2025年5月11日2025年4月29日に投稿 投稿者 元)新人監督 — コメントを残すジェームズ・ワット【産業革命時に蒸気機関を改良しフライフォイールを発明】‐5/11改訂 こんにちはコウジです。 「ジェームズ・ワット」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)産業革命史 【スポンサーリンク】 【1736年1月19日生まれ ~ 1819年8月25日没】 ワットはどんな人でしょうワットは蒸気機関の改良を通じて産業革命に 大きな成果を残したイギリスの偉人です。イギリスにおいて産業革命が起きて、 年4回の耕作が行われ始めていき、多くの 農業従事者が自営業から雇われ農夫となったり、 植民地からの労働力を含めて人が大きく動き、 工場稼働率が高まっていきます。急激に市場が拡大して産業が大きく変化していくのです。 そうした時代に蒸気機関や紡績機に対しての 技術開発に対する研究の重要性は増していきました。そんな中、ワットはグラスゴー大学でジョゼフ・ブラックらの協力を得て工房を作り作業を続けます。蒸気機関を対象に研鑽を続けます。 ワットによる蒸気機関の開発ワットは具体的な改良には蒸気機関における凝縮器の設計をします。具体的には排熱効率を見直すことによってロスを減らして出力効率を大きく高めたのです。当初の設計でシリンダー部での熱の出入りが非効率である事情に着目していて、そこを改良した訳です。ポールトンという資金面での協力者も得て、ワットは事業化に成功して成功を修めます。ワットが最終的に成功を収めた話を初めにしましたが、実際の所は製品化までに大きな道のりがありました。当時の加治屋さん達は今と比べて精度の低い生産過程を当たり前だと思っていたので、ミリ単位(場合によっては更に高精度)の加工を現在考えるような誤差範囲でこなしていく事は出来なかったのです。蒸気機関の性質上、ピストンとシリンダー間の寸法誤差は大きく性能を損ねます。丸い形で摺動方向に延びていくピストンとシリンダーの精度を上げていく事は大変な作業だった筈です。最終的には大砲製造に向けて開発された「精密、中ぐり技術」を使い製造していきます。また一方で、ワットはこれらの製造に関わる技術に対しての特許習得にも配慮しなければなりませんでした。そういった創意工夫を重ねる中でワットは関連会社の仕事として「鉱山の揚水機械」の仕事を受けます。それは大変大きなもので、直径127センチメートルのシリンダーをもった7メートル以上の大きさの機械でした。あまりに大きいので専用の建屋を建てて運営していたそうです。その後、機械に色々な改良を加えていきます。益々効率的な機械になっていったのです。 そのほかのワットの業績現代の自動車のエンジンで当たり前に使われている、フライホイールもワットの発明です。回転ムラを無くして機械を円滑に動作させることで動きの効率を上げて振動を抑え、耐久性を向上させるのです。何より、ワットはそうした仕事の中でエネルギーの定式化を進め力(Newton)の概念から仕事量(Watt)の概念 を発展させました。多くの人々から尊敬を受けました。考え抜いた 討論をして自分の見識を広げていった人でした。 近年、イギリスのお札に肖像画が用いられています。〆【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 最近は全て返信出来てませんが 必要箇所は適時、改定をします。nowkouji226@gmail.com2021/07/07_初回投稿 2025/05/11_原稿改定舞台別の纏めへ 時代別(順)のご紹介 イギリス関係のご紹介 力学関係のご紹介へ 熱統計関連のご紹介へ AIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】 (2021/年8月時点での対応英訳)What kind of person is Watt?Watt is a great British man who has made great strides in the Industrial Revolution through the improvement of steam engines.Due to the Industrial Revolution in Britain, four farms are cultivated a year, farmers are hired from self-employment to become farmers, people including labor from the colony move significantly, and the factory utilization rate increases. In the meantime, the market will expand rapidly and the industry will change drastically.In that era, the importance of research on technological development for steam engines and spinning machines increased.Meanwhile, Watt continues his work at the University of Glasgow with the help of Joseph Black and others to create a workshop. He continues his studies on steam engines.Development of steam engine by WattAs a concrete improvement, in the design of the condenser in the steam engine, Watt reduced the loss and greatly increased the output efficiency by reviewing the exhaust heat efficiency. His original design focused on the inefficiency of heat in and out of the cylinder, which was improved. With the help of Paulton, a financial collaborator, Watt succeeds in commercializing it.We started with the story of Watt’s ultimate success, but in reality there was a big road to commercialization.At that time, Kajiya and others took it for granted that the production process was less accurate than it is now, so it was possible to handle machining in millimeters (or even higher precision in some cases) within the margin of error that we are currently thinking about. I didn’t. Due to the nature of the steam engine, dimensional errors between the piston and cylinder will significantly impair performance. It must have been a difficult task to improve the accuracy of the piston and cylinder, which have a round shape and extend in the sliding direction. in the endWe will manufacture using the precision and boring technology developed for cannon manufacturing. On the other hand, Watt had to consider obtaining patents for these manufacturing technologies.While repeating such ingenuity, Watt receives the work of “pumping machine of the mine” as the work of the affiliated company. It was a very large machine, over 7 meters in size with a cylinder with a diameter of 127 centimeters.It was so big that he built and operated a dedicated building. After that, he made various improvements to the machine. It has become an increasingly efficient machine.Other Watts achievementsThe flywheel, which is commonly used in modern automobile engines, is also Watt’s invention. By eliminating uneven rotation and operating the machine smoothly, the efficiency of movement is increased, vibration is suppressed, and durability is improved.Above all, Watt proceeded with the formulation of energy in such work and developed the concept of work (Watt) from the concept of force (Newton).He was respected by many. He was a person who had a well-thought-out discussion and broadened his insight. In recent years, portraits have been used on British bills.〆
2025年5月10日2025年4月29日に投稿 投稿者 元)新人監督 — コメントを残す平賀源内【秩父で鉱山を開設|オランダからエレキテル等を日本人に紹介し啓蒙】‐5/10改訂 こんにちはコウジです。 「平賀源内」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)平賀源内 【スポンサーリンク】 【1728年生まれ ~ 1780年1月24日没】平賀源内について 少し時代が古いです。平賀源内は江戸時代、 田沼意次が老中を務めていた時代で 多彩な能力を発揮しています。物理学関係に留まらない。 埼玉県秩父市で鉱山開発を行い、 炭焼き、通船の指導を行いました。 そもそも、平賀源内は讃岐の国に生まれています。 家祖は信濃源氏の平賀氏。平賀氏は武田氏に敗れ、 一度、改姓して源内の時代に平賀姓に復姓しています。時代考察 科学史の観点から平賀源内の時代を考えてみると欧米と日本の時代のずれを感じます。その「ずれ」は大きなものでニュートンがバローからルーカス職を受けたのが1664年、万有引力を定式化したのが1665年であることを思い起こせば西洋と日本の隔たりはとても大きいです。そんな時代には源内は未だ生まれていません。加えて、平賀源内が「発明」したであろうものの独自性を考えていくと「新規性」という部分が殆ど見受けられません。内容は後述しますが、後世に残して人類の財産と出来るものは作り出せなかったのです。無論、当時の人々には目新しく、庶民に啓蒙をして意識を変えていった業績は大きいです。だがしかし、「数学」なりの学問体系を整えてはいません。足し算引き算が出来ても「微分。積分」それなあに?って有様でした。教育制度が大きく異なる事情があるのですが、結果は大きく異なるのです。日本ではその後、 数理学の学問体系は数百年間未開のままでした。平賀源内の業績 平賀源内が手掛けた分野は医学、薬学、漢学、浄瑠璃プロデュース、鉱山の採掘、金属精錬、オランダ語、細工物の販売、油絵、俳句と多岐にわたりました。その一つが「発明」で平賀源内は物理現象の啓蒙に一役買っているのです。所謂、エレキテルの紹介ですね。エレキテルは不思議な箱で内部にガラスによる摩擦起電部と蓄電部を持っています。じつのところ、平賀源内が発明したというよりオランダ製の物を平賀源内が紹介した訳ですが江戸時代の庶民達には摩訶不思議な魔法に見えたでしょうね。なにより、平賀源内の現象理解は現在の学問体系とは大きく異なっていたようです。念の為にコメントしておくと、新しい考えを作り出して発表して他の国の人に内容を問いかけたりする動きは見受けられません。鎖国の時代ですからね。平賀源内の時代から百年以上後に海外の学問理解を学び、自ら論文を書いていき、世界に内容を問いかけるのです。そこまでの道のりは、まだまだ長いのです。平賀源内はそんな時代の先人でした。そして、 文化的な功績も、そこかしこに残しています。 有名な言葉遊びで「源内が作者であろう」と言われ ている句があります。それを最後にご紹介します。「京都三条糸屋の娘 姉は十八・妹は十五 諸国大名弓矢で殺す 糸屋の娘は目で殺す 」〆以上、間違い・ご意見は 以下アドレスまでお願いします。 時間がかかるかもしれませんが 必ず返信・改定をします。nowkouji226@gmail.com2020/09/18_初稿投稿 2025/05/10_改定投稿サイトTOPへ 舞台別のご紹介へ 時代別(順)のご紹介 日本関連のご紹介AIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】 (2021年8月時点での対応英訳)about GENNAIIt’s a little old story. Hiraga Gennai is demonstrating a variety of abilities during the Edo period and when Tanuma Okitsugu was a senior citizen. It goes beyond physics.In the first place, Hiraga Gennai was born in Sanuki Province.His ancestor is Mr. Hiraga of Shinano Genji Family. Mr. Hiraga was defeated by Mr. Takeda, and once changed his name to Hiraga in the Gennai era.If you think about the times in Hiraga Gennai from the perspective of the history of science, you can feel the difference between the times of Europe, America and Japan. The “deviation” is large, and the gap between the West and Japan is very large, recalling that Newton received the Lucas job from Barrow in 1664 and formulated universal gravitation in 1665. In addition, when considering the uniqueness of what Hiraga Gennai would have “invented,” there is almost no “novelty.” I will explain the contents later, but I could not create something that could be left as a property of humankind for posterity. Of course, it was new to the people at that time, and although it was a great achievement to educate the common people and change their consciousness, it has not prepared an academic system like “mathematics”. Even if addition and subtraction are possible, “differentiation. Integral” What is it? It was like that. There are circumstances where the education system is very different, but the results are very different. In Japan, the academic system of mathematics has remained undeveloped for hundreds of years since then.Work of GENNAIHiraga Gennai’s fields ranged from medicine, pharmacy, Chinese studies, joruri production, mine mining, metal refining, Dutch, craft sales, oil paintings, and haiku.One of them is “invention”, and Hiraga Gennai plays a role in enlightening physical phenomena. This is the introduction of so-called Elekiter.Elekiter is a mysterious box that has a glass triboelectric generator and a power storage unit inside. As a matter of fact, Hiraga Gennai introduced a Dutch product rather than an invention by Hiraga Gennai, but it seemed like a mysterious magic to the common people in the Edo period.Above all, it seems that the understanding of phenomena in Hiraga Gennai was very different from the current academic system.If you comment just in case, there is no movement to create and announce new ideas and ask people from other countries about the content. More than 100 years after the time of Hiraga Gennai, he learned to understand foreign scholarship, wrote a treatise himself, and asked the world about the content. The road to that point is still long. Hiraga Gennai was a pioneer of that era.
2025年5月9日2025年4月29日に投稿 投稿者 元)新人監督 — コメントを残すL・オイラー【失明して単眼の巨人(サイクロプス)と呼ばれ|自然対数を定式化】‐5/9改訂 こんにちはコウジです。 「L・オイラー」の原稿を改訂します。主たる改定点はリンク切れ情報の確認です。 FanBlog閉鎖に伴いリンクは無効としてます。 また、リンク切れ情報も目立っており、改訂。 細かい文章も再考しています。しっかり正確に。 そして沢山情報が伝わるように努めます。 (以下原稿)数学大辞典【スポンサーリンク】 【1707年4月15日生まれ ~ 1783年9月18日没】L・オイラーのLはレオンハルトのLです。オイラーの業績 スイスのオイラーは当時の18世紀の数学界の中心人物でした。その後の世に数学が厳密になっていく一方で、モデルが洗練されていくのですが、それを使いこなす為の基礎を固めたのです。その活動範囲は多岐にわたります。他の人が見つけたと思っていた業績が、実はオイラーの仕事の焼き直しだったりした事が多々あったそうです。後に出てくるガウスと合わせて数学界の二大巨人であると言われているのです。加えて、オイラーは右目を失明していたので「単眼の巨人(サイクロプス)」と数学界で呼ばれていたそうです。まさに怪人ですね。同時に天文物理学でも業績を残しています。物理学で使う数学手法も残しました。オイラーが定式化した自然対数と三角関数の関係は私自身も何度も何度も、繰り返し使いました。オイラーの人生 さて、オイラーの人生における転機は大学時代に師となるベルヌーイがその才能を見出したタイミングでした。神学の道を目指していたオイラーの両親をベルヌーイが説得してオイラーは数学の道を選びます。 オイラーは招かれて外国で数年過ごしたりしながら研究を続けましたが、視力が低下していき遂には失明してしまいます。それでもオイラーは精力的に論文執筆の活動を続けました。頭の中で計算式を操り、口頭で協力者に内容を伝え、文章に起こしてもらい、論文を次々と完成させたのです。そんな困難の中、オイラーは晩年の研究を続けていました。まさに人生をかけた研究だったのです。〆最後に〆 テックアカデミー無料メンター相談 【スポンサーリンク】以上、間違い・ご意見は 以下アドレスまでお願いします。 時間がかかるかもしれませんが 必ず返信・改定をします。nowkouji226@gmail.com2020/09/26_初稿投稿 2025/05/09_改定投稿舞台別の纏めへ 時代別(順)のご紹介 スイス関係のご紹介へ 量子力学関係へAIでの考察(参考)【このサイトはAmazonアソシエイトに参加しています】【2021年8月時点での対応英訳】L. Euler’s L is Leonhard’s L.Job of EulerEuler in Switzerland became the center of the 18th century mathematics world at the time, laying the foundation for mastering sophisticated models while mathematics became more rigorous in later generations. The range of activities is wide-ranging. In many cases, the achievement that others thought they had found was actually a rehash of Euler’s work. He is said to be one of the two giants in mathematics, along with Gauss, who will appear later. father,Euler was blind in his right eye, so he was called “monocular giant (cyclopes)” in the mathematical world. It’s just a monster. He also has a track record in astrophysics.Euler also left behind the mathematical techniques used in physics. I myself used the relationship between the natural logarithm and trigonometric functions formulated by Euler over and over again.LIFE of EulerNow, the turning point in Euler’s life was when his teacher Bernoulli discovered his talent during his college days.Bernoulli convinces Euler’s parents who were aiming for the theological path, and Euler chooses the path of mathematics.Euler was invited to spend several years abroad and continued his research, but his eyesight deteriorated and he eventually lost his eyesight.Still Euler is energeticallyHe continued his treatise writing activities.Euler manipulated the formulas in his head, verbally communicated to his collaborators, had them transcribed, and completed his treatises one after another.In the midst of such difficulties, Euler continued his studies in his later years. I think it was a study that took his life.〆
2025年5月4日2025年5月5日に投稿 投稿者 元)新人監督 — コメントを残す理研で新型量子計算機稼働【米クオンティニュアム社が設置_イオン方式の新型】 新型量子コンピューターの概要量子コンピューターは、従来のコンピューターでは解決が難しい問題に対して新たな可能性を提供する革新的な技術です。特に、イオントラップ方式は高い精度と安定性を持ち、量子コンピューターの実現において注目されています。本章では、イオントラップ方式の量子コンピューターについて、その原理、構造、そして拡張性に焦点を当てて解説します。イオントラップ方式の原理イオントラップ方式の量子コンピューターは、原子から電子を1つ取り去ったイオンを電場で空間に捕捉し、その内部状態を量子ビットとして利用します。これにより、外部環境からの影響を受けにくく、長いコヒーレンス時間を実現できます。また、レーザーを用いてイオンの状態を精密に制御し、量子ゲート操作を行います。この方式は、量子ビット間のばらつきが少なく、高い忠実度を持つことが特徴です。mki.co.jp+2日経クロステック(xTECH)+2理化学研究所+2J-STAGE+1日経クロステック(xTECH)+1理化学研究所出典: 日経クロステックイオントラップ方式の構造イオントラップ方式の量子コンピューターは、以下の主要な構成要素から成り立っています。イオントラップ: 電場を用いてイオンを空間に捕捉する装置で、イオンの位置を安定に保ちます。日経クロステック(xTECH)+1mki.co.jp+1レーザーシステム: イオンの状態を制御するために、特定の波長のレーザーを照射します。日経クロステック(xTECH)真空チャンバー: イオンが外部の粒子と干渉しないように、超高真空環境を維持します。J-STAGE光学系: レーザー光を適切に導くためのミラーやレンズなどの光学部品で構成されます。検出システム: イオンの状態を読み取るための光検出器やカメラなどが含まれます。これらの構成要素が連携することで、高精度な量子操作が可能となります。出典: 日経クロステックイオントラップ方式の拡張性と課題イオントラップ方式は高い精度を持つ一方で、スケーラビリティに課題があります。一つのトラップに多くのイオンを配置すると、制御が難しくなるため、複数のトラップを連携させる技術が求められます。その一つが「光接続法」で、異なるトラップ間で光子を介して量子情報を伝達する方法です。この技術により、大規模な量子コンピューターの実現が期待されています。日経クロステック(xTECH)+2NICT+2J-STAGE+2mki.co.jp+2日経クロステック(xTECH)+2J-STAGE+2出典: 日経クロステックまた、オンチップイオントラップの開発も進められており、電極を同一平面上に配置することで、より自由度の高いトラップ電位の生成が可能となります。これにより、量子ビットの配置や制御が柔軟になり、拡張性の向上が期待されています。NICT+1J-STAGE+1J-STAGE+4理化学研究所+4日経クロステック(xTECH)+4出典: 情報通信研究機構(NICT)イオントラップ方式の量子コンピューターは、高精度な量子操作が可能であり、将来的な大規模化に向けた研究が進められています。今後の技術革新により、実用的な量子コンピューターの実現が期待されます。新型量子コンピューター「黎明」の仕様量子コンピューターの進化は、私たちの未来を大きく変える可能性を秘めています。特に、理化学研究所で稼働を開始した「黎明」は、その革新的な設計と性能で注目を集めています。本章では、「黎明」の仕様について、以下の3つの観点から詳しく解説します。1. イオントラップ方式とレーザー制御「黎明」は、イオントラップ方式を採用しており、イオンを電場で閉じ込め、レーザーで操作や測定を行います。この方式は、量子状態の保持が容易で、計算速度が速いという利点があります。一方で、量子ビットを精密に操作する必要があり、イオンを移動させる操作には時間がかかるという課題もあります。出典: Quantinuum JapanPR News Asia+2Quantinuum – クオンティニュアム株式会社+2QUANTUM BUSINESS MAGAZINE+22. コンパクトな設計と冷却システム「黎明」は、一辺が約1インチ(約2.54cm)のチップに、マイクロメートル単位の溝を掘り、イオンを閉じ込めたり移動させたりする構造を持っています。このチップは、バスケットボール大の容器に収納され、摂氏マイナス250度程度に冷却されます。容器には複数の窓があり、そこからレーザーを照射して操作や測定を行います。出典: Quantinuum JapanQUANTUM BUSINESS MAGAZINE+2Quantinuum – クオンティニュアム株式会社+2PR News Asia+23. スーパーコンピューターとの連携と将来展望「黎明」は、理化学研究所とソフトバンクの共同研究により、スーパーコンピューター「富岳」との連携を目指しています。このハイブリッドな計算環境により、エラーの発生を抑える効果が期待されています。また、米クオンティニュアム社は、2025年中に96量子ビットの量子コンピューター「Helios(ヘリオス)」を開発する予定であり、さらなる性能向上が見込まれています。出典: Quantinuum Japan「黎明」の登場は、量子コンピューターの実用化に向けた大きな一歩となりました。今後の技術革新と応用範囲の拡大に注目が集まります。その他の方式を含めた現状の課題量子コンピューターの開発は、さまざまな方式が競い合いながら進化しています。それぞれの方式には独自の利点と課題があり、最適なアプローチを模索する研究が続けられています。主要な量子コンピューター方式の比較方式主な特徴メリットデメリットイオントラップ電場と磁場でイオンを捕捉し、レーザーで制御高い忠実度、長いコヒーレンス時間制御が難しく、スケーリングに課題がある中性原子レーザーで冷却した中性原子を光ピンセットで操作スケーラビリティが高い制御精度がイオントラップ方式に劣る超伝導超伝導回路を用いて量子ビットを構成高速なゲート操作、既存技術との親和性超低温環境が必要で、エラー率が高い光量子光子を用いて量子情報を伝達・処理常温動作が可能、通信との親和性が高い光子の制御が難しく、エラー訂正が課題シリコンスピンシリコン中の電子スピンを利用既存の半導体技術を活用可能高精度な制御が必要で、技術的なハードルが高い出典: WIRED JapanWIRED.jp+1WIRED.jp+1イオントラップ方式の詳細イオントラップ方式では、電場と磁場を組み合わせてイオンを真空中に捕捉し、レーザーで量子ビットとして制御します。この方式は、量子ビット間の相互作用を高精度で制御できるため、誤り訂正に適しています。しかし、イオンの移動や配置に時間がかかり、大規模化には課題があります。WIRED.jp+1WIRED.jp+1出典: 大阪大学Resou中性原子方式の詳細中性原子方式では、レーザーで冷却した中性原子を光ピンセットで並べ、量子ビットとして利用します。この方式は、同一の原子を大量に配置できるため、大規模な量子コンピューターの構築に向いています。ただし、原子間の相互作用を制御する技術がまだ発展途上であり、精度の向上が求められています。東京医科歯科大学+3blueqat+3科学技術振興機構+3出典: WIRED JapanWIRED.jp+1WIRED.jp+1超伝導方式の詳細超伝導方式では、超伝導体を用いた回路で量子ビットを構成します。この方式は、既存の半導体技術を活用できるため、産業界での実用化が進んでいます。しかし、動作には極低温環境が必要であり、冷却装置のコストやエネルギー消費が課題となっています。leapleaper.jpblueqat+1leapleaper.jp+1出典: LeapLeaperleapleaper.jp各方式には独自の強みと課題があり、用途や目的に応じて最適な方式を選択することが重要です。今後の技術革新により、これらの方式がさらに進化し、実用化が進むことが期待されています。blueqat情報源 今後の日本での対応日本は量子コンピューター技術の発展において、独自の強みを活かしながら世界と競争しています。特にイオントラップ方式においては、精密なレーザー制御や真空技術が求められるため、日本の高度な技術力が期待されています。また、産学官の連携を通じて、量子コンピューターの社会実装に向けた取り組みも進行中です。ソフトバンク産業技術総合研究所と英国Universal Quantum社の連携2025年3月、産業技術総合研究所(産総研)は英国のUniversal Quantum社と、日本におけるイオントラップ型量子コンピュータとその周辺技術の開発に関する覚書を締結しました。この連携により、スケーラブルな量子コンピューティングパワーの提供や、複雑な量子アプリケーションの開発、大規模量子コンピューティングに必要な基盤サブシステムの共同開発が期待されています。 国立研究開発法人人工知能研究所ソフトバンクと東京大学の産学連携ソフトバンク株式会社と東京大学は、量子コンピューターの社会実装に向けた共同研究を2023年9月に開始しました。ソフトバンクは、東京大学が運営する「量子イノベーションイニシアティブ協議会」に加盟し、産学連携を強化しています。また、127量子ビットのプロセッサーを搭載した量子コンピューター「IBM Quantum System One」を活用し、量子コンピューターの新たなユースケースの発掘を進めています。 ソフトバンク+1ニュースイッチ by 日刊工業新聞社+1イオントラップ方式の研究開発量子科学技術研究開発機構(QST)は、イオントラップ方式による量子コンピューターの研究開発を進めています。特に、133バリウムイオンを用いた量子ビットの開発に注力しており、ノイズに強く演算精度が高い特性を持つことから、量子コンピューターの実現を加速できる可能性があります。 QST+1QST+1さらに、情報通信研究機構(NICT)では、オンチップイオントラップの開発を進めており、電極を平面形状に配置することで、自由度の高いトラップ電位の生成が可能となっています。これにより、量子コンピューターの大規模化が期待されています。 国立研究開発法人情報通信研究機構+1科学技術振興機構+1これらの取り組みにより、日本は量子コンピューター技術の発展において、独自の強みを活かしながら世界と競争しています。今後も、産学官の連携を通じて、量子コンピューターの社会実装に向けた取り組みが加速することが期待されます。ソフトバンク情報源〆以上、間違い・ご意見は 以下アドレスまでお願いします。 問題点に対しては 適時、返信・改定をします。nowkouji226@gmail.com2025/05/04‗初稿投稿旧舞台別まとめへ 舞台別のご紹介へ 時代別(順)のご紹介 力学関係へ 電磁気関係へ 熱統計関連のご紹介へ 量子力学関係へ【このサイトはAmazonアソシエイトに参加しています】