に投稿 コメントを残す

南部 陽一郎
【1921年1月18日生まれ ‐7/31改訂】

東大

こんにちはコウジです。「南部陽一郎」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1921年1月18日生まれ ~ 2015年7月5日没】


【スポンサーリンク】

 戦時下の南部陽一郎

南部 陽一郎は第二次世界戦時に研究を志しました。所が、時は戦時中。彼の頭脳は武器製造に貢献できると判断されて陸軍のレーダー研に配属されました。戦時下ではどんな研究をしていたんでしょうね。そして、どんな気持ちだったのでしょうね。

戦争の前後で東京帝国大学で研究を進めます。戦後、南部 陽一郎は朝永 振一郎のグループで研究を続けます。そして物質を構成する原子を考えていき、今に続く素粒子論を完成させていきます。

南部陽一郎と自発的対称性

 南部陽一郎の新規性は真空概念の考え直しでしょう。

「特定の対称性をもった物理系がエネルギー

で色々な状態を考えた時に的に、より

安定な真空状態に自発的に落ち着く」のです。

BCS理論でのクーパ対生成はこの考え方

に従っています。電子対生成が安定なのです。

中間子をひもとき、素粒子間の総合作用を考え、その形成に関して実験事実と、つじつまの合う理論を展開していきます。そうした研究を重ね南部陽一郎は「自発的対称性の破れ」でノーベル賞を受賞しています。南部陽一郎の話の組み立てとしては、強磁性体の自発磁化状態(外部からの磁場無しで内部磁気モーメントを揃えている状態)が温度上昇に伴い磁化を失う状態を考え、ラグラジアンを巧みに使い素粒子に適用しているのです。また彼は量子色力学や紐理論でも成果を上げています。

そういえば、

南部洋一郎は私が学生時代に使っていた教科書の著者でした。その時点で米国の国籍を得ていた記憶
があり、研究者に対しての日本での待遇に疑問を抱いたものです。私は理論物理学の研究室に所属して居ましたが、卒業後も研究を続けて研究者として身を立てている仲間は今では数えるほどしかいません。多くは私のように、民間の会社に所属して物理学とは全く関係のない業務に従事しています。

少子化という流れもありますが名誉職としての教授に対して日本社会の扱いは低いとも感じていました。狭き門である事に加えて扱いが低いのです。

それだから

南部 陽一郎がアメリカに帰化した気持ちは

少しは理解出来る気がするのです。

以上、間違い・ご意見は
以下アドレス迄お願いします。
適時、返信改定をします。

【スポンサーリンク】

nowkouji226@gmail.com

2020/09/10_初版投稿
2022/7/31_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

【2021年11月時点での対応英訳】

Yoichiro Nambu during the war

Yoichiro Nambu aspired to his research during World War II. However, the time is during the war. Judging that his brain could contribute to the manufacture of weapons, he was assigned to the Army’s Radar Lab. What kind of research did he do during the war? And what was your feeling? Before and after the war, he pursued research at the University of Tokyo. After the war, Yoichiro Nambu continued his research with Shinichiro Tomonaga’s group. And he thinks about the atoms that make up matter, and completes the theory of elementary particles that continues to this day.

Spontaneous symmetry with Yoichiro Nambu

Yoichiro Nambu’s novelty would be a rethinking of the vacuum concept. ・ “When a physical system with a specific symmetry considers various states with energy, it spontaneously settles into a more stable vacuum state.” Cooper pair production in BCS theory follows this idea. The electron pair generation is stable.

We will consider the overall action between elementary particles when using mesons, and develop a theory that is consistent with experimental facts regarding the formation of mesons. After repeating such research, Yoichiro Nambu won the Nobel Prize for “spontaneous symmetry breaking”. As for the construction of Yoichiro Nanbu’s story, considering the state in which the spontaneous magnetization state of the ferromagnet (the state in which the internal magnetic moments are aligned without an external magnetic field) loses magnetization as the temperature rises, the Lagradian is skillfully used. It is applied to particles. He has also been successful in quantum chromodynamics and string theory.

by the way,

Yoichiro Nanbu was the author of the textbook I used when I was a student. I remember he had American citizenship at that time
I was skeptical about the treatment of researchers in Japan. I belonged to the laboratory of theoretical physics, but now there are only a few colleagues who continue their research after graduation and become researchers. Many, like me, belong to a private company and engage in work that has nothing to do with physics.

Although there is a trend toward a declining birthrate, I also felt that the treatment of Japanese society was low for professors as honorary positions. In addition to being a narrow gate, it is not easy to handle.

that is why

I feel that I can understand the feeling that Yoichiro Nambu was naturalized in the United States.

に投稿 コメントを残す

竹内均
【1920年7月2日生まれ-7/30改訂】

東大

こんにちはコウジです。「竹内均」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1920年7月2日生まれ ~ 2004年4月20日没】


【スポンサーリンク】

 竹内均のメガネ

私の中での竹内均さんのイメージは

特徴的な眼鏡かけたTVコメンテーターです。

実際、文筆活動中もあんな感じだったそうです。沢山本を出していますが、作業はテープレコーダへの録音一辺倒です。文章に起こす秘書さんが居て一緒に作業します。独特の書き方ですね。

それでもお人柄から悪い印象は持ちません。人から好かれる性格ですね。竹内均は自分に厳しくて子供に優しい人だったと言われています。独特の喋り口調が印象的で通り易い声で聴きやすいリズムで人に語りかけていました。子供向けの伝記を沢山、監修してい居て「キューリー夫人伝」とか「エジソン伝」とかの表紙に小さく竹内均の名前が入っていたりしました。そんな啓蒙活動を考え続けて初代NEWTON編集長として日本でも一般向け教育書を作っていきます。

 民衆と竹内均

物理学の理解には個人の勉強も必要ですが、学問の性質上、万物を人がどう考えるか(モデル化していき理解するか)という論点が欠かせません。個人が理解するという考え方と同時に日本人が、そして人類が理解していくというプロセスが欠かせません。大衆にも理解出来る物理モデルが作れた時に理論は出来上がるのです。ギブスの文章を書くときに協調しましたが「数学者と物理学者の視点は異なる」のです。数学は論理として完結しているモデルであれば現実と対応が付かないでも問題がないです。そんなものです。物理学は絶えず現実と対応する理論を作らないと意味がありません。竹内均はそういった民衆との対話をとても大事にしていました。

 竹内均と地球物理学

竹内均の業績を考えていくと寺田寅彦の系譜です。具体的には直接の講義・指導を受けていない孫弟子にあたります。地球物理学に関心を持って、特にプレートテクトニクス理論をを広く広めています。実際に地面が少しずつ動いていく様子を伝える際に物理学者として地球の内部構造や境界面での様子を伝えたのです。深い知見を持って伝えたのです。

そして何より、

竹内均さんの独特の「優しい言葉」で伝えたのです。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2021/07/04_初版投稿
2022/07/30_原稿改定

舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Hitoshi Takeuchi’s glasses

The image of Hitoshi Takeuchi in me is

It is a commentator with characteristic glasses.

In fact, he was like that during his writing activities.

I have published a lot of books, but the work is a tape recorder

It’s all about recording to. There is a secretary who wakes up in the text

Work together It’s a unique way of writing.

 

Still, I don’t have a bad impression from my personality. It’s a personality that people like. Hitoshi Takeuchi is said to have been a strict and child-friendly person. His unique speaking tone was impressive, and he spoke to people with an easy-to-listen voice and an easy-to-listen rhythm. I supervised a lot of biographies for children, and there was a small name of Hitoshi Takeuchi on the cover of “Mrs. Curie’s biography” and “Edison’s biography”. Continuing to think about such enlightenment activities, as the first editor-in-chief of NEWTON, I will make educational books for the general public in Japan as well.

People and Hitoshi Takeuchi

Understanding physics requires individual study, but due to the nature of scholarship, the issue of how people think of everything (modeling and understanding) is indispensable. At the same time as the idea of ​​individual understanding, the process of understanding by the Japanese and humankind is indispensable. The theory is completed when a physical model that can be understood by the general public is created. I collaborated when writing Gibbs’ writing, but “the perspectives of mathematicians and physicists are different.” If mathematics is a model that is complete as logic, there is no problem even if it does not correspond to reality. That’s it. Physics is meaningless without constantly creating a theory that corresponds to reality. Hitoshi Takeuchi cherished such dialogue with the people.

Hitoshi Takeuchi and Geophysics

Considering Hitoshi Takeuchi’s achievements, it is the genealogy of Torahiko Terada. Specifically, he is his grandchild who has not received direct lectures or guidance. He has an interest in geophysics and is particularly widespread in plate tectonics theory. As a physicist, he told us about the internal structure and boundaries of the Earth when he actually told us how the ground was moving little by little. He conveyed it with deep knowledge. And above all, I conveyed it with Hitoshi Takeuchi’s unique “gentle words.”

に投稿 コメントを残す

久保 亮五
【1920年2月15日生まれ-7/29改訂】

東大

こんにちはコウジです。「久保亮五」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1920年2月15日生まれ ~ 1995年3月31没】


【スポンサーリンク】

物理学者久保亮五

久保亮五と同名(漢字違い)の別人が居ますが、以下記載は物理学者に関する文章で、ここでの久保亮五は統計力学で私が使った教科書の著者です。私の指導教官は久保先生の講義を受けていたそうです。そんな時代の物理学者についての記載です。

久保亮五は学者肌の家で育ち、お父様の仕事で子供時代には台湾で生活しています。高校まで台湾で過ごし、帰国後に旧制高校へ入学、東大へ入学、その後に助手、助教授、教授をつとめました。

久保亮五の業績 

久保亮五の仕事で何より特筆すべきは物性論での成果です。ゴムの弾性に関する研究と、線形応答理論を使ったフーリエ変換NMRへの応用研究があげられます。

久保亮五の考えたNMRの概説を一般の人向けに記してみたいと思います。先ずフーリエ変換理論は端的には「時系列の波形を周波数を基準に考えた波形に変換して解析する技術」です。そうした「数学的に確立されているフーリエ変換」を理論的基礎として電子回路で応用しています。離散化された電気信号に対して回路上で実質的にマトリクス変換を加えます。

久保亮五とNMR 

診察で実際にNMRを使った経験のある人はNMRの中で測定を受けている時を思い出してみてください。頭の中を調べる時などに、強磁場を人間の頭部に二次元的に与えます。その時に大きな音がしますが、音がしている時に「時系列でインパルス的な情報」を機械的に処理して「周波数応答に関する情報」を得ます。

作業として、吸収スペクトルを測定することで各スピンの情報を集め、そこから最終的には断面の画像を処理します。最終的な写真で見える画像は、これらの処理の結果です。

そして今、久保亮五はこの世に居ませんが、その仕事を応用したNMRは世界中の病院で患者達の情報を集めています。きっと今、この瞬間も医療行為の中でNMRの機械が動いています。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/11_初稿投稿
2022/07/29_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介へ
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介へ
熱統計関連のご紹介へ

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Physicist Ryogo Kubo

There is another person with the same name (different Chinese characters) as Ryogo Kubo, but the following is a sentence about a physicist, and Ryogo Kubo here is the author of the textbook I used in statistical mechanics. My supervisor took a lecture. This is a description of physicists of that era. Ryogo Kubo grew up in a scholarly-skinned house and lived in Taiwan as his childhood for his father’s work. He spent his time in Taiwan until high school, and after returning to Japan he entered a high school, the University of Tokyo, and then an assistant, associate professor, and professor.

Achievements of Ryogo Kubo

The most notable thing about Ryogo Kubo’s work is the result of condensed matter theory. His research on the elasticity of rubber and his applied research to Fourier transform NMR using linear response theory can be mentioned. I would like to write an overview of NMR that Ryogo Kubo thought about for the general public. First of all, the Fourier transform theory is simply “a technology that converts a time-series waveform into a waveform that is considered based on frequency and analyzes it.” Such “mathematical established Fourier transform” is applied in electronic circuits as a theoretical basis. Substantially matrix transformation is applied on the circuit to the discretized electrical signal.

Ryogo Kubo and NMR

If you have actually used NMR in a medical examination, remember when you were taking measurements in it. A strong magnetic field is applied to the human head two-dimensionally when examining the inside of the head. There is a loud noise at that time, but the impulse-like information is mechanically processed in that time series to obtain information on the frequency response. As a result, the information of each spin is collected by measuring the absorption spectrum, and finally the image of the cross section is processed from there. The image you see in the final photo is the result of these processes.

And now, Ryogo Kubo is not in the world, but NMR, which applies his work, collects information on patients at hospitals around the world. I’m sure I’m collecting this moment as well.

に投稿 コメントを残す

アイザック・アシモフ
【1920年1月2日生まれ-7/28改訂】

シカゴの画像

こんにちはコウジです。「アシモフ」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1920年1月2日 ~ 1992年4月6日】


【スポンサーリンク】

アシモフの人物像

今回、少し物理から離れます。アシモフは

「ロボット3原則」で有名なSF作家です。

実際のアシモフの研究分野としては生化学なのですが、作家としての顔の方が有名ですね。また調べてみるとアシモフはロシア生まれでした。リニアモーターカーが走る今日の世界を見せてあげたいと、個人的には考えてしまいます。また、もはやロボットも日常的ですよね。そんな未来をアシモフは20世紀の初めにに予見していました。

20世紀の知見で機械化が進む未来を描き、進んだらどうなるだろうと考えますが、好ましい方向性を指摘して大衆に問いかける。つまり、科学の夢を投げかけていたのです。

アシモフの作家デビュー

アシモフは1938年に初めてのSF作品を雑誌に持ちかけて認められ、1939年から作家デビューしています。才能を認めるアメリカっぽいですね。この年にコロンビア大学を卒業して大学院に進みます。

所謂、ロボット三原則などを提唱していますが、時代は第二次大戦に向かう時代でアシモフは学校を休学したりしています。

科学が知識を集めるスピードの速さにアシモフは驚愕していて、社会が叡智を集結する事を求めていました。相変わらず分断している世界をどう見るのでしょうか。

意外な結末

そして、意外な最後なのですが、アシモフは

1992年にHIV感染が元でこの世を去ってます。

心臓バイパス手術の時に使用された輸血血液が感染源のようです。本当に色々と経験してきた人生だったと思います。

【スポンサーリンク】

以上、間違い・ご意見は
次のアドレスまでお願いします。
最近は返信出来ていませんが
全てのメールを読んでいます。
適時返信のうえ改定を致しします。

nowkouji226@gmail.com

2020/08/24_初回投稿
2022/07/28_改定投稿

舞台別のご紹介へ
時代別(順)のご紹介

アメリカ関連のご紹介へ

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

Asimov’s portrait

This time, I’m a little away from physics. Asimov is a science fiction writer famous for “Three Laws of Robotics”. Biochemistry is the actual research field of Asimov, but his face as a writer is more famous. When I looked it up, Asimov was born in Russia. He personally wants to show us the world of today’s maglev trains. Also, robots are no longer commonplace. Asimov foresaw such a future in the 20th century. He envisions a future of mechanization with his knowledge of the 20th century, and wonders what will happen if it progresses, but he points out a favorable direction and asks the public. In short, he was throwing a dream of science.

Asimov’s writer debut

Asimov was recognized for his first science fiction work in a magazine in 1938, and has made his debut as a writer since 1939. He’s like America, who recognizes his talent. He graduated from Columbia University this year and went on to graduate school.

He advocates the so-called Three Laws of Robotics, but Asimov is taking a leave of absence from school in the era of World War II. Asimov was amazed at the speed at which science gathered knowledge, and he wanted society to gather wisdom. How does he see the world that is still divided?

Unexpected ending

And, surprisingly, Asimov died in 1992 due to HIV infection. He seems to be infected with the transfused blood used during heart bypass surgery. I think he really had a lot of experience in his life.

に投稿 コメントを残す

R・P・ファインマン
【1918年5月11日-7/27改訂】

プリンストン大学キャンパス内

こんにちはコウジです。「ファインマン」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1918年5月11日 ~1988年2月15日】


【スポンサーリンク】

アメリカのファインマン

有名な教科書の著者で、私が学生時代からその著書は日本で使われていました。世界中でその教科書は使われています。またファインマンは量子電磁気学の業績で朝永 振一郎と共にノーベルを受賞しています。。

具体的に、ファインマンの名を聞いて真っ先に思い出す業績は経路積分です。数学的な定式化が驚異的なのです。
【参考_Wikipedeiaの記載:経路積分

その発想はとてもユニークだとも言えます。

経路積分の考え方

二つの経路を初めに考えて、其々からの寄与を考えていく時に拡張が出来て二つ、三つ、四つ、、、無限大の経路。と経路を無限大に広げていくのです。もう少し具体的にファインマンの考えを紹介しますと、ダブルスリットの実験を拡張した場合に何も無い空間を考える事になっていくという考え方なのです。この経路に関するファインマンの考え方には数学的な難点も指摘されているようですが物理の世界では非常に面白い考えであり、考え進めていきたい視点です。また、素粒子の反応を模式化したファインマンダイアグラムは視覚的に、直感的に秀逸です。本当に天才の技に見えました。

業績の話が先行しましたが、最後に生い立ち,人つながりの話を致します。ファインマンはユダヤ人故に苦労を強いられています。ユダヤ人枠で大学に入れなかったりした時代もありましたがMITやプリンストン大学で研究を進めます。電気力学の量子論についてのゼミをプリンストン大学で行うことになった時には、ゼミの話を聞きつけてユージン・ウィグナー、ヘンリー・ノリス・ラッセル、フォン・ノイマンE・パウリアインシュタインが参加していたそうです。そして、ファインマンはアインシュタインと共に原爆開発の計画であるマンハッタン計画に参画しています。その中で、率直に意見を述べたメモが
没後の2018年にサザビースで落札されています。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては適時、
返信・改定をします。

nowkouji226@gmail.com

2020/09/01_初版投稿
2022/07/17_改定投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

American Feynman

He is the author of a well-known textbook, and his book has been available in Japan since I was a student. The textbook is used all over the world. He has won the Nobel Prize with Shinichiro Tomonaga for his achievements in quantum electrodynamics. .. Specifically, the first achievement that comes to mind when I hear Feynman’s name is path integral.

The mathematical formulation is amazing.
[Reference_Wikipedeia description: Path integral]

Concept of path integral

Two, three, four, … infinite routes that can be expanded when considering the two routes first and then the contributions from each. And expand the route to infinity. To introduce Feynman’s idea a little more concretely, the idea is that if we expand the double-slit experiment, we will think of an empty space. It seems that Feynman’s way of thinking about this path has some mathematical difficulties, but it is a very interesting idea in the world of physics, and I would like to continue thinking about it. In addition, the Feynman diagram, which models the reaction of elementary particles, is visually and intuitively excellent. It really looked like a genius.

I talked about achievements first, but at the end I will talk about how I grew up and how people connect. Feynman is struggling because he is Jewish. There was a time when he couldn’t enter university because of the Jewish quota, but he pursued research at MIT and Princeton University. When it was decided to hold a seminar on quantum theory of electromechanics at Princeton University, Eugene Wigner, Henry Norris Russell, von Neumann, E. Pauli, and Einstein were attending the seminar. is. Feynman and Einstein are participating in the Manhattan Project, a plan to develop the atomic bomb.
Among them, a memo that frankly expressed his opinion
It was sold at Sotheby’s in 2018 after his death.

に投稿 コメントを残す

D・J・ボーム
_【1917年12月20日 – 7/26改訂】

BERKELEY, CA -

こんにちはコウジです。「ボーム」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1917年12月20日 ~ 1992年10月27日】


【スポンサーリンク】

 ペンシルバニアに生まれたボーム

細かく記載すると、その名は、

デヴィッド・ジョーゼフ・ボーム_

David Joseph Bohm、ヘブライ語表記

ではדייוויד ג’וֹזף בוֹהם, דוד יוֹסף בוֹהם。

偶然でしょうがボームはロシア革命の年に生まれてます。そんな時代背景もボームの人生に影響を残しているのではないでしょうか。ハンガリー系‎‎ユダヤ人の父とリトアニア系ユダヤ人の母の間にペンシルベニア州で生まれ、UCB(カリフォルニア州立大学バークレー校)オッペンハイマーの教えを受けます。

そんな時期に学生時代に当時の知人の影響で思想的に影響を受け、異なった社会モデルを持つ急進的な主義の考えをボームは抱きます。後にはその為にFBIにマークされたりします。

 

 マンハッタン計画とボーム

第2次世界対戦の時にはボームは師であるオッペンハイマーに従いマンハッタン計画に参加します。その計画は陽子と重陽子の衝突研究を進め、濃縮ウランを作り原爆を製造する計画で実行に移されました。

戦後、ボームはプリンストン大学でアインシュタインと共に働いていましたが、いわゆるマッカーシズム(政治的な圧力)にあい、プリンストン大学を追われます。社会主義者としての過去の活動を当局に問題視されたのです。アインシュタインボームに彼の助手として大学に残る事を勧めました。

ところが、その願いは叶わずにボームはブラジルのサンパウロ大学に移りました。研究者としてボームは幾多の成果を残しています。先ず量子力学の解釈の面でボーム解釈。EPRパラドックスの提唱。そして、電磁気学でのAB効果です。それぞれ問題の本質をとらえようと考え続けていたように思えます。

こうした業績で、その分野の考えに
今でも残る影響を与えています。

【スポンサーリンク】

間違い・ご意見は
以下のアドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/31_初稿投稿
2022/07/26_改定投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
アメリカ関係のご紹介
電磁気関係
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

Baume born in Pennsylvania

To be precise, its name is David Joseph Bohm, in Hebrew notation דייוויד ג’וֹזף בוֹהם, דוד יוֹסף בוֹהם.

Coincidentally, Baume was born in the year of the Russian Revolution. I think that such a historical background has also influenced Baume’s life. Born in Pennsylvania to a Hungarian Jewish father and a Lithuanian Jewish mother, he is taught by Oppenheimer at the UCB (University of California, Berkeley). At that time, Baume embraced the idea of ​​radicalism, which was ideologically influenced by his acquaintances at the time when he was a student and had a different social model. He was later marked by the FBI for that.

Manhattan Project and Baume

During World War II, Baume follows his teacher Oppenheimer to participate in the Manhattan Project. The plan was put into practice with a plan to produce enriched uranium and produce an atomic bomb by proceeding with research on the collision of protons and deuterium. After the war, Baume worked with Einstein at Princeton University, but was ousted from Princeton University due to so-called McCarthyism. His past activities as a socialist were questioned by the authorities. Einstein advised Baume to stay in college as his assistant. However, that wish did not come true and Baume moved to the University of Sao Paulo in Brazil.

As a researcher, Baume has made many achievements. He first interprets Baume in terms of the interpretation of quantum mechanics. Proposal of the EPR paradox. And the AB effect in electromagnetism. It seems that each of them kept trying to capture the essence of the problem. These achievements still have an impact on his thinking in the field.

 

に投稿 コメントを残す

矢野 健太郎
【1912年3月1日生まれー7/25改訂】

東大

こんにちはコウジです。「矢野健太郎」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1912年3月1日生まれ ~ 1993年12月25日没】


【スポンサーリンク】

矢野健太郎の多彩な活躍

矢野健太郎は私が使っていた数学の教科書の著者でした。同名の方で漫画家の「矢野健太郎」とサッカー選手の「矢野健太郎」が居ますが、本稿は数学者の矢野健太郎に関する原稿です。

因みに、名前の「矢野」に関するエピソードとして有名なものがあります。外人との雑談をする中で「矢野」って英語でいえばどんな表現?と聞かれた際に矢野さんは当意即妙で矢野さんは次のように答えました。

「矢」=「Vector」、「野(野原)」=「Field」。

だから「矢野」って「ベクトル場」ですね。

そう答えたそうです。当然、外人は大喜び。

専門は幾何学関係か解析学関係だったかと。

彫刻家の子として生まれ東京帝大で学びます。

矢野健太郎とパリ大学

矢野健太郎の小学生時代にアインシュタインが来日し健太郎は刺激を受けました。また、帝大の山内恭彦先生から物理学の理解には代数幾何学が必要だと教えを受けました。物理現象のモデル化の有用性を感じた筈です。その後、矢野はカルタン先生の下で学ぶべくパリ大学留学します。パリ大学で纏めた博士論文は射影接続空間に関する論文でした。この頃から統一場理論にも関心を持ちます。

 矢野健太郎とアインシュタイン

戦後にはプリンストン高等研究所で微分幾何学の研究をしていき、同時期に在席していたアインシュタイン交流を持ちます。奥様と一緒にアインシュタイン写った写真は大事にしていて、家宝としたそうです。

 

その他、矢野健太郎の著者は多岐に渡り、

受験参考書の定番だった(今でも定番)

解法のテクニック」は矢野健太郎の著作です。

また、アイザックアシモフポアンカレアインシュタイン書物を日本に紹介する際に監修をしたりしました。私や皆さんが知った情報も矢野健太郎の仕事かも知れませんね。そんな、

矢野健太郎はバイオリンが好きな静かな人でした。

安らかな印象を持ち続けたいと思います。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
この頃は全て返信できていませんが
頂いたメールは全て見ています。
適時、返信・改定をします。

nowkouji226@gmail.com

2020/11/12_初稿投稿
2022/07/25‗改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
東大関連のご紹介
力学関係のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

Various activities of Kentaro Yano

Kentaro Yano was the author of the textbook I was using. There is a manga artist “Kentaro Yano” and a soccer player “Kentaro Yano” who have the same name, but this article is about the mathematician Kentaro Yano. By the way, there is a famous episode about the name “Yano”. What kind of expression is “Yano” in English while chatting with foreigners? When asked, Mr. Yano was selfish
“Arrow” = “Vector”, “Field (field)” = “Field”, so “Yano” is a “vector field”. I heard that he answered. Naturally, foreigners are overjoyed. Was my specialty related to geometry or analysis? He was born as a child of a sculptor and studied at the University of Tokyo.

Kentaro Yano and the University of Paris

Kentaro Yano was inspired by Einstein’s visit to Japan when he was in elementary school. Also, Professor Yasuhiko Yamanouchi of Imperial University taught me that algebraic geometry is necessary to understand physics. It seems that he found the usefulness of modeling physical phenomena. After that, Yano will study abroad at the University of Paris to study under Professor Cartan. His dissertation he compiled was a dissertation on the projective connection space. From this time on, he was also interested in unified field theory.

Kentaro Yano and Einstein

After the war, he studied differential geometry at the Princeton Institute for Advanced Study and interacted with Einstein, who was present at the same time. He cherished the photo of Einstein with his wife and made it a heirloom.

Kentaro Yano has a wide variety of authors, and Kentaro Yano’s “Solution Technique”, which was a staple of examination reference books. He also supervised the introduction of Isaac Asimov, Poincaré and Einstein’s books to Japan. The information that I and everyone knew may be Kentaro Yano’s work. Kentaro Yano was a quiet person who liked the violin. He wants to keep a peaceful impression.

に投稿 コメントを残す

武谷三男 
【1911年10月2日生まれ – 7/14改訂】

こんにちはコウジです。「武谷三男」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1911年10月2日生まれ – 2000年4月22日没】

【スポンサーリンク】

武谷三男の研究基盤

武谷三男は京大理学部で理論物理学の基礎を修めました。

武谷三男の主な関心は原子核の振る舞いや素粒子論です。

湯川秀樹や坂田昌一と共同で研究を進めていった時代の人です。
反ファシズムの立場だった武谷は原子核関連の開発と発展についての発言で政治的ともいえる言葉を残しています。原爆や水爆の開発に対しての是非に関して発言しています。

また会津に亡命していたロシア人の奥様との縁にも興味を覚えます。まさかあの人と、とかいった話が出てきそうです。いずれにしても武谷は未だ曖昧だった原子核に対して形を与えていった時代の人なのです。一つ一つ現象を見ていき、定式化していったのです。何より武谷は方法論を確立したのです。

武谷の三段階理論

ここで、方法論として三段階理論と呼ばれた論法を用いて武谷は論拠としていましたのでご紹介します。(以下ウィキペディアから引用)

①現象論的段階
量子力学の範疇に入る現象で
「測定にかかるもの」を
そのまま記述する
(第一)段階

②実体論的段階
上記現象の方程式を作る前に、
現象論的段階に出てこない実体
(模型、粒子など)を知る
(場合によっては新たに導入する)
(第二)段階

③本質論的段階
現象論的段階で記述される現象を、
実体論的段階で導入した実体も含めて、
方程式など主として
数学的手法で記述する
(第三)段階
【引用ここまで】

この武谷の理論は測定方法の面から考えたときに、

「観測問題の制限」を意識した理論だと言えるでしょう。

その時代から数十年遡って思い返せば、量子力学創設の時代以前にはすべての段階が意識化されていなかったのです。また、米国のビキニ環礁での水爆実験に際し、問題点を掘り下げて定量的な指標を考察して放射線の許容量(がまん量とも表現しました)を議論していきました。

具体的に「急性の放射線障害」と「長期的に蓄積される効果」を明確に区別して議論すべきだと主張していきました。当時、立教大学の教授であった武谷は、放射線防護の概念を考え直し、「自然科学的な対象の概念」に留まらず、放射線利用の「利益・便益とそれに伴う被曝の有害さ・リスクともいえる社会的概念」として考え直した功績も指摘されています。

〆最後に〆

【スポンサーリンク】
以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2022/01/01_初回投稿
2022/07/24_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
力学関係のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

【2022年1月時点での対応英訳】

 Base of Taketani

Taketani Mitsuo studied the basics of theoretical physics

at the Faculty of Science, Kyoto University.

His main interests are nuclear behavior and particle physics.

He is in collaboration with Hideki Yukawa and Shoichi Sakata

He is a man of the era when he was advancing research.
T
aketani, who was in an anti-fascist position

Remarks on nuclear-related development and development

He leaves behind words that can be called political.

He is about the pros and cons of atomic and hydrogen bombs.

Also, a Russian wife who was in exile in Aizu

I am also interested in the relationship with. No way, with that person

There seems to be a story like that.

In any case, Takeya was still ambiguous

He was a man of the era that gave shape to the atomic nucleus.

He looked at the phenomena one by one and formulated them.

Above all, Takeya established a methodology.

Three step of Taketani

Here, as a methodology, a three-step theory

Because Takeya used the reasoning called

I will introduce you. (Quoted from Wikipedia below)

① Phenomenon stage
A phenomenon that falls into the category of quantum mechanics
“What is measured”
Describe as it is
(the first stage

② Realistic stage
Before making the equation of the above phenomenon
Entities that do not appear in the phenomenological stage
Know (models, particles, etc.)
(In some cases, newly introduced)
(Second) stage

③ Essentialist stage
Phenomena described at the phenomenological stage,
Including the substance introduced at the realist stage,
Mainly equations etc.
Describe with mathematical methods
(Third) stage
[Quote so far]

This Takeya’s theory is based on the measurement method.

It can be said that the theory is conscious of the limitation of the observation problem.

Looking back decades from that era,

All stages before the era of quantum mechanics

Was not conscious.

Also, during a hydrogen bomb test at Bikini Atoll in the United States,

Dig into the problem and consider quantitative indicators

Radiation allowance (also referred to as the amount of radiation)

I continued to discuss.

Specifically, “acute radiation injury”

A clear distinction between “long-term accumulated effects”

I insisted that it should be discussed.

Takeya, who was a professor at Rikkyo University at that time,

Rethinking the concept of radiation protection,

Beyond the “concept of natural science objects”

“Benefits / benefits of radiation use and the harmful effects of radiation exposure /

As a “social concept that can be called a risk”

His rethinking achievements have also been pointed out.

に投稿 コメントを残す

坂田 昌一
【1911年1月18日生まれ-7/23改訂】

こんにちはコウジです。「坂田昌一」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1911年1月18日生まれ ~ 1970年10月16日没】

【↑_Credit:Wikipedia】


【スポンサーリンク】

坂田晶一の生きた時代 

坂田昌一は素粒子を研究した物理学者です。

湯川秀樹朝永一郎らと同じ時代を生き、議論を交わし、物理学会を切り開きました。京都帝国大学を卒業していて名古屋帝国大学で教えています。

また意外なご縁なのですが、坂田昌一の奥様の信子さんはSF作家・星新一の従兄弟になのです。

坂田モデルの坂田博士 

坂田昌一の理論物理学での業績は「電磁場の量子化」に関するものがあげられます。質点の議論が進んで、相互作用の過程を議論していったのです。当時は場を量子化する時に電子の質量が発散する事が問題でした。その問題に対して坂田昌一は中間子の概念を使って問題解決に挑みます。

最終的に、この量子電磁力学での問題は朝永振一郎がくりこみ理論使い説明し解決します。また坂田昌一は湯川秀樹の中間子に関する論文で協同執筆者を務めています。

また坂田昌一の業績としては、陽子・中性子・ラムダ粒子を基本粒子と考え、その構成に対する「坂田モデル」を提唱した点が、特筆すべきでしょう。その坂田モデルは大貫 義郎益川敏英、小林誠ら次の理論的な土台となり議論が進んだのです。それぞれ次世代の議論へと繋がった、確かな成果です。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/12_初稿投稿
2022/07/23_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
日本関連のご紹介
京大関連のご紹介
力学関係のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年11月時点での対応英訳)

The time when Dr. Sakata lived

Shoichi Sakata is a physicist who studied elementary particles. He lived in the same era as Hideki Yukawa and Ichiro Tomonaga, exchanged discussions, and opened the Physical Society of Japan. He is a graduate of Kyoto Imperial University and teaches at Nagoya Imperial University. In addition, Shoichi Sakata’s wife, Nobuko, is a cousin of science fiction writer Shinichi Hoshi.

Dr. Sakata of Sakata model

Shoichi Sakata’s achievements in theoretical physics are related to the quantization of electromagnetic fields. At that time, the problem was that the mass of the electron diverged when the field was quantized. Shoichi Sakata tries to solve the problem by using the concept of mesons. Finally, this problem in quantum electrodynamics will be explained by Shinichiro Tomonaga using renormalization theory. Shoichi Sakata is also a co-author of a paper on Hideki Yukawa’s mesons.

It should be noted that Shoichi Sakata’s achievements are that he considered protons, neutrons, and lambda particles as elementary particles, and proposed a “Sakata model” for their composition. The Sakata model became the next theoretical foundation for Yoshiro Onuki, Toshihide Maskawa, and Makoto Kobayashi, and discussions proceeded. These are solid results that have led to discussions for the next generation.

に投稿 コメントを残す

ネイサン・ローゼン
【1909年3月22日 – 7/22改訂】

シカゴの画像

こんにちはコウジです。「ネイサンローゼン」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と7/3の時点で‗
①SyvEgTqxNDfLBX‗3385⇒3575‗②ev2Fz71Tr4x7b1k‗2717⇒3131
‗③BLLpQ8kta98RLO9‗2543⇒5477‗④KazenoKouji‗3422⇒6564
なので合計‗6102+5965=【12067@2/9】⇒6706+12041【19747@7/3】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1909年3月22日 – 1995年12月18日】

【Nathan Rosen, 1909年3月22日 – 1995年12月18日】


【スポンサーリンク】

 

ユダヤ人物理学者ローゼン

その名前は Nathan Rosen。
ローゼンはイスラエル建国後はイスラエルでも活動しました。
ニューヨーク出身のユダヤ人物理学者。MITで学んでいます。

ローゼンはいわゆるワーム・ホールの発案者でもあり、
EPRパラドックスを考えた三人のひとりです。
量子的ふるまいの局所性を相対論的に完全に
説明できない(矛盾するだろう)という指摘であって、
量子力学的なモデルと相対論的モデルでの記述が
同時に記述できないのです。
量子的なもつれ(エンタングルメント)の
記載に修正の必要があるのか、
相対論での記述に修正が出来るのか、
突き詰めていく手掛かりになります。

EPRパラドックスにおいてはもつれ(エンタングルメント)の状態が議論され、「EPRの 前提の下では量子力学の確率的予測 を再現で きない場合がある」と考えると良いです。ベルの不等式が成り立ち、量子テレポーテーションが議論される昨今、基礎理論の解釈は完全になされているか色々な側面で説明がなされています。

量子論も相対論も其々で様々な説明(効果)を
可能にしているのですが、完全に全てを
記述できると言えないのでしょうか。
この記載をするとどうしても
歯切れの悪い文章になってしまいます。
「局所的実在論」という言葉がありますが、
物理量の把握には究極の難しさがあります。私もこの場でうまく説明が出来ているとは思えません。ただ、物理の記載であることは確かで、
発展していく可能性を含めた議論ではあります。



【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返事できていませんが
問題点に対しては適時、返信・改定をします。

nowkouji226@gmail.com

2022/01/04_初稿投稿
2022/07/12_改定投稿

旧サイトでのご紹介
舞台別のご紹介

時代別(順)のご紹介
アメリカ関連のご紹介

電磁気関係
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2022年1月時点での対応英訳)

Jewish physicist Rosen

Its name is Nathan Rosen.
Rosen was also active in Israel after the founding of Israel.
He is a Jewish physicist from New York. He had studyied at MIT.

Rosen was also the inventor of the so-called wormhole,
He is one of the three in the EPR paradox.
Relativistically complete locality of quantum behavior
It was pointed out that it could not be explained (it would be inconsistent),
The description in the quantum mechanical model and the relativistic model
It cannot be described at the same time.
Quantum entanglement
Is it necessary to correct the description?
Is it possible to correct the description in relativity?
It will be a clue to the end.

Various explanations (effects) for both quantum theory and relativity
It’s possible, but it’s completely everything
Can’t you say that you can describe it?
If you make this description,
The text will be crisp.
There is a word “local realism”,
Understanding the physical quantity is the ultimate difficulty.
However, it is certain that it is a description of physics,
It is a discussion that includes the possibility of development.