp the “range of force” and the “magnitude of force” separately.

Specifically, the weak force has a working range smaller than the proton diameter. In addition, while elementary particles and quasiparticles exchange bosons and interact with each other, weak forces act as strong forces or forces that are several orders of magnitude smaller than electromagnetics. Weak interactions affect all fermions and Higgs bosons in the Standard Model.

Fermions and bosons are collectively called “elementary particles”, but in the discussion of interactions, the forces acting between elementary particles are discussed. Neutrinos in particular interact only with gravity and weak interactions. Weak interactions do not result in bound states.

This is different from the bound state where gravity is involved in the interaction between the Moon and the Earth on an astronomical scale, and electromagnetic forces exert forces on each other at the interatomic level.

Also, unlike weak interactions, strong nuclear forces have a very strong bound state inside the nucleus. In other words, weak interactions do not contribute to binding energy. JJ Sakurai has studied these mechanisms in depth. And at the age of 49 he suddenly passed away. He did some research, but no information was left about the cause of death. Anyway, it’s a pity that he lost a regrettable talent.

Sudden Last of JJ 

Understanding of the four forces and applied research including accelerators are still ongoing. Problems come up one after another.

He wanted me to participate in such a discussion. It was

We sincerely pray for your souls.

Gassho.

に投稿 コメントを残す

【Topic_速報】なんと、2024年のノーベル化学賞もAI関連でした

ノーベル化学賞もAI関連

2024年度はノーベル化学賞でもAI関連の人物が受賞をしました。デミス・ハサビス氏(Googleディープマインド)ジョン・ジャンパー氏(Googleディープマインド)、米ワシントン大学のデービット・ベーカー氏が受賞しました。前者の二人は「タンパク質の構造予測」が受賞理由です。ベーカー氏の受賞は「計算でのタンパク質設計」に対しての評価でした。

先日の物理学賞の発表でも物理学の主流と異なる分野の人物の受賞で意外に思われた方も多いと思います。そうした時代なのです。ノーベル化学賞でもAI関連の技術開発(研究?)が評価されました。

タンパク質の構の造予測

ハサビス氏とジャンパー氏は構造予測で成果を出しました。アルフォードと名付けた技術でタンパク質の構造予測をします。数百にのぼるアミノ酸の解析にAIを使い手間暇を大幅に減らしたのです。ハサビス氏は旧ディープマインドの共同創業者でもあります。

Demis Hassabis(デミス・ハサビス)とJohn Jumper(ジョン・ジャンパー)―「タンパク質の構造予測」

Google DeepMindでCEO(再考経営責任者)を務めるDemis Hassabis氏と同社のJohn Jumper氏は、AIを活用したタンパク質の構造予測に大きく貢献しました。彼らが開発したAlphaFoldは、これまで数十年にわたって科学者たちが直面してきた難題、つまりタンパク質の折り畳み問題を解決するための画期的なツールです。タンパク質のアミノ酸配列からその立体構造を予測することは非常に困難とされてきましたが、AlphaFoldはこれを高い精度で達成しました。

ハサビス氏は少年時代は「天才チェス少年」として活躍し、その中で自分の思考が他社とどう違うか考え続け、AIの世界にのめり込んでいきました。その過程で神経学者として研究を続ける時期がありました。その時に人間の脳をまねた情報処理の手法を研究していきました。その成果がAlphaFoldなのです。

具体的には、AlphaFoldはタンパク質の一次配列から三次構造を予測し、これにより薬剤の設計病気の理解に新たな道を開くことになりました。従来の実験的な方法と比べて、予測にかかる時間やコストを大幅に削減でき、これまで予測が困難だったタンパク質の構造も特定できるようになりました。

タンパク質の設計

ベーカ氏は創薬の分野で成果をあげています。ロゼッタフォールドと名付けた技術で医療分野に有効なタンパク質を設計してきたのです。

David Baker(デービット・ベーカー)―「計算でのタンパク質設計」

ワシントン大学のDavid Baker氏は、計算技術を駆使したタンパク質の設計において顕著な業績を挙げました。彼の研究チームは、AIや計算アルゴリズムを利用して、自然界に存在しない新しいタンパク質をデザインする技術を開発しました。これにより、酵素の設計新しい材料の開発医療用タンパク質の創出など、応用可能な分野が飛躍的に広がりました。

具体的には、彼らの技術は、疾患治療や環境に優しい産業プロセスの実現に役立つ新しい酵素を作り出し、これまでにない形で生物学的システムをエンジニアリングすることを可能にしています。従来の実験に頼るアプローチでは不可能だった分子レベルの設計が、計算手法によって可能となり、さまざまな実用的な応用が期待されています。

AIのノーベル化学賞への貢献

2024年のノーベル化学賞は、AI技術が科学に与える影響の大きさを象徴しています。これまで分子生物学や化学の研究は実験に依存していましたが、AIが計算による予測や設計を可能にし、科学的発見のスピードと精度を飛躍的に向上させました。今回の受賞は、科学の最前線でAIが果たす重要な役割を強調するものと言えるでしょう。

最後に懸念

ヒントン氏が懸念点をあげている事は忘れてはいけません。「AIが人間を排除するリスクを懸念している」と危惧感を抱いているのです。ジョークを理解し、常人以上の流暢な会話をこなし、判断力に優れるAIは現実のものです。もはや、チェスは将棋で名人クラスの人物を負かしているのです。そんなAIが人間に不利益を働く思考を作り得るのです。

【スポンサーリンク】

以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。

nowkouji226@gmail.com

2024/10/10_初版投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
力学関係のご紹介
熱統計関連のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

ロジャー・ペンローズ
10/10改訂【ブラックホールにおける特異性を示しノーベル賞を受賞】

こんにちは。コウジです。
ペンローズの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

皇帝の新しい心
【スポンサーリンク】
【1931年8月8日生まれ ~ (ご存命中)】

 芸術家肌のペンローズ

 

その名はロジャー・ペンローズ
;Sir Roger Penrose OM FRS。
英国の物理学者ですが、

まだご存命の方なので

簡単に取り上げたいと

思います。有名人の

ブライアンとは少し

系統が違う気がするのです。


(芸能系ではない

純理論の学者さんです。

ムツゴロウさんとも

雰囲気が違いますね)

ロジャー・ペンローズは精神科医にして遺伝学者の父を持ち、
父方母方共に沢山の学者、芸術家がいる家庭に生まれました。
ロジャー自身も学者としてケンブリッジに進みます。

1994年にはナイトに叙せられています。また、
ホーキングと共にブラックホールにおける特異点を示し、
後に2020年のノーベル賞を受賞します。授賞理由は
「ブラックホールと相対論の関係」に対しての評価でした。

 ペンローズの研究業績

研究業績で気になってしまうのは認識に関する仮説に関してです。脳内での活動については個人的に昔から気になっている部分ではあるのですが、ロジャー・ベンローズの話の展開に、ほんの少しの違和感を覚えるのです。

ロジャーの主張は著書:皇帝の新しい心_で示されているのそうですが脳内の情報処理には量子力学が関わる。即ちユニタリー発展(U)と波束の収束(R)が含まれている仮定のもとに、片方のRに対する議論が欠けているという立場で話を進めているのです。

無論、脳内の活動は大きさスケールで考えた時に量子力学の対象となると思えます。脳内の伝達物質の一つは情報を与える電子であったりするからです。

その系統の話をきちんと読み通してはじめて分かる話なのか、
考え落としを含んでいる危うい話なのか、失礼ながら
気になってしまうのです。

本稿の中で私が使っている「違和感」が本物の違和感なのか
取り越し苦労なのか、いつか確かめたいと思います。
その意味で非常に興味深いです。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/07/02_初回投稿
2024/10/10_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリスのご紹介へ
ケンブリッジのご紹介へ
力学関係のご紹介
量子力学関係
AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Artist skin pen rose

Its name is Roger Penrose OM FRS.

He’s a British physicist, but he’s still alive, so I’d like to take a quick look. He feels a little different from the celebrity Brian.

(I’m a non-entertainment scholar of pure theory. The atmosphere is different from that of Mr. Mutsugoro.)

Roger Penrose was born into a family with a psychiatrist and geneticist father, and many scholars and artists on both his paternal and maternal sides. Roger himself goes to Cambridge. He, along with Hawking, showed his singularity in black holes and later won the 2020 Nobel Prize. The reason for his award was his appreciation for the relationship between black holes and relativity.

Penrose research achievements

What is worrisome about his research achievements is the cognitive hypothesis. I’ve always been concerned about activities in the brain, but I feel a little uncomfortable with the development of Roger Ben Rhodes’ story. The claim is shown in Roger’s book: The Emperor’s New Heart, but quantum mechanics is involved in information processing in the brain. That is, under the assumption that unitary development (U) and wave packet convergence (R) are included, we are proceeding from the standpoint that there is a lack of discussion on one R. I’m rude and worried whether it’s a story that can only be understood by reading through the story of that system properly, or a dangerous story that includes oversight. I would like to confirm whether the “uncomfortable feeling” I use in this article is a genuine uncomfortable feeling or a discomfort of having a hard time moving. In that sense, it’s very interesting.

に投稿 コメントを残す

【Topic_速報】2024年のノーベル物理学賞はジェフリー・ヒントン

新しい知見としてのAI

受賞の前から今年度のノーベル物理学賞では「AI」関連が
取りあげられるのではないか、と噂されていました。
現代ではAIが大きな関心となっており、他分野での
応用技術が商用化されています。

社会や経済を大きく変えつつあります。

そうした中で2024年度のノーベル物理学賞は
ジェフリー・ヒントンとジョン・ホップフィールドが
AI関係で受賞しました。ニューラルネットワーク
という新しい知見が世界を変えているのです。

ジェフリー・ヒントン(Geoffrey Hinton_1947年12月6日 -)

ジェフリー・ヒントンは、ディープラーニング分野のパイオニアであり、特に「バック・プロパゲーション・アルゴリズム」の提唱で知られています。このアルゴリズムは、ニューラルネットワークの学習を効率化するために重要な役割を果たし、現代のAI技術の発展に大きく貢献しました。

バロー、ニュートン、マクスウェル、ケルビン卿、ラザフォード、ボーア、チャドウィック、レイリー卿、JJトムソン、ディラック、ホーキンスがここで議論しました。そしてヒントンも。

 

ケンブリッジで心理学を専攻していましたが、
先進的な研究である人工知能のモデル化をカナダで進めます。
そうした中で
「脳の構造が何かを学ぶのに適しているのは明らかだ」
と感じて、信念ともいえる先見性で研究を続けました。
【本記事中での太字部は2024年10月9日付の
日経新聞からの引用です(以下同様)】


計算機の性能向上という背景もありますが、
ニューラルネットワークという構造がAIの進化に
大きな役割を果たしたと言えます。ヒントンは
Googleで働きつつ、トロント大学で研究を続け、
ディープラーニングの商用化にも貢献しました。
また、AIのリスクについても積極的に発言し、
倫理的な側面にも注力しています。こだわる所はこだわり、
持論を貫き「自分は頑固だからね」と語る研究者です。

 

主な業績

バックプロパゲーションアルゴリズムの開発

ディープラーニングの応用によるAIの飛躍的進展

AIの倫理や安全性に関する問題提起

ジョン・ホップフィールド(John Hopfield)

ジョン・ホップフィールドは「ホップフィールド・ネットワーク」として知られるニューラルネットワークの一種を提唱した物理学者です。このモデルは、人間の脳にインスパイアされたコンピュータシステムを構築するための基礎を築き、パターン認識やデータの記憶と復元に使用される理論的フレームワークを提供しました。彼の研究は、ニューラルネットワークの理解を深めるとともに、物理学と計算科学の橋渡しとなっています。

主な業績

ホップフィールド・ネットワークの提唱

神経科学とコンピュータ・サイエンスの融合研究

ニューラル・ネットワークの理論的基礎の確立

この二人の研究はAIの進展において非常に重要であり、彼らの知見は現在の技術に深い影響を与え続けています。

ジェフリー・ヒントンの新規性

特に私はジェフリー・ヒントンに注目していて彼の唱える  Y = A  /(2040-X)という公式を記事化してます。dirac226.com での2024年4月の記載でした。ヒントン氏の弟子の議論を記載した記事です。AIの活用により「人間社会の生産性が2040年頃には発散する」という内容です。ジェフリー・ヒントンのもともとの専門は実験心理学的なアプローチです。また、AIが物理学かな?と思う人も居るかもしれませんが、私の中では全くつながる世界です。

なにより、ジェフリー・ヒントンはAIの基本的な考え方として人間の脳活動を模倣した「ニューラル・ネットワーク」の仕組みを深化させました。

人間の脳の機能を模倣した人工知能の中核的な技術です。以下に、ニューラルネットワークの具体的な仕組みを解説します。

ニューラルネットワークとは?

ニューラルネットワークは、生物の神経系、特に脳のニューロンの働きをモデル化したもので、AIがデータを学習し、複雑なパターンを認識・生成するための基本的な構造です。個々の「ニューロン」に相当するノードが層状に配置され、これらが互いに連結されて信号(データ)を伝達します。信号は重み付けされて処理され、学習プロセスの中でこの重みが調整されていきます。

ニューラルネットワークの構造

ニューラルネットワークは、主に3つの層で構成されています。

1. 入力層 (Input Layer)

入力層は、ネットワークに供給されるデータを受け取る部分です。各ノード(ニューロン)は一つの入力データを受け取り、それを次の層に送ります。例えば、画像処理の場合、各ピクセルの値が入力データとなります。

2. 隠れ層 (Hidden Layer)

入力層からの信号は隠れ層に伝達され、複雑な計算処理が行われます。隠れ層が多層に渡る場合、これを「ディープラーニング」と呼びます。この層では、特徴抽出やパターン認識などの高度な処理が行われ、モデルの精度を向上させます。隠れ層が多いほど、モデルはより複雑で高度なタスクに対応できるようになります。

3. 出力層 (Output Layer)

最後に、処理された信号が出力層に送られ、予測結果や分類結果として出力されます。例えば、画像が「犬」か「猫」かを分類する場合、出力層は「犬」または「猫」という結果を返します。

ニューラルネットワークの学習方法

ニューラルネットワークは、「バックプロパゲーション(誤差逆伝播法)」を用いて学習を行います。これは、出力と正解の誤差を計算し、その誤差を各層に逆方向に伝播させることで、各ノード間の「重み」を調整するプロセスです。この方法により、モデルは徐々に正確な出力を生成する能力を高めます。

活用例

ニューラルネットワークはさまざまな分野で応用されています。以下は代表的な活用例です。

  • 画像認識:写真やビデオの中から物体や顔を認識する技術。Googleの画像検索やスマートフォンの顔認識機能に利用されています。
  • 音声認識:音声データをテキストに変換し、会話内容を解析する技術。SiriやGoogleアシスタントなどの音声アシスタントに応用されています。
  • 自然言語処理 (NLP):言語データを解析し、翻訳や文章生成、感情分析などを行う技術。翻訳サービスやチャットボットに利用されています。

ジェフリー・ヒントンの研究が深化させたニューラルネットワークは、AI技術の中でも特に重要な要素であり、現代の技術社会に大きな影響を与え続けています。

ニューラルネットワークの優位性

ヒントンの作り上げた「アレックスネット」は2012年に開かれた画像認識関連の大会で高得点をあげました。また同氏が率いるトロント大学のチームはゲーム関係の大会でも成果を収めています。「ヒントン氏が米エヌピディアの画像処理半導体(GPU)をつかった」実績が同半導体の評判を大きく広げました。2024年10月現在でエヌピディア社は過去最大の企業価値を持つ半導体メーカーとして君臨しています。(時価総額3兆ドル)

ジェフリー・ヒントン氏の功績はAI分野において非常に重要であり特に彼が提唱・開発した技術や成果は、画像認識やディープラーニングの飛躍的な進展をもたらしました。以下に、彼の代表的な実績を具体的に解説します。

アレックスネット (AlexNet) の成功

2012年、ジェフリー・ヒントン氏とその弟子であるアレックス・クリージェフスキー (Alex Krizhevsky) が開発した「アレックスネット」は、ILSVRC(ImageNet Large Scale Visual Recognition Challenge)という画像認識の世界大会で圧倒的な成功を収めました。アレックスネットは従来のモデルを遥かに凌駕し、ディープラーニングの可能性を世界に示しました。

主な特徴と成果

  • 深層ニューラルネットワークの使用:アレックス・ネットは、8層に渡る深層ニューラルネットワークを用いて画像を処理しました。
  • エラー率の大幅な削減:アレックスネットは、他のチームが達成したエラー率を大幅に下回り、画像認識の分野で革新をもたらしました。
  • ディープラーニングの普及:この成功により、ディープラーニングが多くのAIプロジェクトで主流となり、その後の技術発展に貢献しました。

トロント大学のゲーム大会での成果

ヒントン氏が進化させた原理は、ゲームにおけるAIの活用でも優れた成果を出しました。特に、強化学習やニューラルネットワークの技術を駆使し、ゲームのプレイにおいて人間以上のパフォーマンスを発揮することに成功しました。

主な成果

  • 強化学習の応用:AIエージェントがゲーム内での行動を学習し、最適な行動を取るための強化学習アルゴリズムを発展させました。
  • AIのパフォーマンス向上:人間のプレイヤーを超えるAIを開発し、ゲームやシミュレーションの分野でもAIが強力なツールとなることを証明しました。

    • AIが人間を超えるプレイ:強化学習を用いたAIを開発し、ゲームにおいて最適なプレイを学習させました。これにより、AIが人間のプレイヤーよりも効率よくゲームを進められることが証明されました。
    • ゲームAIの進化:特に、戦略ゲームやリアルタイムのゲームにおいてAIが優れた成果を収め、AIの応用範囲が広がりました。これにより、ゲーム業界でもAIが注目され、エンターテインメント分野での利用が進んでいます。

    この実績により、ゲームやシミュレーション分野でAIの活用が急速に進み、技術の進化だけでなく、商業的な成功にもつながりました。

NVIDIAのGPUを用いた功績

ヒントン氏は、AI研究において米エヌビディア (NVIDIA) 社のGPU(画像処理半導体)を使用することで、ディープラーニングの計算効率を劇的に向上させました。これにより、従来のCPUでは処理が困難だった大量のデータを短時間で処理できるようになり、AI技術の急速な発展を支えました。

主な成果

  • 計算速度の飛躍的な向上:GPUの並列処理能力を活用し、ディープラーニングの訓練時間が大幅に短縮されました。
  • NVIDIAの評判を高める:ヒントン氏の成功により、NVIDIAのGPUはAI研究の中核ツールとしての地位を確立し、2024年時点で同社は時価総額3兆ドルに達するなど、過去最大の企業価値を持つ半導体メーカーとなりました。

2024年10月現在の影響

ヒントン氏のこれらの実績は、AI研究と商用化の両面で大きな影響を与え続けています。彼が発展させた技術や使用したツール(特にNVIDIAのGPU)は、現在でもAIの進化を支える基盤として機能しており、AI産業全体の成長を促進しています。

今後の物理学とAI

物理学における知識の追求は、AIの登場で新しい段階に入ったという印象を受けます。第一回のレントゲンの受賞の時代からはより実験と結びついた実証的な現象理解が次々と進んでいきました。量子力学、素粒子物理学、物性物理学といった新世界で人類は知見を広めてきました。そうした現象理解はこれからも続きます。同時に、現代に置けれ宇革命的な技術である「AI」が急激な変化をもたらして、恩恵を与えていることも確かです。その意味で2024年の受賞は時代を反映していると言えます。「二人が貢献したAIの技術革新と発展は、他の物理学の大きな推進力となっている」とノーベル賞の選考委員会は称えています。具体的には以下の事例を評価してます。

具体的に解説します。

ヒッグス粒子の発見

ヒッグス粒子の発見は、2012年にCERNの大型ハドロン衝突型加速器(LHC)を使用して実現しました。この粒子は、1964年にピーター・ヒッグスらによって予測されたもので、物質の質量の起源を説明する重要な要素です。

  • 役割と意義:ヒッグス粒子は「ヒッグス場」という見えないフィールドと関係しており、これが他の素粒子に質量を与える役割を果たします。質量の存在理由を解き明かすことで、標準模型と呼ばれる物理学の基本理論を補完しました。
  • 発見の重要性:この発見により、物理学者たちは物質の基本的な性質を理解するための手掛かりを得、宇宙の成り立ちに関するさらなる研究が進展しました。

重力波の検出

2015年、アメリカのLIGO(レーザー干渉計重力波観測装置)は、重力波の直接検出に成功しました。重力波は、アインシュタインの一般相対性理論で予言された時空の歪みを示す波で、ブラックホールや中性子星が衝突したときに発生します。

  • 役割と意義:重力波は、宇宙の深遠な出来事を探知する新しい手段を提供しました。これまで光や電磁波では捉えられなかった現象を観測できるようになり、宇宙の起源やブラックホールの性質に関する新たな洞察が得られるようになりました。
  • 発見の重要性:重力波の検出は、天文学や宇宙物理学に革命をもたらし、これまで理解されていなかった天体現象の解明が進むきっかけとなりました。

ブラックホール観測

2019年、Event Horizon Telescope(EHT)によって史上初めてブラックホールの「写真」が撮影されました。この画像は、地球サイズの望遠鏡を使ってブラックホールの影を直接観測したものです。

  • 役割と意義:ブラックホールは、光さえも脱出できない強い重力を持つ天体で、その存在は理論的に予測されていましたが、実際に観測されたのは初めてです。これにより、ブラックホールが実在し、一般相対性理論が正しいことが改めて確認されました。
  • 発見の重要性:この観測は、宇宙の極限状態に関する理解を深め、ブラックホールが周囲の物質やエネルギーとどのように相互作用するかを知る手がかりを提供しました。

これらの成果は、AI技術の進歩によるデータ解析やシミュレーション技術の向上があったからこそ可能になった部分も大きく、物理学とAIの相互作用が未来の科学研究を大きく推進する役割を果たしています。

4o

ノーベル賞を創設したアルフレッド・ノーベルの当初の理念(遺言)
を最後に残します。「(ノーベル賞は)
人類にもっとも大きく貢献した科学者に贈る。

【スポンサーリンク】

以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。

nowkouji226@gmail.com

2024/10/08_初版投稿
2024/10/09‗改訂投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
力学関係のご紹介
熱統計関連のご紹介

【このサイトはAmazonアソシエイトに参加しています】

に投稿 コメントを残す

ロバート・シュリーファー
10/9改訂【超電導を理論化したBCS理論を提唱】

University of Chicago

こんにちは。コウジです。
シュリーファー の原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

超伝導の理論
【スポンサーリンク】
【1931年5月31日 ~ 2019年7月27日】

 BCS理論を構築したシュリーファー

BCS理論を作った3人の中の一人が

シュリーファーであって、

BCS理論でのSはシュリーファのSです。

BCS理論自体の説明は他のメンバーである
バーディーンクーパーのご紹介の中で
解説していますので繰り返しません。
超伝導を微視的に解説した理論です。

 シュリーファーと超電導の研究

シュリーファは少年時代には手作りロケットを制作したり、アマチュア無線が好きだったりする電子工学好きな少年でした。そんなシュリーファはMIT(マサチューセッツ工科大学)で半導体の研究を当初進めていました。特に半導体表面での電子の振る舞いを研究していたのです。そして後に超伝導現象の研究に移ります。

シュリーファ達がBCS理論をまとめた後、世界での研究は常温での超伝導実現に向けた研究が進んでいます。常温高圧環境下で現象を起こしたりする試みがされていて、マイナス百数十ケルビンまで転移温度は近づいてきています。

現実には実現が難しい様な高圧をかけた時に、常温で超電導現象が実現した報告もあります。私が研究していた時代には青学の秋光先生や東工大の細野先生が挑んでいました。

それぞれご存命かと思われますので詳細は控えます。

科学史と言うより最前線に近いかと思えますので。

ご本人達にしてみれば

「今でも研究してますよ!」って気持ちも

あるのではないかとと思えるのです。

 シュリーファーの晩年

話し戻って、シュリーファは1957年から米国代表の立場で英国バーミンガム大学とコペンハーゲンのボーア研究所で超電導の研究を続けています。そして残念な事に、晩年に自動車事故を起こし人を殺めてしまい、懲役を課されています。カリフォルニア州サンディエゴにある刑務所で懲役に服しました。

素晴らしい研究のセンスとうっかりミスを犯してしまう性格は共にシュリーファの人生に影響を与えました。出来れば緊張感を持って生活を送って頂きたかったです。こんな話をするのは事故当時シュリーファは免許停止中だったからです。立場のある人間であれば尚更、責任を持った行動が求められます。

それだから、この話を知って「とても残念」です。バーディン教授の人を集める性格とシュリーファー教授の人を遠ざけてしまう性格は対象的に思えてしまうのです。

バーディンは仲間とトランジスタを開発して、別途BCS理論をつくりあげて仲間の輪を広げました。その過程で出会った日本人、中嶋貞雄をアメリカに呼んで、もてなしていたりします。朗らかなアメリカ人のイメージです。

反面、シュリーファーは立派な立場をいくつも受けた後に人を殺めてしまいました。朗らかなアメリカ人として単純に語れない人生です。こんな話を我々は大きな教訓として考えるべきだと思います。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2020/09/17_初稿
2024/10/09_改定

舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
イギリス関係のご紹介へ
オランダ関係のご紹介へ
熱統計関連のご紹介
量子力学関係
AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Schrieffer of BCS theory

One of the three who created the BCS theory is Schrieffer, and the S in BCS theory is Schrieffer’s S.

Research on Schrieffer and superconductivity

When he was a boy, Shrifa was a boy who loved electronics, making handmade rockets and ham radio. Such Schrifa was initially conducting research on semiconductors at MIT (Massachusetts Institute of Technology). He was especially studying the behavior of electrons on the surface of semiconductors. And he later moved on to study superconducting phenomena.

After Schrifa et al. Summarized the BCS theory, research in the world is progressing toward the realization of superconductivity at room temperature. Attempts have been made to cause phenomena in a normal temperature and high pressure environment, and the transition temperature is approaching to minus one hundred and several tens of Kelvin.

There is also a report that the superconducting phenomenon was realized at room temperature when a high voltage that was difficult to realize in reality was applied. When I was studying, Professor Akimitsu of Seigaku and Professor Hosono of Tokyo Institute of Technology were challenging. I will refrain from detailing each of them as they may be alive. I think it’s closer to the front line than the history of science. For the people themselves, I think they may have the feeling that they are still researching!

Schrieffer’s later years

Returning to the story, Schrifa has been studying superconductivity at the University of Birmingham in the United Kingdom and the Bohr Institute in Copenhagen since 1957. And unfortunately, in his later years he had a car accident, killed a person and was sentenced to imprisonment. He was sentenced to jail in San Diego, California. Both his great sense of research and his inadvertent mistaken personality have influenced Shrifa’s life. He wanted him to live a life with a sense of tension if possible. I tell this story because Shrifa was out of license at the time of the accident.

If you are a person in a position, you are even more required to act responsibly.
So I’m very sorry to know this story. The character of gathering Professor Bardeen and the character of keeping Professor Schrieffer away seem to be symmetrical. Bardeen developed a transistor with his companions and created a separate BCS theory to expand the circle of his companions. I invite Sadao Nakajima, a Japanese who I met in the process, to the United States for hospitality. It is an image of a cheerful American. On the other hand, Schrieffer killed a person after receiving several good positions. It’s a life I can’t talk about as a cheerful American. I think we should consider this story as a big lesson.

に投稿 コメントを残す

有馬朗人_
10/8改訂【ゆとり教育の推奨|複雑な原子核の状態を簡易に数式化】

東大

こんにちは。コウジです。 有馬朗人の原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。 また、細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。

大学貧乏物語
【スポンサーリンク】
【1930年9月13日 ~ 2020年12月6日】

 有馬氏へお悔やみ

東大学長を務めた有馬朗人氏が

2020/12/8に亡くなりました。享年90歳。

謹んでお悔やみを申し上げます。

有馬朗人は原子核物理学の世界で業績をあげ、特に
有馬・堀江理論(配位混合の理論)、
相互作用するボゾン模型の提唱、
クラスター模型への貢献、
の3つの業績が大きな業績です。

有馬朗人の業績

特に相互作用するボゾン模型は有馬朗人が
オランダの研究機関に居た
1974年に発表していて、
別名で

「相互作用(する)ボソン近似」の名で

ご存知の方も多いのではないでしょうか。
粒子の入れ替えに対して波動関数の符号が
反転しない対象粒子に対して、
いわゆる
「第二量子化」された時の議論で
有馬朗人の考えた近似は使われます。

以上の説明は一般の人には分かりづらいかもしれませんが
原子核の状態を記述するには古典的な(ニュートン的な)記載
では不十分で、波動関数を使うだけではなくて群論や
電磁気的な側面を考慮して議論を進めていきます。

そして、有馬さんは現象を嚙砕いて数式化して
難しい原子の世界を簡単な数式で表現したのです。
 

また、政界においても活躍され、 特にゆとり教育の推奨が知られています。 有馬朗人が勧めたかった当初の教育は 世界史と日本史を共に学ぶ事で 知識をより豊かに身に着けていく様な 試みであって、現場に話が伝わった時点では 全く別の解釈として伝わっていました。 有馬朗人はその解釈を非常に 遺憾に感じていたようです。

他にも色々と語りたかったでしょう。 ご冥福をお祈りします。

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点には適時、
返信・改定をします。

nowkouji226@gmail.com

2020/12/07_初稿投稿
2024/10/08_改定投稿

【スポンサーリンク】

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介

AIでの考察(参考)

(2021年11月時点での対応英訳)

Condolences to Mr. Arima

Akito Arima, the president of the University of Tokyo, died on December 8, 2020. He is 90 years old. We would like to express our deepest condolences. Akito Arima has made great achievements in the world of nuclear physics, and is particularly famous for his three achievements: Arima-Horie theory (theory of mixed coordination), proposal of interacting boson models, and contribution to cluster models.

Achievements of Akito Arima

In particular, the interacting boson model was announced by Akito Arima in 1974 when he was at a research institute in the Netherlands, and many of you may know it under the alias of “interacting boson approximation”. ..

Akito Arima’s approximation is used in the discussion of so-called “second quantization” for objects whose wavefunction signs do not invert with respect to particle replacement. It was

It is also active in the political world, and is especially known for recommending Yutori education. The initial education that Akito Arima wanted to recommend was an attempt to acquire more knowledge by studying both world history and Japanese history, and when the story was conveyed to the field, it was a completely different interpretation. It was transmitted as. Akito Arima seems to have felt very regretful about his interpretation.

He would have wanted to talk a lot more. He prays for souls.

に投稿 コメントを残す

レオン・クーパー
_10/7改訂【26歳でクーパ対|超電導理論での電子挙動をモデル化】

University of Chicago

こんにちは。コウジです。
クーパーの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

超伝導の理論
【スポンサーリンク】
【1930年2月28日 ~(ご存命中_2024/2末確認)】

 クーパと超電導

初めに、本稿は関連用語の解説が中心となリます。
今後も含め
分かり易い内容にしたいので
超伝導現象を科学史の観点から改めて
まとめ直した方が
有益だろうと感じたからです。

既に内容をご承知の方にはしつこく感じるかと。
そうでしたらごめんなさい。読み飛ばしてください。

クーパーはジョン・バーディーン等と共にBCS理論を確立しました。
クーパーはユダヤ系です。賢い人達ですね。そもそも
BCS理論の大事な考え方
であるクーパー対という
考え方を
クーパーは26歳の時に纏めています。

さて、本題です。1911年のK・オンネスの発見により
通常の伝導性とは異なる
超伝導状態が存在すると明らかに
なりました。
定量的には絶対零度近くの
273℃=ゼロ・ケルビン(k)
に近づくと超伝導現象が起きます。

その時は抵抗値ゼロです。

例えばニオブ(Nb)は9.22ケルビンで
超伝導状態になります。超伝導状態への
転移を上手く説明した理論がBCS理論で
あって、BCSでのCはクーパーの名前に
由来します。

超電導の別の側面 

ここで別の側面から超伝導状態を考えます。温度を下げ相転移温度で現象が起きると電流を流した時に抵抗値がゼロになりますが同時に相転移温度で磁界に対して変化が生じます。

現時点での超電導現象の応用としてリニアモーターカーがあげられます。細かくは超伝導体の内部で内部磁場がゼロになり、外部からの磁界を遮断します。

超伝導状態になった時に磁石が浮かぶ写真は有名な例えですね。更に磁石は極性を持ちますから、ラダーと呼ばれる軌道で極性を切り替えていく事で
リニアモーターカーは進むのです。この「
完全反磁性」または
「マイスナー効果」と呼ばれる現象は超伝導現象での特徴の一つです。

ここで関連して磁力線について整理したいと思います。ご存知の通り磁石はN極とS極からなり磁力を持ちます。一般的に模式図で示される様に磁力線は片方から他方へゆったりした曲線で繋がっていきます。

所が超伝導現象では内部へ磁力線が侵入出来ない様な現象が起きます。相転移の前後で形が突然変わります。更には変化の違いで第一種超伝導体 と第二種超伝導体に物質によって分かれます。これらの現象を理解する為にクーパー等が確立したBCS理論が基礎になっていくつのです。

クーパーのアイディアは電子が対(つい)になるというもので、対になった電子がスピンを打ち消しあって超電導状態を作るというものです。その電子の対は今でも超電導の学者達の間で「クーパ対」と呼ばれています。

この考えが発展していき、現代では相転移の温度がどんどん高くなっています。実用上は常温常圧下で相転移を起こすことが大事になっていますので液体ヘリウムよりも安価な液体窒素で冷やせる事が望ましいのです。

実際、液体窒素の沸点は−196℃ですので現在は、液体窒素で冷やす事で相転移を実用出来る素材を中心に研究が行われて居ます。そして、現在では現象発生に対して「ゆらぎ」のメカニズムをより解明していこうという取り組みが進んでいます。さらなる今後の進展に期待しましょう。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
時間がかかるかもしれませんが
必ず返信・改定をします。

nowkouji226@gmail.com

2020/09/16_初回投稿
2024/10/07_改定投稿

舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ
熱統計関連のご紹介
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Cooper and superconductivity

First, this article focuses on explanations of related terms. I wanted to make the content easy to understand, including in the future, so I felt that it would be useful to reorganize the superconducting phenomenon from the perspective of the history of science.

Do you feel persistent to those who already know the contents? If so, I’m sorry.

Cooper established the BCS theory with John Bardeen and others. Cooper is of Jewish descent. He’s smart people, aren’t he?

In the first place, Cooper summarized the idea of ​​Cooper pair, which is an important idea of ​​BCS theory, at the age of 26.

Well, the main subject. The discovery of K. Onness in 1911 revealed that there is a superconducting state that is different from normal conductivity.
Quantitatively, a superconducting phenomenon occurs when approaching minus 273 ° C = zero Kelvin (k) near absolute zero. At that time, the resistance value is zero. For example, niobium (Nb) becomes superconducting at 9.22 Kelvin. The theory that well explains the transition to the superconducting state is the BCS theory, where C comes from Cooper’s name.

Another aspect of superconductivity

Now consider the superconducting state from another aspect. When the temperature is lowered and a phenomenon occurs at the phase transition temperature, the resistance value becomes zero when a current is passed, but at the same time, the phase transition temperature changes with respect to the magnetic field.

The current application is a linear motor car. In detail, the internal magnetic field becomes zero inside the superconductor, blocking the external magnetic field. The picture of a magnet floating when it is in a superconducting state is a famous analogy. Furthermore, since magnets have polarity, the linear motor car advances by switching the polarity in a trajectory called a ladder. This phenomenon called the complete antimagnetism or the Meissner effect is one of the characteristics of the superconducting phenomenon.

Here, I would like to organize the lines of magnetic force in relation to this. As you know, a magnet consists of N pole and S pole and has magnetic force. Generally, as shown in the schematic diagram, the lines of magnetic force are connected by a loose curve from one side to the other.

However, in the superconducting phenomenon, a phenomenon occurs in which the lines of magnetic force cannot penetrate inside. The shape changes suddenly before and after the phase transition. Furthermore, it is divided into type 1 superconductors and type 2 superconductors depending on the substance due to the difference in change. The BCS theory established by Cooper et al. Is useful for understanding these phenomena.

This idea has evolved, and the temperature of the phase transition is getting higher and higher in modern times. In practice, it is important to cause a phase transition under normal temperature and pressure, so it is desirable to cool it with liquid nitrogen, which is cheaper than liquid helium.

In fact, since the boiling point of liquid elements is -196 ° C, research is currently being conducted focusing on materials that can be used for phase transition by cooling with liquid nitrogen. At present, efforts are underway to further elucidate the mechanism of “fluctuation” in response to the occurrence of phenomena. Let’s look forward to further progress.

に投稿 コメントを残す

マレー・ゲルマン
__10/6改訂【クォークの名付け親、ファインマンの論敵】

gettyimages-Yale-Uni

こんにちは。コウジです。
ゲルマンの原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

物理学がわかる本
【スポンサーリンク】
【1929年9月15日 ~ 2019年5月24日】

 ニューヨーク生まれのゲルマン

ゲルマンは米ニューヨーク生まれの理論家です。
素粒子論の世界でノーベル賞を受けています。

ゲルマンの名を本来はゲル-マンと書きますが、
【Gell-Mannと書きますが、】

本稿ではゲルマンとしています。
記述が楽で、読みやすいからです。

ゲルマンはイェール大で学士号を受け、MITで博士号を受けました。
その後、プリンストン高等研究所、コロンビア大、シカゴ大、
カリフォルニア工科大で研究を続けます。サンタフェ研究所の設立者
の一人でもあります。ゲルマンの研究実績としてはクォークの提唱
が大きかったですね。加速器の開発後には様々な粒子が
未整理のまま次々と発見され、それらの関係と性質は
未解決な部分が残るままに、問題が蓄積されていきます。

そして、ゲルマンは1961年に「八重性」(Eightfold Way)と呼ばれる理論を提唱し、これはハドロンの分類に関する理論です。この理論は、粒子群の対称性を利用して、それぞれの粒子がどのように関係しているかを説明するもので、クォークモデルの基盤としても機能しました。この八重道理論は、後にクォークの存在を予測する重要なステップとなり、強い相互作用に関する理解を深めました。

それらを整理・理解する手段がクォークだと言えます。
ゲルマンの理解体系では対象性が使われていて、
ストレンジネスやカラーといった概念で素粒子が理解されていきます。

秩序ある奥深い理論だと思います。

 ゲルマンとファインマン

さて、ゲルマンの業績として素粒子の分類に関する側面を取り上げてきましたが、ゲルマンの研究での真骨頂は粒子の反応に関しての研究ではないでしょうか。「粒子の質量は力の届く距離に反比例!!」という動かしがたい事実をとらえて、(たとえばπ中間子が凡そ原子の200倍の重さであると)考えていくと保存される物理量を反応前後で明確に出来るのです。

関連してR・P・ファインマンという論敵がいました。あくまで伝えられている内容なのですが、ゲルマンとファイン・マンの論争はまるで子供の喧嘩みたいにも思えます。激怒したファイン・マンが、「貴様の名前綴りからハイフォン消すぞ!」【Gell-Mann改めGellmannとするぞ!の意】と怒鳴りつけたら、「ゲルマンがお前の名前をハイフォン付きで書いてやる!」【Feynman改めFeyn-Manとしてやる!の意】と言い返す有り様だったようです。アメリカ人の感覚なのでしょうか。西部劇の勢いなのでしょうか。ただ少し理解出来るかも、と思ったのは互いの愛する家族を侮辱していたのですね。瞬間的に家祖も汚す発想は、頭の切れる天才同士の喧嘩だったのでしょう。より効果的な屈辱の与え方を考えて。。。
いや、やはり激怒して
子供じみた喧嘩してたのかもしれません。;)

そんなゲルマンとファイン・マンは
それぞれに素晴らしい業績を残しました。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/11/05_初稿投稿
2024/10/06_改定投稿

舞台別のご紹介へ
時代別(順)のご紹介
アメリカ関連のご紹介へ
イェール大学関連のご紹介へ
纏めサイトTOP
電磁気関係
量子力学関係

AIによる考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Germanic born in New York

German is a theorist born in New York, USA.

He has received the Nobel Prize in the world of particle physics.

Originally the name of German is written as Gell-Man,

[I write Gell-Mann, but]

In this paper, it is German.

It’s easy to write and easy to read.

German received a bachelor’s degree from Yale University and a PhD from MIT. He then continues his research at Princeton Institute for Advanced Study, Columbia University, University of Chicago, and California Institute of Technology. He is also one of the founders of the Santa Fe Institute. Quark’s proposal was a big part of his German research achievements. After the development of the accelerator, various particles are discovered one after another without being organized, and problems are accumulated while the unsolved parts of their relationships and properties remain. Can we say that quarks are the means to organize and understand them? In German’s understanding system, symmetry is used, and elementary particles are understood by concepts such as strangeness and color.
I think he is an orderly and profound theory.

Germanic and Feynman

Now, as German’s achievements, we have taken up the aspect of the classification of elementary particles, but I think the true value of German’s research is the research on particle reactions. Relatedly, there was an opponent named R.P. Feynman. It’s just been told, but the Germanic and Fineman controversy seems like a quarrel between children. Furious Fine Man said, “I’ll erase the haiphong from your name spelling!” [Gell-Mann will be changed to Gellmann! When yelling, “German will write your name with a haiphong!” [Feynman will be changed to Feyn-Man! It seems that it was like saying back. Is it an American feeling? Is it the momentum of the Western drama? I thought it might be understandable, but it was insulting each other’s loved ones. The idea of ​​instantly polluting the ancestors was probably a quarrel between smart geniuses. Think about how to give more effective humiliation. .. ..
No, I’m still angry
It may have been a childish quarrel. 😉

Such Germanic and Fine Man
Each has made great achievements.

に投稿 コメントを残す

赤﨑 勇
‗10/5改定【青色LED・短波長半導体レーザーの発光度の強化】

名大

こんにちは。コウジです。
赤﨑 勇の原稿を改訂します。

今回の改定点はリンク切れ情報の改定です。
また、細かい文章も再考しています。しっかり正確に。
そして沢山情報が伝わるように努めます。

ブルーレイディスク
【スポンサーリンク】
【1929年1月30日 – 2021年4月1日】

赤﨑 勇の業績として大きいのは何よりダイオード関係で、
その方面では第一人者だという印象が強いです。その関連で
ノーベル物理学賞も受賞しています。また、
赤崎さんと言えばブルーレイディスクを思い浮かべて欲しい。
そうした赤崎勇の業績を中心にご紹介していきます。

本ブログのご紹介画像では京都大学を使っていますが、
実際には赤崎氏は名古屋大学とも大きく関わっていて
(現)デンソーテンで卒業後に仕事をした後に
京大の先輩の名古屋大就任に伴い名古屋大学で研究を進めます。
今でも名古屋大学には赤崎記念研究館があり名大の時計塔では
青色LEDのイルミネーション時計が使われているそうです。

そして
(現)パナソニックの東京研究所に
所長からスカウトされ勤務します。
そうした業績の成果は有意義な結果を生んでいて、
最終的な製品として「ブールーレイディスク」の名を
聞いたことがある人は多いかと思います。
青色LED・短波長半導体レーザーの発光度の強化(実用化)
は非常に工学技術として優れています。
「情報を読み取る」という点に着目して
ブルーレイの情報として画像だけではなく
音の情報も含ませることで映画などの動画を
保存する手段を確立したのです。

赤崎氏は20世紀後半の時代に沢山の仕事をしています。

1991年・窒素系半導体での多重ヘテロ効果発見。
1993年・AlGaN/GaNダブルヘテロ構造での低閾値光励起誘導放出
1995年・室温にでの最短波長パルス秒レーザーダイオード( 376nM)
1997年・GaN系半導体量子構造での量子閉じ込めシュタルク効果実現
2000年・GaN系統の結晶におけるピエゾ電界強度結晶方位依存性での
無極性面、半極性面の存在を理論的に証明
2003年・紫外/紫色LEDの実現

赤﨑 勇さんは日本のレーザー技術の水準を最高峰へ高めました。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2023/04/06‗初稿投稿
2024/10/05_ 改訂投稿

旧舞台別まとめへ
舞台別のご紹介へ
時代別(順)のご紹介
力学関係
電磁気関係
熱統計関連のご紹介
量子力学関係

AIでの考察(参考)

【このサイトはAmazonアソシエイトに参加しています】

(2023年4月時点での対応英訳)

Isamu Akasaki’s greatest accomplishment is diode-related.
I have a strong impression that he is a leader in that regard. in that regard
He also won the Nobel Prize in Physics.

Kyoto University is used in the introduction image of his blog,
In fact, Mr. Akasaki is also heavily involved with Nagoya University.
After working at (now) Denso Ten after graduating
I will proceed with research at Nagoya University as my senior from Kyoto University was appointed to Nagoya University.
Even now, Nagoya University has the Akasaki Memorial Research Hall, and the Meidai clock tower
It seems that the blue LED illumination clock is used.

and
(Currently) Panasonic Tokyo Research Laboratory
You will be scouted by the director to work.
The results of such achievements have produced meaningful results,
As the final product, the name of “Blu-ray disc”
I’m sure many of you have heard of it.
Enhancement of luminous intensity of blue LEDs and short wavelength semiconductor lasers (practical application)
is very good engineering.

As an impression of personal achievements
Akasaki has done a lot of work in the late 20th century.

1991: Discovery of multiple heterogeneous effects in nitrogen-based semiconductors.
1993・Low-threshold photoexcited stimulated emission in AlGaN/GaN double heterostructure
1995 Shortest wavelength pulsed second laser diode at room temperature (376nM)
1997・Realization of quantum confined Stark effect in GaN-based semiconductor quantum structure
2000 ・Piezo electric field strength crystal orientation dependence in GaN-based crystals
Theoretical proof of the existence of non-polar and semi-polar planes
2003・Achievement of UV/Violet LED

Isamu Akasaki raised the standard of Japanese laser technology to the highest peak.