2025年6月30日2025年6月21日に投稿 投稿者 元)新人監督 — コメントを残す【「老人の呟き」からの転載_6月末】・量子力学【2005-06-17】・武谷光男【2005-07-10】・三段階論とQCD 【2005-08-13】・武谷三男の本 【2005-10-16】・Glauberのノーベル賞受)賞 【2005-10-06】・DysonのThe scientist as rebel【2007-01-30 】・Heufieber(hay fever) 【2007-02-23 】・Grossのノーべル賞受賞講演 【2007-04-28 】・武谷三男の年譜作成への試み 【2007/4/25】・仕事とエネルギー 【2007/5/31】・慣性の法則 【2007/5/17】・熱力学の第1法則 【2007/5/2】量子力学2005-06-17 15:08:49 | 物理学(以下引用)田舎の大学だけれども、私は35年以上量子力学を教えてきた。数学もその量子力学を理解しようとした範囲内で勉強してきた。工学部で教えてきたのだが、他大学はわからないが、私の教えた大学ではあまり熱心な学生にはいくつかの例外を除いて出会わなかった。いま話題としているのは学部段階のレベルの初歩的な量子力学である。それより高等な話はほとんどない。でも、数学のいろいろな疑問が出てきたりして、体系としての数学ではなく、その数学の断片的な知識が必要とされた。そういう過程から、『数学散歩』(国土社)が出来上がってきました。今日は量子力学の講義でトンネルダイオードの話をしたのですが、その準備で少し半導体のことを木下是雄先生の『物質の世界』(培風館)で勉強してみました。あまり、半導体は勉強する機会がなかったことですが、結構面白いですね。これは木下さんの書き方がいいのだろう。もっとも、電気電子の学生でもここに書かれているようなことを知っているのかどうかは疑わしい。4回生くらいになると、多分もっと知っているのでしょうが、相手が2回生ですからどうもはじめてみたいな顔をして聞いている。もっとも、私自身が学校であまり半導体のことは習っていない。大学に勤めるようになって一夏かかって学生実験のテキストを書いたことがあり、そのときに少し勉強したがあまり日ごろ使わないので忘れてしまう。そこらあたりが専門家と専門でない者との違いでしょうか。量子力学といっても、偏った量子力学で、大学の理学部で学ぶ一般の量子力学とは言いがたい。でも、1時期うんざりしたことがあったが、その1時期を除いて、いつも新鮮な気持で授業に取り組んできた。学生からの評判はとても悪くて落ち込むことのほうが多かったが、それでもくじけずにやってこられたのは、ひとえに量子力学の奥深さと面白さによるものだろう。昨年の講義が最後と思っていたが、事情で今年だけ非常勤講師をしている。今年はあまり黒板で計算はせずに主な内容を説明するという方式をとっている。はたして評価はどうだろうか。楽しみである。(引用此処まで)武谷三男と三段階論2005-07-10 18:58:52 | 物理学(引用此処から)「武谷三男と三段階論」という題で徳島科学史研究会と科学史学会四国支部の合同年会で講演をすることになった。もっともまだ何を話すか決めてはいないが、おおよその話す内容は(1)自己紹介(2)武谷三男の紹介(3)三段階論の紹介の三つを予定している。全体で1時間だが、質疑応答に10分を使うと50分を講演に使うことになる。武谷三男の業績というと何だろうか。彼はまず第一に三段階論の提唱者である。自然の認識は現象論的段階、実体論的段階、本質論的段階という三つの段階を経て、認識されるということを提唱した。また、技術論では「技術とは客観的自然法則の意識的適用である」と定義して新しい技術論を開いた。これらは哲学とか科学史とか技術論の分野の業績である。物理学ではどんな業績をもっているだろうか。まず第一に核力研究の指導者としてのTNSといわれる核力を核子-核子の距離によって3つの領域に分けて領域ごとに異なった方法で研究するという方針を立てて、核力グループという研究者集団を組織した。それによってグループとして日本の核力研究をリードした。領域 I は1 pion交換領域でここでのポテンシャルを確立した。領域 II はもう少し内側の領域で実質的には共鳴状態としてのrhoとかomega中間子が核力に効いてくる領域である。領域 III は現象論的に研究されるべき領域とした。hard core その他のテーマがあった。核力の問題が現在最終的に解決したといえるのかどうかは私にはわからないが、現在ではQCDといわれる学問体系が出来上がっている。しかし、これは核子をクォークからできているとして、クォークの間の力をグルーオンというゲージ粒子が交換されるということから説明しようとしている。もっともQCDではクォークとクォークとの距離が近づけば近づくほど力が働かなくなり、遠ざかろうとすれば、大きな力が働くという性質のきわめていままでと変わった性質の力が働くと考えている(漸近的自由とクォークの閉じ込め)。このようなQCDが出来上がる前の段階を見てみると、(1) deep inelastic散乱ではBjorkenのスケーリング則があり(現象論的段階)(2) その後にFeynmanのparton modelが出てきて、quarkがpartonとして考えられた(実体論的段階)(3) それを受けてGross, Wilceck,Polizterの漸近的自由をみたす量子場の発見があった(本質論的段階)物理の話の筋としてはこのようになっているのだが、核力研究としての武谷の研究方法は成功を収めたと言えるのだろうか。これは私にはまだ分からない点である。核力はクォークとクォークとの間の力から導かれる2次的な力ということになった。核子がクォークの3体系となっているので、それらの足し上げとしての力となったために1次的なgluonによるクォークとクォーク間の力によって核子と核子間の力をeffectiveに導くということができるはずである。それをすることが意味のあることかどうかということが問題であろうか。(引用此処まで)三段階論とQCD2005-08-13 11:52:22 | 物理学(引用此処から)三段階論はもちろん武谷三男の三段階論である。QCDはQuantum Chromodynamics(量子色力学)である。この二つがどんな関係にあるといわれたら、全く関係がないよというのが専門家の考えであろう。でもいつのころからか私はQCDが形成される段階は武谷の三段階論にしたがっているのではないかという考えをもってきた。少なくとも誰かの書いたものからそんなことを思いついたのではないから、もしかして誰かが私と同じことを考えているということもありうる。話の筋はdeep inelastic散乱でBjorkenのスケーリング則が見出されたが(現象論的段階)、SLACのepのデータを見たFeynmanがそのデータからpartonモデルを考案した。それはスケーリングを説明しただけでなくハドロンは多くの点状粒子から成り立っているという新しいハドロンの猫像をつくった(実体論的段階)。そして、そのことからGross-WilczekやPolitzerのasymptotic freeな量子場の理論ができて、摂動論的QCDができあがった(本質論的段階)。もっともasymptotic freeな量子場理論ができあがるにはこんな単純な推論ではなく、もっと面倒な事実があったのだが、できあがった経過を細かな議論を抜きにして考えると上のような三段階論にしたがった推論になる。三段階論は科学史家の広重徹氏には不評であったと思う。広重氏の批判はあたっていたかもしれないが、広重氏が新たな彼自身の方法論を提示しなかったという点に不満が残っている。だから広重氏の武谷に対する批判はたとえ部分的にあたっていてもそれを乗り越える創造的な観点があるとは広重氏の本を読んでは感じられなかった。昔のことで本当にそうであったかはわからないが、一応私の見解をここに記録しておく。(引用此処まで)武谷三男の本2005-10-16 11:51:49 | 科学・技術(引用此処から)武谷三男の本を集めている。古い本が多いのだが、私の所有するものももう160冊に近い。ちょっとでも武谷の寄稿がある本なら何でも集めているが、私の調べたところでも190冊近くが出版されている。そのリストはすでに「素粒子論研究」に2度にわたって載せているが、まだまだありそうである。なかなか人間のやることは完全というわけには行かない。現物が手に入らないものは図書館で借り出しを受けてコピーをしている。武谷三男全集が編纂、発行されることがあれば、私のところへ相談に来なければうそというものであろう。しかし、ということは武谷に関する文献では本人とか国会図書館を除いて世界で一番集めていると思う。武谷は2000年に亡くなったので、遺族が彼の著書を完全に保管していれば、それにはもちろんかなう訳ではないが、どうだろう。遺族というのは存外面倒がったりしてぞんざいに扱っているかもしれない。これは遺族を非難しているわけではなく、普通にはそんなもんだと思うからである。因みに私の作成したリストは国会図書館で武谷三男で検索して得られるリスト数130点前後よりもはるかに多い。もっともこの資料がいつ役に立つかはたまた全く役に立たないのかはわからない。でもそんなことをやっている人間がいるということが大切なのではないか。どうも歳をとると変なことを自慢するようになるが、これが老化ということだろうか。(引用此処まで)Glauberのノーベル賞受賞2005-10-06 11:38:07 | 物理学(引用此処から)Glauberの光の理論はあまり勉強したことはないのだけれど、原子核物理学でのGlauber理論は少し学生時代に勉強したことがあった。その後、アイコナール近似と呼ばれたのがGlauberの理論だったと思う。一度勉強してそれから振り返ったことがないので、間違っているかもしれないが。Glauberは昔から個性ある物理学者として知られていたらしく、朝永振一郎がプリンストン高等研究所に滞在した頃、このGlauber理論が出たのだと思う。ということは1949年ころのことでしょうか。もう約65年も前のことになりますね。「素粒子論研究」の朝永さんからの海外便りにGlauberのことが出ていたと思う。もっともそれを読んだのは朝永の論文集でです。長生きすれば、ノーベール賞ももらえるチャンスが出てくるといういい例ですね。もっとも若いときにいい仕事をしておかなくてはならないのだけれど。(引用此処まで)DysonのThe scientist as rebel2007-01-30 10:17:20 | 物理学(引用此処から)The scientist as rebelという昨年末に出たDysonの著書を拾い読みした。Dysonは物理学者で数学者である。特に有名なのは量子電気力学のくり込みの理論でこれはその当時の量子電気力学の集大成とも言うべきものであった。天才Feynmanの理論をFeynmanよりも早く紹介したので、これによってようやくFeynmanの独創的な理論が一般に理解されるようになったといわれる。朝永、Schwinger、Feynmanの3人は1965年にノーベル賞を受賞したのが、Dysonを受賞者に入れなかったことによってノーベル賞の選考委員会はミスをしたのではないかとC.N.Yangはいっている。これはノーベル賞は3人以内という規定に従ったためと思われるが、それにこだわる必要はなかったのではないかというのがYangの言い分らしい。Dysonは発散型の学者で宇宙の研究や物性論や原子炉の研究とかもやっている。もともとイギリス人であったが、その後アメリカの市民権を得た。彼の新しい著書は主に書評であるが、OppenheimerとかWienerとかのことも書いてあって週刊誌的興味からはとても面白い。Oppenheimerは優れた学者でもあったが、世間的には原爆製造を指導した人として知られている。彼の業績では今ではブラックホールの研究が際立っているのだが、彼は少しもブラックホールが存在するかどうかに関心がなかったように思えたという。これはどうしてかとDysonは考えているが、このブラックホールの研究は有名なBohrとWheelerの核分裂の理論と同じphysical reviewの号に出ていたので、そちらの方が主に関心を引いたためではないかとDysonは推測している。前出のYangによれば、Oppenheimerがもう少し長生きしていれば、ノーベル賞を受賞できたのではないかという。Openheimerが原爆製造に係わった点についてはいくつかの彼の評伝では優れた学者ではあったが、独創性が足らなかったということを自分で自覚したためではないかとの推測がなされており、それはわたしも十分ありうることだと以前に書いたこともあるが、その辺の評価は間違っていたのかもしれない。Wienerの方は新しく3つ目の彼の伝記が出た機会に書いた書評のようだが、Wienerの妻のことが大きな焦点の一つになっている。これは二人の娘との関係でもあるし、Wienerが共同研究者との交際を絶つという影響もあった。その点に新しい焦点があたっており、天才も妻の精神的な異常性に振り回されたらしい。私のように英文を読むのが下手なものでもDysonの文章は構文的には難しくないと思う。単語は知らないのが多く, 辞書を引き引きではあったが、久しぶりに睡眠不足になるこのごろであった。(引用此処まで)Heufieber(hay fever)2007-02-23 11:05:28 | 健康・病気(引用此処から)Heufieber (Germ.) (hay fever Eng.) といえば、Heisenbergが若いときにこのHeufieber がひどかったというのは有名である。彼が量子力学への端緒を開いたのは1925年5月であったが、その直前にとてもひどいHeufieberにかかり、先生のBornに申し出て休暇をとり、療養のため草木がなく岩でごつごつした北海の孤島Helgolandへ出かけた (Helgolandはいつかテレビで見たのでは海岸の岩壁が赤い色をした島だった)。そこで、Heisenbergは奇妙な代数(それは数学で知られたマトリックスであることをBornが後で発見した)を考え出し、そしてそのときに量子力学のモデルとして用いた非調和振動子のエネルギーが保存することをちゃんと証明できた。それでHeisenbergは真理の一端を確かに掴んだという確信をもった。この辺の話は彼の自伝『部分と全体』(みすず書房)に詳しい。この創造体験はDysonの自伝『宇宙をかきみだすべきか』(ダイアモンド社)に出ているTomonaga, Schwinger, Feynmanの量子電気力学を統一的に理解できたときのDysonの体験と状況はまったく違うが、その内的な感情と感覚は似ている。しかし、ここで述べたいのはHeufieberとは何かということである。いつだったかNHKの英語会話の放送を見ていたら(英語だからhay feverと綴るのだろうが)、これを花粉症と訳していた。それで、はっとしてやっとHeufieberが身近なものになったのだが、日本では花粉症は鼻水がしきりにでるが、熱は出ない。その数年後だったが、入試の監督に駆り出されたときに、同僚のS先生が顔を赤くして花粉症に悩んでいた。その方は7,8年をアメリカで暮らした方でhay feverについて彼の体験を話してくれた。それはもちろん花粉が原因なのだろうが、40度近い熱が何週間も続いてとても不快なのだという。それでやっとわかった。Heufieberは枯草熱と訳されているが、熱が出るところが特徴のようだ。Heufieberの枯草熱という訳語を理解できなくて、花粉症という訳語である程度わかったつもりになっていたが、結局元へ戻ったわけである。なんでも実際に生活をしてみないとわからないことがあるものだ。(2011.4.13付記) ドイツ語ではPollenallergieという語があり、これは文字通り「花粉アレルギー症」である。(引用此処まで)Grossのノーべル賞受賞講演2007-04-28 12:35:48 | 物理学(いんよう此処から)最近号の素粒子論研究4月号に2004年度のノーベル賞を受賞したGrossの講演の翻訳が載っている。まだ全部読み終わったわけではないが、興味深い。Grossはいま漸近的自由という用語で知られているnonabelian gauge 場の量子論をつくった人の一人である。ノーベル賞はあと二人の人と共同受賞だが、彼がその中で一番年上でかつ見通しもしっかりしていたと思われる。また、もう一人受賞者のPolitzerはS. Colemanの学生で漸近的自由をもつnonabelian gauge 場の量子論をつくれるかというのは、Colemanから出された課題であったらしい。PolitzerとColemanの関係は電弱理論のくりこみを課題として’t Hooftに与えたVeltmanと似たような関係にあるようにも思われる。もっともVeltmanは’t Hooftとノーベル賞を共同受賞しているのである程度報われたが、それでもVeltmanの心理的葛藤は大きくて、彼はその後オランダから離れてアメリカの大学に勤めた。現在ではまた故国オランダに帰っているようだが、そういう心理的な葛藤の問題は量子力学の行列力学の創設者Bornにもノーベル賞を単独受賞したHeisenbergに対して同様にあったことはよく知られている。私の関心は武谷三段階論との関係からであるが、Feynmanのparton模型のことには言及してあるが、しごくあっさりとしたものでむしろscalingの成立する場の理論を求めたという観点がGrossの見解には強いように思われる。武谷三段階論の観点からは実体論的段階であるparton模型が重視されるのであろうが、Grossにはそういう感じが彼の語るところではない。現象論としてのscalingから直接にではないにしても本質論的段階としての摂動的QCDである漸近的自由な場の量子論がつくられたという感じがしている。もう少し詳しく知りたいところだ。しかし、実際にはparton模型という段階を経ていることがあっさりとした彼の言説の中にも認められる。(引用ここまで)武谷三男の年譜作成への試み2007-04-25 16:11:48 | 科学・技術 (引用此処から)武谷三男の年譜を作成することを始めたいと思うが、そのための文献としては「思想を織る」、「聞かれるままに」、「原子力と科学者」、「素粒子の探求」等が役に立つだろう。武谷は自分は湯川、朝永のような立派な学者ではないので自伝を残さないと言っていたが、実際に「思想を織る」とか「聞かれるままに」には自分の生い立ちについてのかなり詳しい言及がある。特に「思想を織る」は自伝的な色彩が強い。彼はそれでもこれは自伝ではないと言い訳をしている。湯川秀樹の詳しい年譜は故河辺六男さんがつくられて、「湯川秀樹著作集」に載っている。それに対応するものをつくりたいと思っているが、現在までのところ取り掛かることもできてはいない。8月には徳島科学史学会の総会があるので、それに向けた試論をそろそろ用意したいと思う。(引用此処まで)仕事とエネルギー2007-05-31 10:56:36 | 物理学(引用此処から)私の基礎物理学の講義では「ベキ関数の微積分」しか必要でないとこの間,講義で大見得を切ったのだが,ところがこれからの講義ではそれだけでは済みそうにない。すでに学生には講義ノートを渡してあるのだが,その内容を私はほとんど忘れてしまっていた。学生は私を嘘つきだという判断をするだろう。三角関数の微分は使わないにしても近いうちに対数関数とか指数関数とかの微分は使うことになる。それに仕事とエネルギーとの関係も学生にはまったくわかっていないらしい。これはそれについて話さなかった私が悪いのだろうが。簡単なデモ実験を来週にはやった方がよさそうだ。考えているのは棒でテニスのボールをおすという実験とか高い所からボールを落とす実験とかである。動いていることがエネルギーをもっていることであり、また高い所に物体があるということもエネルギーがあることになるということを示さなければならない。またバネはポテンシャルエネルギーをもっていることも話す必要がありそうだ。 力を物体に及ぼせば,エネルギーが増えるという事実もこれは日常の経験からはわかりにくい。というのは力は知らず知らずに摩擦力のように物体に働いているのにそういうもののない世界を物理学では考えていることをわかるのは難しいからだ。ああ、なんということだろう。日常生活における実際経験と理想化された物理学の世界とはかけ離れている。もちろん、物理の本を読んで勉強を初歩からしてくれれば、理解できるはずだが,そういうことをして来た学生は少ないらしい。(引用此処まで)慣性の法則2007-05-17 11:54:48 | 物理学(引用此処から)今週の基礎物理学の講義の中で短時間だけれど問題演習をした。そのときにわかっていると思って机間巡視をしていたら、ぜんぜん分かっていないことが判明した。それは慣性の法則のことである。これは物体に力が働かない限り、物体はその運動の状態を変えないという法則だが、これを皆さんほとんど理解していないらしい。確かに講義でしっかりとは教えなかったのだが、こういことは常識として物理を高校で学んだかどうかには関係なく知っていると思っていたのだが、そうではないらしい。だからこれを一から教えないといけないようである。力が働かないときには物体は一直線に運動するということを来週は強調して教えよう。等速度運動と等速運動とは同じではないといったくらいでは慣性の法則は定着しない。(引用此処まで)熱力学の第1法則2007-05-02 13:49:26 | 物理学(引用此処から)熱力学の第1法則で不思議なことの一つは内部エネルギーの微分は状態量で完全微分であるが,仕事と熱の微少量は状態量ではなく道筋に依存しているということで、これらは不完全微分と言われる。しかし、その二つの不完全微分の和d’W+d’Qが完全微分dUに等しいというのは不思議の一つであろう。ここで、d’Wとd’Qのdの上にプライムがついているのは不完全微分であることを表している。この不思議を理解するには このごろ有名になっている、田崎晴明さんの「熱力学」(培風館)を読めばいいのだろう。私もこの本を数ヶ月前に読んでいたが、熱がちょっと冷めて4章か5章で今読むのを止めてしまっている。しかし、この不思議の説明はムーアの「物理化学」の訳本の上巻に熱の力学的定義というところに書いてあり,それを読めば,たちどころにわかる。それによればちっとも不思議はない。田崎さんの本もそういう趣旨であるようだ。大学で昔に熱力学をならったときにdU=d’W+d’Q の形で熱力学第一法則を教わった記憶がない。同じ等式ではあるが,熱力学第一法則はd’Q=dU-d’Wとして習って,dUが完全微分だという認識はなかった。そういうことを知ったのは大学に勤めるようになって、M先生という物理の先生に入試の出題委員でご一緒したときにそれとなく教わったことであった。レオントビッチの『熱力学』(みすず書房)がテクストだったのだが、そのことをきちんと書いてあったのかどうか確かめたことがない。(引用此処まで)
2025年6月30日2025年6月20日に投稿 投稿者 元)新人監督 — コメントを残すディーゼル: Rudolf Diesel、1858/3/18 – 1913/9/29^6/30改訂 こんにちはコウジです。 「ディーゼル」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)HONDA製エンジン 【スポンサーリンク】パリ生まれのディーゼルディーゼルはフランスの製本業を営んでいた父のもとに パリで生まれます。1870年の普仏戦争勃発に伴い、 多くのドイツ人はフランスから退去させられました。 ディーゼル一家もロンドンに移住します。12歳の時にルドルフは、ドイツ語の教育を 受ける為にアウクスブルクの母方の叔父と叔母の下へ 送られました。1873年にトップの成績で学校を卒業し、 工業学校を経てミュンヘン工科大学へ進みます。 そもそも、私は 太田氏の小説「ほかほかのパン」で ディーゼルの名前を思い出しました。ルドルフ・ディーゼルに対するイメージは ヤンマー社の彦根研究所で初期型のエンジン を見た時の思い出しかありませんでした。調べてみると、実の所は色々な足跡を残しています。 ルドルフ・ディーゼルは、ディーゼルエンジン の発明者として知られていますが、彼の足跡は その発明にとどまりません。以下に、 彼の主な業績や足跡を紹介します。ディーゼルエンジンの発明: ルドルフ・ディーゼルは、1892年に初めてディーゼルエンジンの特許を取得しました。これは内燃機関の一種であり、蒸気機関と比較して効率が高く、燃料の消費量が少ない特徴を持っています。ディーゼルエンジンは、自動車、船舶、発電所など広範囲にわたる産業で使用されています。技術革新の推進: ディーゼルは、燃料の消費を最小限に抑えつつエネルギーを効率的に変換する方法を探求しました。彼の発明は、産業革命以降の技術革新に大きな影響を与えました。産業界への貢献: ルドルフ・ディーゼルは、彼の発明を実用化するために努力し、産業界にその技術を普及させました。これにより、機械化された生産プロセスが可能となり、産業の発展に寄与しました。教育活動: ディーゼルは後進の育成にも力を注ぎました。彼はエンジニアリングの教育に熱心であり、多くの学生や技術者を指導しました。社会的影響: ルドルフ・ディーゼルの発明は、エネルギーの効率的な利用によって社会に大きな影響を与えました。それにより、交通手段や産業活動の発展が促進され、経済の成長に寄与しました。遺産と認識: ディーゼルエンジンの普及と彼の業績に対する認識は、 世界中で広く認識されています。彼の名前は、 エンジンや自動車産業、エネルギー分野など、 多くの分野で永遠に記憶されるでしょう。 私が彦根で見た遺産は一端に過ぎません。これらは、ルドルフ・ディーゼルが残した 主な足跡の一部です。彼の業績は、 現代の産業社会においても 重要な役割を果たしています。〆 テックアカデミー無料メンター相談 【スポンサーリンク】以上、間違い・ご意見は 以下アドレス迄お願いします。 問題点には適時、 改定・返信をします。nowkouji226@gmail.com2024/04/05_初稿投稿 2025/06/30‗改訂投稿 舞台別の纏めへ 時代別(順)のご紹介 ドイツ関連のご紹介へ 電磁気学関係へ【このサイトはAmazonアソシエイトに参加しています】(2024/4/12時点での対応英訳) Diesel born in ParisDiesel was born to his father who was a bookbinder in France. Born in Paris. With the outbreak of the Franco-Prussian War in 1870, Many Germans were expelled from France. The Diesel family also moves to London.At the age of 12 Rudolf received a German education. I went to my maternal uncle and aunt in Augsburg to receive the test. Sent. He graduated from school at the top of his class in 1873, After attending technical school, he entered the Technical University of Munich. In the first place, I In Mr. Ota’s novel “Hot other bread” I remembered the name Diesel.What is your impression of Rudolf Diesel? Early engine at Yanmar’s Hikone Research Institute All I could remember was when I saw it.If you look into it, you’ll find that it actually leaves a lot of footprints. Rudolf Diesel is a diesel engine Although he is known as the inventor of It’s not just his invention. less than, We will introduce his main achievements and footprints.Invention of the diesel engine:Rudolf Diesel patented the first diesel engine in 1892. This is a type of internal combustion engine that has higher efficiency and consumes less fuel than a steam engine. Diesel engines are used in a wide range of industries, including automobiles, ships, and power plants.Driving innovation: Diesel explored ways to efficiently convert energy while minimizing fuel consumption. His inventions had a major impact on technological innovation after the Industrial Revolution.Contribution to industry:Rudolf Diesel worked hard to put his invention into practice and popularized it in industry. This enabled mechanized production processes and contributed to the development of industry.Educational activities:Diesel also focused on training the next generation. He was passionate about engineering education and mentored many students and engineers.Social impact:Rudolf Diesel’s invention had a huge impact on society through the efficient use of energy. This facilitated the development of transportation and industrial activities, contributing to economic growth.Heritage and recognition:The spread of diesel engines and recognition of his achievements were Widely recognized all over the world. his name is, engines, automobile industry, energy field, etc. It will be forever remembered in many fields. The heritage that I saw in Hikone is just one part of it.These were left behind by Rudolf Diesel Some of the main footprints. His achievements are Even in modern industrial society plays an important role.
2025年6月29日2025年6月19日に投稿 投稿者 元)新人監督 — コメントを残すハインリヒ・R・ヘルツ【電磁現象の実用化の為に送受信の装置を実現した先駆者】-6/29改訂 こんにちはコウジです。 「ヘルツ」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)電磁気学入門 【スポンサーリンク】ハインリヒ・R・ヘルツ【1857年2月22日生まれ ~ 1894年1月1日没】独逸のヘルツハインリヒ・R・ヘルツのRは ルドルフ(Rudolf )のRです。もともと、ヘルツは気象学に関心を持っていました。 1878年ミュンヘン工科大学では指導教官が気象学者のベゾル でしたが、そこではさしたる業績を残していないようです。 その後の師ヘルムホルツのもとで 液体の蒸発の論文や新型の温度計に関する 論文をまとめた程度だと言われてす。エーテルに対する理解の変遷所で、19世紀終わり頃迄は電磁波の伝達物質としてエーテルという物質を想定していました。確かに波を伝える伝達物質、別の言葉を使うと媒質といった物があり波は伝わります。水という媒質があり表面で波紋が伝わり、空気という媒質があって音が伝わる訳です。1881年にマイケルソンが実験でエーテルを否定したタイミングでヘルツはマクスウェルの方程式を再度考え直します。電磁波の存在を煎じ詰めて実用的なアンテナを考案しました。現代の整理された考え方によると、電磁波は真空中であっても伝わります。例えば太陽光は大気圏に届く前に真空中を伝わってくるのです。そこにはエーテルは存在しません。エーテルの仮定は観測にかからないばかりか、地球の自転運動・公転運動に対して説明がつかないのです。ヘルツのその他の業績 何よりも、ヘルツが大事な「時代を担っていた一人」である という点を強調します。その時代には実験が繰り返され、 電磁気学の分野で光と電磁波をつなぐ 理論がもやもや生み出されていたのです。 それを支える手段が模索されていたのです。ヘルツは電磁波を発信する 装置を開発して電磁波の送受信 の実験を繰り返しました。 マクスウェルの理論を現実の生活の中の仕組みと 関連させることを考えてみると、 電波を発信する仕組みと受信する仕組みが必要です。例えば、磁場中で帯電体が振動運動をした時に 電場と磁場が生成されて、光速度に近い 伝番をする筈です。それを観測にかけるには 「出来るだけ簡単で解析しやすい送信部と受信部」 を設計してシステムの構築をしなければいけません。 ヘルツはそうしたシステムを構築したと言えるのです。 その過程では例えば、 送受信間にガラスを置くと 電磁波が通じ難くなると確認しました。即ち、 電磁波というものがあって、それを使うと離れた 空間の間を送受信出来て、電磁波が透過しやすいもの とし難いものがあると示したのです。大きな一歩でした。そして、実験で人々にガウス・マクスウェル の理論を現実の世界とより近づけました。 ヘルツは周波数の単位に名を残しています。〆 テックアカデミー無料体験 【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近全て返事が出来ていませんが 全て読んでいます。 適時、改定をします。nowkouji226@gmail.com 2020/10/07_初稿投稿 2025/06/29_改定投稿サイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 ドイツ関連のご紹介へ 電磁気関係へAIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】(2021年9月時点での対応英訳)Hertz of GermanyHeinrich R. Hertz’s R is Rudolf’s R.Originally, Hertz was interested in meteorology. At the Technische Universität München in 1878, the instructor was the meteorologist Bezor, but he does not seem to have made much of a mark there. It is said that he only compiled a treatise on liquid evaporation and a new thermometer under his teacher Helmholtz after him.At the transition of understanding of etherUntil the end of the 19th century,People had assumed The Existance,Ether as a transmitter of electromagnetic waves. surelyThere is a transmitter that transmits waves, or in other words, a medium, and waves are transmitted. There is a medium called water, and ripples are transmitted on the surface, and there is a medium called air, and sound is transmitted.Hertz reconsiders Maxwell’s equations when Michaelson denies ether in an experiment in 1881. He devised a practical antenna by decocting the existence of electromagnetic waves.According to modern organized thinking, electromagnetic waves are transmitted even in a vacuum. For example, sunlight travels through a vacuum before it reaches the atmosphere. There is no ether there. Not only is the assumption of ether unobservable, but it cannot explain the rotation and revolution of the earth.Other achievements of HertzSeparately, Hertz developed a device for transmitting electromagnetic waves and repeated experiments to send and receive electromagnetic waves. Considering the relationship between Maxwell’s theory and the mechanism in real life, we need a mechanism to transmit and a mechanism to receive radio waves. For example, when a charged body vibrates in a magnetic field, an electric field and a magnetic field are generated, and the number should be close to the light velocity. In order to observe it, it is necessary to design a “transmitter and receiver that are as simple and easy to analyze as possible” and build a system.It can be said that Hertz built such a system. In the process, for example, I confirmed that placing glass between transmission and reception makes it difficult for electromagnetic waves to pass through. In other words, he showed that there are electromagnetic waves that can be used to send and receive between distant spaces, making it easy for electromagnetic waves to pass through and difficult for them to pass through. It was a big step.And in his experiments he brought Gauss Maxwell’s theory closer to the real world. Hertz has left its name in the unit of frequency.〆
2025年6月28日2025年6月18日に投稿 投稿者 元)新人監督 — コメントを残すJ・J・トムソン‗【電子の単位を明確にして同位体を示した優れた実験家】-6/28改訂 こんにちはコウジです。 「J・J・トムソン」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)電子デバイス_echo_dot 【スポンサーリンク】J・J・トムソン【1856年12月18日生まれ~1940年8月30日没】その名はジョゼフ・ジョン・トムソン;Sir Joseph John Thomson。イギリスのJJトムソンは同位体の発見者です。指導者としてはラザフォード、オッペンハイマー、ボルンの師でした。JJトムソンは物理学の発展に大きく貢献しました。先ずケンブリッジ大学を卒業し、4年後にキャヴェンディッシュ研究所の所長を務めます。さらに、電子の実在を形にしていった一人でもあります。電子を発見したかについては異論があるかも知れませんがいくつかの洗練された実験で、JJトムソンは電子の単位量を決めて特定原子の同位体を示しました。トムソンによる電子の追及 【陰極線から電子線へ】J Jトムソンの生きた時代の大きな関心は電子でした。ニュートン力学が確立され、それをもとに色々な議論が進んでいた時代に、トムソンは原子核などの束縛を受けていない所謂「自由電子」の振る舞いを明らかにしていきました。トムソンが考えていた時代、初めは陰極線と電子線という言葉さえうまく使い分けられていなかったようです。電子が沢山放出されるような現象を作り上げて、飛んでくる電子を観測していくイメージです。電子線と呼んだ方が細いイメージです。一昔前の実験装置で「真空ガラス」で電子の流れが可視化できている姿を陰極線、最近の電子ビームで半導体加工の為に電子を飛ばす時には電子線と表現する人が多いです。物理の常識が変化して着目している点が変化しているとも言えます。原子核の周りをまわっているような「束縛された電子」は当時でも今でも観測の対象とすることはとても難しいのです。また、JJトムソンの子供も後に、電子の波動性を証明してノーベル賞を受けています。そして、いくつもの偉業を遂げJ・J・トムソンの亡骸はニュートンの墓のすぐ近くに眠っています。英国の生んだ偉人として。〆【スポンサーリンク】以上、間違いやご意見があれば以下アドレスまでお願いします。 時間がかかるかもしれませんが、必ずお答えします。 nowkouji226@gmail.com2020/09/14_初回投稿 2025/06/28_改定投稿サイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 イギリス関係 ケンブリッジ関連 電磁気関係へ【このサイトはAmazonアソシエイトに参加しています】(2021年9月時点での対応英訳)Its name is Joseph John Thomson[Sir Joseph John Thomson].This JJ Thomson of England is a discoverer of the isotopes. As a leader, he was a teacher of Rutherford, Oppenheimer, and Born, and contributed greatly to the development of physics.At first,JJ Thomson graduated from Cambridge University and will be the director of the Cavendish Laboratory four years later. And , He is also one of the people who shaped The Reality of Electrons. There may be some disagreement about the discovery of the electron, but in some sophisticated experiments,Joseph Thomson determined the unit amount of the electron and showed the isotope of a specific atom.J Thomson’s pursuit of electronsThe history of John Thomson and electronics is closely related. In an era when Newtonian Mechanics was established and various discussions were proceeding based on it, we clarified the behavior of so-called “free electrons” that are not bound by atomic nuclei. At the beginning, it seems that even the terms cathode ray and electron beam were not used properly.It is an image of observing flying electrons by creating a phenomenon in which a lot of electrons are emitted. It is a thinner image to call it an electron beam. It is very difficult to observe “bound electrons” that seem to orbit around the nucleus even now. The child of JJ Thomson also later received the Nobel Prize for proving the wave nature of electrons.And now, the corpse of JJ Thomson, who has achieved several feats, is sleeping in the immediate vicinity of Newton’s tomb. He was a great man born in England.〆
2025年6月27日2025年6月17日に投稿 投稿者 元)新人監督 — コメントを残す田中館 愛橘(たなかだて あいきつ )【日本物理学の黎明期にイギリスとドイツで物理学を学び日本に紹介し、ケルビン卿を敬愛した偉人|多くの人材を育て「種まき翁」と呼ばれた男|フォノグラムを研究】-6/27改訂 こんにちはコウジです。 「田中館 愛橘」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)オープンソースCAE 【スポンサーリンク】田中館 愛橘(たなかだて あいきつ)【1856年10月16日生まれ ~ 1952年5月21日没】日本物理学創設期の人 田中館愛橘その名は田中館・愛橘と書いてたなかだて・あいきつ、と読ませます。生まれた年は旧暦の時代で安政3年9月18日です。 【新暦で1856年10月16日です】 没年は新暦での昭和27年です。先祖に南部藩の赤穂浪士 と呼ばれた方が居たそうですから、 そうしたイメージから語り出したいと思います。 田中館は時代の変革期に生まれました。 田中館愛橘の生い立ちご紹介する田中館愛橘の父方は 兵法師範の家系であり、 愛橘は藩校である作人館に学びます。 作人館での同窓生には原敬がいて後輩には 新渡戸稲造がいました。存じませんでしたが 立派な学校ですね。東京に出て慶應義塾に通い ますが学費が高額なので東京開成高校に進みます。今で言えば東大教養学部のイメージでしょうか。 そこで愛橘は山川健次郎から物理学を学びます。政治にも関心を持っていたようですが、山川から諭され、 日本での理学の遅れを挽回せんと愛橘は物理学を志しました。1879年に東大で外国人教師であるメンデンホールが (ユーイングと共に)トーマス・A・エジソンの発明した フォノグラフを日本に紹介しましたが、田中館愛橘は 早速試作を行いました。その音響や振動の解析を行っています。音を音質と音量に分けて考えたり、 フィルター処理をする作業が日本で始まったのです。 1880年にはメンデンホールによる重力観測に参加し、 東京と富士山で観測作業を行いました。当時の世界一の性能を持っと言われたた 電磁方位計を研究開発しました。そんな時期に、、突然、福岡に帰っていた父・稲蔵が割腹自殺したとの 知らせを受けて田中館愛橘は明治16年12月に帰郷します。 土地や家などを売り払い東京三田での愛橘の教育の為に 一家総出で引っ越しをしたようなお父様でした。 そのお父様がなくなったのです。そしてその年に東京大学助教授となりました。詳細は いつか調べてみたいです。この時期気になる動きです。 時代の変革期に各人が考え抜いていたはずです。 田中館愛橘とケルビン卿その後、田中館愛橘はイギリスでケルビン卿に師事し、 大きな影響を受け、生涯を通じてケルビンを敬愛しました。その後1890年にヘルムホルツのいた ベルリン大学へ転学、電気学などを修めます。この時代の電気に対する理解は、項を改めて マクスウェルらと関連して語っています。電磁気学は力学と異なり色々な人々の多様な知見が 次々重なり形成されていった歴史があるのです。力学のように第一法則、第二法則、 として電磁気学では出来ていません。 愛橘は東京帝大理科大学教授となり後に 理学博士の学位を受けます。更にデンマークのコペンハーゲン で開かれた万国測地学協会 第14回総会で 地磁気脈動や磁気嵐の発表をします。田中館愛橘の業績時代柄もあって、田中館愛橘は陸軍や海軍に対して貢献します。 地磁気測量では指導の中心的な役割を果たしています。旅順での戦闘の際には敵情視察用の繋留気球の制作を依頼されています。 それが愛橘と航空研究のきっかけとなりました。田中館愛橘は中野の陸軍電信隊内での気球班で気球研究を始め、 制作および運用法を指導しています。試行錯誤の末に気球を完成させ、 旅順戦で戦闘に使用しています。 そして田中館愛橘が60歳になり、教授在職25周年のパーティで 愛橘は辞職する旨を伝えました。後の東大での定年退職制度に繫がっていきます。また、田中館愛橘は数多くの人材を育てました。教え子としては長岡半太郎、 中村清二、本多光太郎、木村栄、田丸卓郎、寺田寅彦などが居ます。 それ故、愛橘は「種まき翁」、「花咲かの翁」と呼ばれたそうです。 95歳7か月の天寿を全うしました。〆 以上、間違い・ご意見は 次のアドレスまでお願いします。 最近は返信出来ていませんが 全てのメールを読んでいます。 適時返信のうえ改定を致しします。nowkouji226@gmail.com【スポンサーリンク】2020/12/16_初版投稿 2025/06/27_改定投稿サイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 イギリス関係のご紹介 日本関連のご紹介 東大関連のご紹介AIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】 (2021年9月時点での対応英訳)Tanakadate Aikitsu,whose name is Aikitsu, is written as Aikitsu.Born on September 18, Ansei 3 in the lunar calendar. [October 16, 1856 in the new calendar] The year of death is 1952 in the new calendar. It seems that his ancestor was called Ako Ronin of the Southern Clan, so I would like to start with that image. He spent his youth in a period of change.By the way, Tanakadate Aikitsu’s father is a family of military art masters, and Aikitsu learns from the clan school, Sakujinkan. The alumni at the Sakujinkan was Takashi Hara, and his junior was Inazo Nitobe. I didn’t know about it, but it’s suary a good school.He went to Tokyo and go to Keio University, but the tuition fee is high, so he went to Tokyo Kaisei High School. Is it the image of the Faculty of Liberal Arts at the University of Tokyo now? There, Aitachibana learns physics from Kenjiro Yamakawa.Yonger days of TanakadateIn his younger days,Aikitsu have been interested in politics, but Yamakawa advised him to make up for the delay in Japanese science, and Aitachiya decided to pursue physics. He introduced Edison’s invented phonograph to Japan in 1879 with Mendenhall, a foreign teacher at the University of Tokyo, but Tanakadate Aikitsu made a prototype immediately. He is analyzing the sound and vibration.He started working in Japan to divide sound into sound quality and volume, and to filter it. In 1880, he participated in gravity observation at Menden Hall and carried out observation work in Tokyo and Mt. Fuji. Aitachi made an electromagnetic directional meter, which was said to be the world’s number one high-precision directional meter at that time. Tanakadate Aikitsu returns home after being informed that his father, Inazo, who had returned to Fukuoka in December 1884, committed suicide by seppuku. And that year he became an assistant professor at the University of Tokyo. Details will be investigated later. Because it is a movement that is worrisome at this time.Tanakadate and Baron KelvinAfter that, Tanakadate Aikitsu studied under Sir Kelvin in England and was greatly admired Kelvin throughout his life. After that, he transferred to the University of Berlin, where Helmholtz was, in 1890 and studied electrical engineering. His understanding of electricity in this era will be discussed later in the context of Maxwell et al.Unlike mechanics, electromagnetism has a history of accumulating diverse knowledge of various people one after another made electromagnetism. It has not made as the first law or the second law of mechanics.Aitkitsu became a professor at the University of Tokyo Science University and later received a doctorate in science. He will also present geomagnetic pulsations and geomagnetic storms at the 14th General Assembly of the International Association of Geodesy Sciences in Copenhagen, Denmark. Job of TanakadateAlso, due to his time, Tanakadate Aikitsu contributes to the Army and Navy. He plays a central role in his guidance in geomagnetic surveying. During the battle in Lushun, he made a mooring balloon for hostility inspection. That was the catalyst for Aikitsu and his aviation research.Tanakadate Aikitsu started balloon research in the balloon team within Nakano’s Army Telegraph Corps, and is instructing production and operation methods. After a lot of trial and error, the balloon was completed and used in battle in Lushunkou. When Tanakadate Aikitsu turned age 60, he announced that he would resign at the party of his 25th anniversary as a professor. He will be involved in the retirement age system at the University of Tokyo later. In addition, Tanakadate Aikitsu has nurtured a large number of human resources.His students include Hantaro Nagaoka, Seiji Nakamura, Kotaro Honda, Hisashi Kimura, Takuro Tamaru, and Torahiko Terada. Therefore, They called Aitkitsu”Seeding old man” and “Hanasakika old man”. He completed his life of 95 years and 7 months.(NOTE)Transition Words, “In the same time,on the other handsin addition for exanple” is Important.
2025年6月26日2025年6月16日に投稿 投稿者 元)新人監督 — コメントを残すニコラ・テスラ【磁場の単位を残し、それを社名として名を残したアメリカの天才】‐250626改訂 こんにちはコウジです。 「テスラ」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)電気モーター(教育玩具) 【スポンサーリンク】ニコラ・テスラ【1856年7月10日生まれ ~ 1943年1月7日没】 発明家テスラテスラはオーストリア帝国に生まれ 工夫を重ね、誘導モーターを発明します。そのモーターを広める為に アメリカに渡って、かのエジソン のもとで働いていましたが独立して 高電圧の変換をして発表をしたり 回転界磁型の電動システムを実用化して 供電社会の礎を築いたりしました。テスラとエジソンテスラとエジソンとの間には次第に対立関係が生まれますが、2陣営の対立は送電方式の考え方の違いが大きかったようです。エジソンが直流による電力事業を考えていたのに対してテスラは交流による電力事業に利点があると考えていました。実際に交流が主流になるのです。幸運な事にテスラは多才でした。例えば テスラはプレゼンテーションが上手でした。学会での発表を聞いていたジョージ・ウェスティングハウスが感銘を受け、テスラは資金供給を受け始めます。最終的にはナイアガラの滝を使った発電システムの実現に繋がり、テスラは成功を収めました。ナイヤガラの滝を眺めて誰しも壮大な景色に心を動かされると思いますが、その時の感動を事業のアイディアへ繋げていく思考がテスラならではの凄さですね。事業計画のプレゼンテーションをする時に説得力を持ちますね。後は「本当に出来るの?」と聞かれている内容を説明していく説得力も大事です。そのアイディアや説得力をテスラは持っていました。数々の事業を成功へ導いたテスラですが、色々な別れがあり晩年は寂しい老後を送っていた様です。テスラは生涯独身でした。内向的な性格が影響しているようです。そしてテスラの名は今、磁場の単位として使われている他に、 会社の名前として名を残しています。数トンの重さがあった と言われる彼の発明品や設計図はFBIが写しをとった後に 母国へと返されています。〆以上、間違い・ご意見は 以下アドレスまでお願いします。 最近全て返事が出来ていませんが 全て読んでいます。 適時、改定をします。【スポンサーリンク】nowkouji226@gmail.com2020/10/16_初版投稿 2025/06/26_改定投稿舞台別のご紹介へ 時代別(順)のご紹介 アメリカ関係へ 電磁気関係へ オーストリア関連のご紹介へ グラーツ大学関連へAIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】(2021年9月時点での対応英訳)Inventor TeslaTesla was born in the Austrian Empire and invented an induction motor. After that, he traveled to the United States to spread the motor in addition, worked under Edison, but independently converted high voltage and made presentations and put into practical use a rotating field type electric system. It laid the foundation for a power supply society.Tesla and EdisonA confrontational relationship with Edison gradually arises, but it seems that the confrontation between the two camps was largely due to the difference in the way of thinking about the power transmission method. While Edison was thinking of a DC power business, at that time, Tesla thought that an AC power business would have an advantage. In fact, exchange becomes mainstream.Fortunately, for example Tesla was good at presenting.George Westinghouse, who was listening to the conference presentation, was impressed and began to receive funding.Ultimately, Tesla was successful in realizing a power generation system using Niagara Falls.He is Tesla, who has led many businesses to success, but he seems to have had a lonely old age in his later years due to various farewells. Tesla was single all his life.And in addition to being used as a unit of magnetic field, Tesla’s name is now left as the name of the company.Tesla’s inventions and blueprints, which are said to have weighed several tons, have been returned to their native language after being copied by the FBI.〆
2025年6月25日2025年6月15日に投稿 投稿者 元)新人監督 — コメントを残す山川 健次郎【後進を育てた日本物理学黎明期の先駆者・東大総長】 こんにちはコウジです。 「山川 健次郎」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)難しくない物理学 【スポンサーリンク】山川 健次郎【1854年9月9日生まれ ~ 1931年6月26日没】山川健次郎の人生山川 健次郎は日本初の物理学者です。その家は会津藩の家老家で戊辰戦争では健次郎は白虎隊に所属していました。自刀していった仲間もいた中で、山川健次郎は落ち延びました。その後に米国へ国費留学を果たし、イェール大学で物理学を修めます。日本に戻り、最終的には東大総長・京大総長を務めます。山川健次郎と辰野金吾私の家祖が会津藩・彰義隊でしたので個人的に彼になんとなく親近感と敬意を持っていました。山川健次郎は国費留学生として イェール大学で学位を修めます。また、東京駅の設計に携わった建築家・辰野金吾とは奥様を通じて親戚関係となっています。山川健次郎のお人柄と研究成果山川健次郎のお人柄を表すエピソードとして 日露戦争に関するものがあります。当時、 彼は東大で総長を務めていましたが、 愛国心に満ちた健次郎は陸軍に詰め寄り、 「一兵卒として従軍させろ」と担当を困らせたそうです。 個人・家族・所属国家と意識が繋がっていたのですね。 その時にはもはや、賊軍だった頃の意識は無いのでしょう。山川健次郎の時期の物理学会は諸外国との交流を感じさせません。特にコペンハーゲン学派が中心となって次々と新しい知見をもたらしていた時代に日本の物理学は黎明期にありました。欧州よりもむしろ日本に開国を促した米国に目を向けていたのです。それが精一杯だったのでしょう。「お雇い外人」は殆ど米国人です。そして山川の時代まで欧州は遠く、新大陸はまだ 未開の部分が今より多い時代です。 米国の独立戦争が1861年から1865年だったことも 思い返してみましょう。後の時代に原子核内の相互作用を解き明かしていく若者達を育てていく時代だったのです。山川健次郎と同年代のカメリー・オネスやローレンツは師に恵まれ論敵に恵まれて、マッハ、ボルツマンの構築した知見の中で考えを進めていたのです。大きく異なる環境から日本の物理学はスタートしています。山川健次郎自身の研究成果は伝えられていません。研究内容をまとめた論文も広く知られていません。あるのでしょうか。それよりも寧ろ、後輩達を育てながら次の時代への為の土壌を育んでいたと考えるべきでしょう。また、この時代に千里眼を巡る話題が世間を騒がせていましたがそれに対して山川健次郎は批判的で冷静な立場をとっていたと伝えられています。今も昔も千里眼という不可思議な現象は「議論して解明できる内容ではない」と考える方が良いようです。〆最後に〆コスパ最強・テックジム|プログラミング教室の無料カウンセリング【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近全て返事が出来ていませんが 全て読んでいます。 適時、改定をします。nowkouji226@gmail.com2020/09/23_初回投稿 2025/06/25_改定投稿サイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 日本関連のご紹介 東大関連のご紹介 京大関連のご紹介 イェール大学関連のご紹介AIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】(2021年9月時点での対応英訳)Yamakawa Kenjiro’s lifeKenjiro Yamakawa is Japan’s first physicist. The house was the old family of the Aizu clan, and Kenjiro belonged to Byakkotai during the Boshin War. Kenjiro Yamakawa fell asleep while he had his own sword. He then went on to study abroad in the United States and studied physics at Yale University. He will return to Japan and eventually serve as President of the University of Tokyo and President of Kyoto University.Kenjiro Yamakawa and Kingo TatsunoMy ancestor was the Aizu clan Shogitai, so I personally had a sense of familiarity with him. Kenjiro Yamakawa is a government-sponsored international student and he completes his degree at Yale University. He also has a relative relationship with the architect Tatsuno Kingo, who was involved in the design of Tokyo Station, through his wife.Yamakawa Kenjiro’s personality and research resultsThere is an episode about the Russo-Japanese War as an episode that shows the personality of Kenjiro Yamakawa. At that time, he was the president of the University of Tokyo, but the patriotic Kenjiro rushed to the Army and asked him to serve as a soldier. Your consciousness was connected to your individual, your family, and your nation. At that time, I wouldn’t be aware of what I was when I was a thief.The Physical Society of Japan during Kenjiro Yamakawa’s time does not make us feel any interaction with other countries. In particular, Japanese physics was in its infancy at a time when the Copenhagen school was playing a central role in bringing in new knowledge one after another.It was an era of nurturing young people who would unravel the interactions within the nucleus in later times. Kamerlingh Ones and Lorenz, who were of the same age as Kenjiro Yamakawa, were blessed with teachers and controversial opponents, and were advancing their thoughts based on the knowledge built by Mach and Boltzmann. Japanese physics starts from a very different environment.Kenjiro Yamakawa’s own research results have not been reported. A paper summarizing his research is also not widely known. Is there? Rather, it should be considered that he was raising his juniors and nurturing the soil for the next era. In addition, it is said that Kenjiro Yamakawa took a critical and calm position against the topic of clairvoyance that was making a noise in this era. Even now and in the past, it seems better to think that the mysterious phenomenon of clairvoyance is “not something that can be discussed and clarified.”
2025年6月24日2025年6月14日に投稿 投稿者 元)新人監督 — コメントを残すアンリ・ポアンカレ【数学・物理学・天文学で独自の領域を開拓】-6/23改訂 こんにちはコウジです。 「ポアンカレ」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)ポアンカレ予想 【スポンサーリンク】アンリ・ポアンカレ【1854年4月29日生れ ~ 1912年7月17日没】 ポアンカレ予測その名を書下すと、ジュール=アンリ・ポアンカレ(Jules-Henri Poincaré)。多様体における考察であるポアンカレ予想で、よく知られています。また、小さなトリビア話なのですが、J・ポアンカレはフランス大統領の従兄弟でもありました。 ポアンカレの業績と評価ポアンカレは数学、物理学、天文学において 名を残しています。残した業績は大きいのです。 しかし、その数学的立場には賛否両論があります。一般の見方ならば分からない程度の賛否両論のでしょうね。 ポアンカレは第一回ソルベーユ会議にも出席していて、 マリ・キューリとの写真は色々な所で紹介されています。 どんな話をしていたのか興味深いですね。 探せるものなら議事録探して分析したいです。ポアンカレの思考方法で独自性を見出せるでしょう。他、ポアンカレの業績としては位相幾何学の分野でのトポロジーの 概念形成などもあります。ヒルベルト形式主義よりも 直感に重きを置くスタイルは、いかにも数学者らしい、 とも思えますが、特定の人からみたら 意味不明に思えたりするのでしょう。また、 とある数学的な発見時に、思考過程を詳細に残し、 思考プロセスの形で心理学的側面の研究に 影響を残したとも言われています。 また、以下の著作は何時か時間が出来たら読んでみたいと考えているポアンカレの著作です。個人的な課題ですね。・事実の選択・偶然_寺田寅彦訳_岩波書店・科学と仮説_湯川秀樹・井上健編_中央公論・科学の価値_田辺元 訳_一穂社〆テックアカデミー無料体験 【スポンサーリンク】 以上、間違い・ご意見は 以下アドレスまでお願いします。 最近全て返事が出来ていませんが 全て読んでいます。 適時、改定をします。nowkouji226@gmail.com2020/10/31_初版投稿 2025/06/24_改定投稿サイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 フランス関連のご紹介へ 熱統計関連のご紹介へ 力学関係のご紹介へAIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】 (2021年9月時点での対応英訳)Poincare PredictionThe name is Jules-Henri Poincaré. Consideration in manifoldsPoincare conjecture, well known. Also, although it is a small trivia, J. Poincaré was also a cousin of the President of France.Poincare’s achievements and evaluationPoincare has made a name for himself in mathematics, physics and astronomy. The achievements he left behind are great. However, there are pros and cons to his mathematical position. Pros and cons may not be understood by the general public.Poincaré also attended the first Solbeille conference, and his photographs with Mari Cucumber are featured in various places. It’s interesting what he was talking about. When I have time, I would like to find and analyze the minutes. You will find uniqueness in Poincare’s way of thinking.Other achievements of Poincare include the formation of the concept of topology in the field of topology. His style, which emphasizes intuition over Hilbert formalism, seems to be a mathematician, but he may seem irrelevant to a particular person. It is also said that at the time of his mathematical discovery, he left behind his thought process in detail and influenced the study of psychological aspects of the thought process.In addition, the following works are Poincare’s works that I would like to read when I have some time. It’s a personal issue. Selection of facts ・ By chance _ Translated by Torahiko Terada _ Iwanami Shoten Science and Hypothesis_Hideki Yukawa / Ken Inoue _Chuo KoronValue of science_Translated by Hajime Tanabe_Ichihosha〆
2025年6月23日2025年6月13日に投稿 投稿者 元)新人監督 — コメントを残す実験から超電導を示した稀代の実験家・カメリー・オネス【低温物理学への道を】-6/23改訂 こんにちはコウジです。 「カメリー・オネス」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)物性物理学講義 【スポンサーリンク】カメリー・オネス【1853年9月21生まれ ~ 1926年2月21日没】 ライデン大学のカメリー・オネスその名はより正確にはヘイケ・カマリン・オンネス(Heike Kamerlingh Onnes)今日、 日本ではカーメルリング・オンネス、カマリン・オンネスや、カマリン・オネスなど数パターンでカタカナ表記されていますが、本稿ではカメリー・オネスとします。 「ライデン大学実験物理学教授」この称号がカメリー・オネスの人生をよく表しています。彼は生涯オランダのライデン大学で教鞭をとり、実験によって新しい世界を切り開きました。また、ライデン大学には同じ年に生まれた理論家のローレンツ_が居ます。理論・実験でライデン大学は時代を切り開いたのです。後に、ボルツマンの弟子のエーレンフェストやアインシュタインがライデン大学に集います。カメリー・オネスはドイツのハイデルベルク大学 に留学してキルヒホッフ等の師事を受けたと 言われていますが、特に帰国後にライデン大学で 「ファン・デル・ワールスと出会い、彼との 議論を通じ、低温における物理現象に 興味を抱くようになった」【Wikipediaより】 と言われていて、ライデン大学での繋がりが 低温物理学に興味を抱く大きなきっかけ だったようです。低温電子物性の幕開け特に温度を下げていく過程で電子の振る舞いが どうなるか。それに対しての回答として カメリー・オネスは超電導現象を示しました。 実験的に再現性のある現象を示す事で 更なる理論の土台を築いたのです。格子間を運動する電子が電気的性質、磁気的特性を 温度変化に応じてどう変えていくか考えが異なりました。 異なる考えがあった時にカメリー・オネスは 事実を実験によって明確に示したのです。 絶対零度では抵抗はゼロになりました。 一つの予想を実験結果で証明したのです。〆コスパ最強・テックジム|プログラミング教室の無料カウンセリング【スポンサーリンク】 以上、間違い・ご意見は 以下アドレスまでお願いします。 時問題点に対して適時、 返信・改定をします。nowkouji226@gmail.com2020/09/05_初回投稿 2025/06/23_改定投稿舞台別のまとめへ 時代別(順)のご紹介 オランダ関係のご紹介へ ライデン大学のご紹介へ 熱統計関連のご紹介へ 量子力学関係へ AIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】 (2021年9月時点での対応英訳)To be more precise, the name is Heike Kamerlingh Onnes. Today, in Japan, it is written in katakana in several patterns such as Carmelling Onnes, Kamerlingh Onnes, and Kamerlingh Onnes, but in this article, Kamerlingh Onnes is written in katakana. will do.“Professor of Experimental Physics, University of Leiden” This title is a good representation of Kamerlingh Ones’ life. He taught at Leiden University in the Netherlands throughout his life and opened up a new world through his experiments.Leiden University also has a theorist, Lorenz, who was born in the same year. Leiden University opened the era with theory and experimentation. Then, Boltzmann’s disciples Ehrenfest and Einstein gather at Leiden University.Kamerlingh Ones is said to have studied at Heidelberg University in Germany and studied under Kirchhof and others. Especially after returning to Japan, he said, “I met Van der Waals and through discussions with him, physical phenomena at low temperatures. “I became interested in Cryogenics” [Wikipedia], and it seems that the connection at Leiden University was a big reason for my interest in cryogenic physics.behavior of electronsWhat happens to the behavior of electrons, especially in the process of lowering the temperature? In response, Kamerlingh Ones showed the superconducting phenomenon. He laid the foundation for further theory by showing it as an experimentally reproducible phenomenon.They had a different idea of how electrons moving between lattices change their electrical and magnetic properties in response to changes in temperature. Kamerlingh Ones made the facts clear through his experiments when he had different ideas. At absolute zero, the resistance is zero. He proved one conjecture with experimental results.〆
2025年6月22日2025年6月12日に投稿 投稿者 元)新人監督 — コメントを残すローレンツ変換で名を残し、アインシュタイン等と議論して育てたローレンツ-6/22改訂 こんにちはコウジです。 「ローレンツ」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)↑ Credit ; Wikipedea ↑ドラえもんの理科面白後略 【スポンサーリンク】H・A・ローレンツ【1853年7月18日生まれ ~ 1928年2月4日没】ライデン大学のローレンツその名は正確にはHendrik Antoon Lorentz。です。オランダに物理学で有名なライデン大学がありますが、ローレンツはライデン大学の出身者です。後にエーレンフェストがコロキウムを開いていきますが、そんな大学を理論の面で育んでいった一人が今回ご紹介するローレンツです。 この大学では他に、エンリコ・フェルミ、 西周(日本の哲学者)、 ヘイケ・カメリー・オネス_ アルベルト・アインシュタイン、 クリスティアーン・ホイヘンス 、 フィリップ・シーボルト(博物学者)、 ポール・エーレンフェストが学んだり、教えたり、議論をしたりしていました。他、オランダで個人的に関心があるのはデルフト工科大学です。そこは現在、低温物理学で有名な拠点ですので別途、機会があれば取りあげたいと思います。ローレンツの主な業績さて話戻ってローレンツですが、電気・磁気・光の関係を解きほぐしました。手法としては座標系の変換を効果的に使います。特にアインシュタインが特殊相対性理論を論じる際に起点の一つとして使った、「光速度不変の定理」はローレンツが導いた変換に関する考察があって成立しています。無論、アインシュタインは、その人柄と業績を高く評価していて、ローレンツを「人生で出会った最重要な人物」であったと語っています。ローレンツの人脈ローレンツとアインシュタインはエーレンフェストの家でよく語り合っていたと言われています。時間が出来たら寄合って、その時々の関心のある議題について語り合っていたのでしょう。有益な夜の時間が過ごせたはずです。このブログで今ご紹介している写真はそんな中での風景です。きっと。ローレンツの業績は、電磁気学、電子論、光学、相対性理論と多岐にわたります。弟子のゼーマンが電子に起因するスペクトル線が磁場中で分裂する事実を示した時には理論的論拠を与えノーベル賞を受けています。荷電粒子を考えた時には①静電場からの力が働き ②静磁場からの力が働き ③電場中で速度vで働くとき力が働き、その総和としてローレンツ力が表現されます。また、ローレンツ変換は相対論を語る時の基礎になっています。更に、双極子の性質を表すローレンツ・ローレンツの式などでローレンツは名前を残しています。その中で特に印象深い業績はやはり変換に関する物でしょう。ローレンツの独自性ローレンツは座標系の変換の中で局所時間 と移動体の長さの収縮を議論していきます。そこから、 「ローレンツ収縮」といった言葉も生まれてます。 理論への要請として、 マイケルソン・モーレの実験を理論から 説明するには光速度普遍の枠組みで 事実を組み立てなければなりません。 これが可能な理論的土台として ローレンツ変換は秀逸だったのです。最後に、そのご臨終の話を語りたいと思います。ローレンツの葬儀当日は追悼の意を込め、オランダ中の電話が3分間電話が止められました。英国王立協会会長だったアーネスト・ラザフォードがお別れの言葉を述べる中で多くの人がローレンツを惜しみました。 〆コスパ最強・テックジム|プログラミング教室の無料カウンセリング【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近全て返事が出来ていませんが 全て読んでいます。 適時、改定をします。nowkouji226@gmail.com2020/10/24_初版投稿 2025/06/22_改定投稿舞台別の纏めへ 時代別(順)のご紹介 オランダ関係の紹介へ ライデン大学のご紹介へ 電磁気学の纏めへ 熱統計力学関係へ 量子力学関係へAIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】(2021年9月時点での対応英訳)Lorenz of Leiden UniversityIts name is Hendrik Antoon Lorentz to be exact. Leiden University is famous for physics in the Netherlands, and Lorenz is from there. Ehrenfest will open the colloquium later, but one of the people who nurtured such a university in terms of theory is Lorenz. Besides at this universityEnrico Fermi, Nishi Amane (Japanese philosopher), Heike Kamerlingh Ones_ Albert Einstein, Christiaan Huygens, Philipp Siebold (naturalist), Paul EhrenfestWas learning, teaching, and discussing. Another personal interest in the Netherlands is the Delft University of Technology. It is currently a well-known base for cryogenic physics, so I would like to take up it if there is another opportunity.Lorenz’s main achievementsNow back to Lorenz, I unraveled the relationship between electricity, magnetism, and light. His technique is to effectively use coordinate system transformations.In particular, the “light velocity invariant theorem” that Einstein used as one of the starting points when discussing special relativity was established with consideration of the transformation derived by Lorenz. Of course, Einstein praised his personality and achievements and described Lorenz as “the most important person he met in his life.”Lorenz connectionsLorenz and Einstein are said to have often talked at Ehrenfest’s house. When I had time, I would have come together and talked about the agenda of interest at that time. You should have had a good night time. The photos I’m introducing in this blog are the scenery in such a situation.Lorenz’s achievements range from electromagnetism, electron theory, optics, and theory of relativity. When his disciple Zeeman showed the fact that electron-induced spectral lines split in a magnetic field, he gave a theoretical rationale and received the Nobel Prize. When he thought of charged particles① Force from electrostatic field works ② Force from static magnetic field works ③ When working at speed v in an electric field, force works,Lorentz force is expressed as the sum. Lorentz transformations are also the basis for talking about relativity. In addition, Lorentz has left its name in the Lorentz-Lorenz formula, which expresses the properties of dipoles. The most impressive of these is probably the one related to conversion.Lorenz’s uniquenessLorenz discusses the contraction of local time and mobile length in the transformation of the coordinate system. From there, the word “Lorentz contraction” is also born. As a request to his theory, to explain Michaelson Moret’s experiment from theory, we must construct the facts in the framework of universal light velocity. The Lorentz transformations were excellent as the theoretical basis for this.Finally, I would like to tell you the story of the end.On the day of Lorenz’s funeral, telephone calls throughout the Netherlands were suspended for three minutes in memory. Many missed Lorenz as Ernest Rutherford, president of the Royal Society, said goodbye.