に投稿 コメントを残す

J・F・ジョリオ=キューリー
【1900年3月19日 ~ 1958年8月14日】‐4/12改訂

パリの夕暮れ


【スポンサーリンク】

今回のご紹介はジャン・フレデリック・ジョリオ=キューリーですが、J-F・ジョリオ=キューリーはフランスパリに生まれ、亡くなるまでパリで暮らしました。そんな人の58年の人生のご紹介です。名前の綴りはJean Frédéric Joliot-Curieとなります。著名なキューリー夫妻の娘婿としてご紹介するとわかりやすいでしょうか。つまり、義理の父はピエール・キュリー、義理の母はマリー・キュリー。義理の妹はエーヴ・キュリーとなります。

このご紹介の中でフレデリックとご紹介していきますが、フレデリックはラジウム研究所でマリ・キューリーの助手となりました。その研究所でマリの娘イレーヌを知り交際を深め。まもなく2人は結婚しました。その時点で姓を「ジョリオ=キューリー」としたのです。ジョリオはフレデリックの血筋の名前でキューリーはイレーヌの血筋の名前でした。二人は後に一緒にノーベル賞を受けます。

フレデリックとイレーヌの夫婦は同位体元素への反応過程を研究して新しい物質を作り上げたのです。具体的にはアルミニウムに対してアルファ線を照射したときに人工放射性同位元素である30P(リン30)が発生したのです。その後、フレデリックはフランス原子力庁の長官としてフランス初の原子炉を1947年に建設するプロジェクトに加わります。原子力の平和的な利用と環境に及ぼす影響については各論があると思えますが、今のフランスの電源構成に大きな影響を与えた人だと言えます。

政治的な活動としてフレデリックは第二次世界大戦時にはナチスドイツに対抗するレジスンス運動に参加しました。そして終戦後は先述したフランス原子力庁の仕事をしながらフランス国立科学研究センター総裁、コレージュ・ド・フランスの教授も務めていました。他、パグウォッシュ会議(核兵器と戦争の廃絶を訴える国際会議)の創始、世界平和評議会の初代議長、フランス共産党の党員と多方面で尽力し活躍をしました。

教育者としてフレデリックは日本初の女性物理学者である湯浅年子に物理学を指導しています。その実績も我々日本人には新鮮なのではないでしょうか。本当に多彩な魅力を持っていた人だと言えます。

更に意外な側面は柔道との関わりです。フレデリックはフランス柔術クラブの名誉会長でした。柔道創始者の嘉納治五郎も就いていた役職です。フレデリックがいかにフランス国民から敬愛されていたかがわかりますね。

 

〆最後に〆

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2022/04/05_初回投稿
2022/04/12_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介

力学関係のご紹介

【このサイトはAmazonアソシエイトに参加しています】


 

(対応英訳)

Introducing this time is Jean Frederick Jorio-Curie, but JF Jorio-Curie was born in Paris, France and lived in Paris until his death. This is an introduction to such a person’s 58-year life. His name is spelled Jean Frédéric Joliot-Curie. Is it easy to introduce as the son-in-law of the famous Mr. and Mrs. Curie? That is, his father-in-law is Pierre Curie and his mother-in-law is Marie Curie. His sister-in-law will be Ave Curie.

In this introduction, I will introduce you to Frederick, who became an assistant to Marie Curie at the Radium Institute. He got to know Mali’s daughter Irene at the institute and deepened his relationship. Soon the two got married. At that point he changed his surname to “Jorio-Curie”. Jorio was the name of Frederick’s lineage and Curie was the name of Irene’s lineage. The two will later receive the Nobel Prize together.

The couple of Frederick and Irene studied the process of reaction to isotopes and created a new substance. Specifically, when aluminum was irradiated with alpha rays, the artificial radioisotope 30P (phosphorus 30) was generated. Frederick then joined the project to build France’s first nuclear reactor in 1947 as Secretary of the French Atomic Energy Agency. There seems to be some debate about the peaceful use of nuclear energy and its impact on the environment, but he is one of the most influential people in France’s current power mix.

As a political activity, Frederick participated in the resistance movement against Nazi Germany during World War II. And after the end of the war, he was also the president of the French National Center for Scientific Research and a professor at Collège de France, while working for the French Atomic Energy Agency mentioned above. He and others have worked extensively with the founding of the Pugwash Conference (an international conference calling for the abolition of nuclear weapons and war), the first chairman of the World Peace Council, and members of the French Communist Party.

As an educator, Frederick teaches physics to Toshiko Yuasa, Japan’s first female physicist. I think that achievement is also fresh for us Japanese. It can be said that he really had a variety of charms.

A more surprising aspect is the relationship with judo. Frederick was the Honorary Chairman of the French Jiu-Jitsu Club. He was also in the position of Judo founder Jigoro Kano. You can see how Frederick was loved by the French people.

に投稿 コメントを残す

E・ウィグナー
_【1902年11月17日 -4/11改定】

シカゴの画像

こんにちはコウジです。「ウィグナー」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と2/20時点で‗
①SyvEgTqxNDfLBX‗3385⇒3395‗②ev2Fz71Tr4x7b1k‗2717⇒2736
‗③BLLpQ8kta98RLO9‗2543⇒2593‗④KazenoKouji‗3422⇒3477
なので合計‗6102+5965=【12057@2/9】⇒6131+6170=【12301@2/20】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1902年11月17日 ~ 1995年1月1日】


【スポンサーリンク】

その名を書き下すと

ユージン・ポール・ウィグナー

(Eugene Paul Wigner)。

ハンガリー生まれのユダヤ人です。

後程詳しくご紹介しますが、ウィグナーは

ポール・ディラックの義理のお兄さんで、

BCS理論の作成者3人組の中心、

バーディーンの指導教官です。

物凄い人脈を持っている人ですね。また、

「原子核と素粒子の理論における対称性の発見」

に対して1963年の

ノーベル物理学賞を受賞しています。

対称性に着目した素粒子の整理は有効で

その分類方法が無ければ

進まなかった話が沢山あります。

 

 ドイツでのウィグナー

ユージン・ウィグナーは現在のベルリン工科大学

を卒業後そこで勤務していましたが

ナチスドイツのユダヤ人迫害に対して

研究継続の困難を感じアメリカに亡命をします。

米国に亡命後はウィスコンシン大学で

物理学の教授を務め、その後に

プリンストン大学で数学の教授を務めました。

そんなウィグナーはレオ・シラード

エドワード・テラーらと、ナチスドイツが

原子爆弾を開発した時の危険性を

アメリカ政府に対して訴えていきました。

実際にベルリンを追われた過去を持つ

ウィグナーは現実に当時の状況を分析

していたのだろうと思います。つまり、

当時のドイツの科学の水準を分かっていて

ナチスが有していた兵器を理解していたから、

ナチスによる原爆開発の危険を強く感じて

いたのだと思えます。ただ、

実際の歴史を知っている

今の我々にとって見たら取り越し苦労です。

ノルマンディー上陸作戦以降の連合軍の

通常兵器での反攻を思えば、優秀とはいえ、

一国のドイツがヨーロッパ大陸を長期間占領し続ける

事は出来なかったでしょう。

現在で考えると強大化する中国に対して欧米諸国

がどういった対応をするか

気になる所でありますよね。いずれにせよ、

英米が原爆を所有するきっかけを

ウィグナー達は作ったのです。

 原爆とウィグナー

ウィグナーはアメリカの原爆開発のきっかけ

となったアインシュタイン名による大統領宛書簡

の起草対してシラードやテラーと連名で加わり

ました。加えて、原爆を開発するマンハッタン計画

にはメンバーとして加わりました。

晩年にウィグナーは哲学的な傾向を深め、講演録

「自然科学における数学の理不尽な有効性」を残しています。

著名なこの著作は多分野に影響を与えています。また、

ウィグナーの妹は食事の席にディラックを招いた縁で、

彼の奥さんになっています。とても意外な取り合わせですね。

英語が話せるようになる「アクエス」

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をしていきます。

nowkouji226@gmail.com

2021/04/06_初版投稿
2022/04/11_改定投稿

纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
ドイツ関連のご紹介

アメリカ関連のご紹介へ
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

 

(2021年11月時点での対応英訳)

If you write down the name

Eugene Paul Wigner.

He is a Hungarian-born Jew. As I will explain in detail later, Wigner is Paul Dirac’s brother-in-law and the supervisor of Bardeen, the center of the trio of creators of BCS theory. He has a tremendous network of contacts, isn’t he? He also received the 1963 Nobel Prize in Physics for his “discovery of symmetry in the theory of nuclei and elementary particles”. There are many stories that the arrangement of elementary particles focusing on symmetry is effective and would not have progressed without the classification method.

Wigner in Germany

Eugene Wigner worked there after graduating from the current Berlin Institute of Technology, but found it difficult to continue his research on the persecution of Jews in Nazi Germany and went into exile in the United States.

After his exile in the United States, he was a professor of physics at the University of Wisconsin and then a professor of mathematics at Princeton University. Wigner, along with Leo Szilard and Edward Teller, appealed to the US government about the dangers of Nazi Germany developing an atomic bomb.

I think Wigner, who had a past of being ousted from Berlin, was actually analyzing the situation at that time. In other words, he knew the level of German science at the time and understood the weapons that the Nazis had, so it seems that he was strongly aware of the danger of the Nazis developing an atomic bomb. However, for those of us who know the actual history, it is a difficult move. Given the counterattack of the Allied forces with conventional weapons since the Invasion of Normandy, Germany would not have been able to continue to occupy the continent for a long time, albeit excellent. When you think about it now, you are wondering how Western countries will respond to the growing power of China. In any case, the Wigners created the opportunity for Britain and the United States to own the atomic bomb.

Atomic bomb and Wigner

Wigner joined Szilard and Teller jointly in drafting a letter to the president in the name of Einstein, which triggered the development of the American atomic bomb. In addition, he joined the Manhattan Project to develop the atomic bomb as a member.

In his later years Wigner deepened his philosophical tendencies, leaving behind his lecture “The Unreasonable Effectiveness of Mathematics in the Natural Sciences”. His prominent work has influenced many disciplines. Wigner’s sister is also his wife because he invited Dirac to his dining table. It’s a very surprising combination.

に投稿 コメントを残す

クリスティアーン・ホイヘンス
【1629年4月14日‐4/11改訂】

デルフフト工科大学

こんにちはコウジです。「ホイヘンス」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と2/20時点で‗
①SyvEgTqxNDfLBX‗3385⇒3395‗②ev2Fz71Tr4x7b1k‗2717⇒2736
‗③BLLpQ8kta98RLO9‗2543⇒2593‗④KazenoKouji‗3422⇒3477
なので合計‗6102+5965=【12057@2/9】⇒6131+6170=【12301@2/20】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1629年4月14日‐1695年7月8日】


【スポンサーリンク】

ホイヘンスの生い立ち

オランダの名家にホイヘンスは生まれ、ライデン大学では

数学と法律を修めました。物理学はその知見を活かす

フィールドだったとも言えます。特に

数学で優秀さを発揮していたと言われています。

光学でのモデルは幾何学的なイメージを

しっかり作ると分かり易く,話が整理しやすいのです。

ホイヘンスの業績

物理学関係の業績としては特に、光学での業績が

顕著です。所謂、ホイヘンスの原理は後の物理学者達

が波動を考えていく上でとても有益だった筈です。

波の性質が突き詰められていき、縦波とか横波とか周波数とか周期とか最終的には波面や、さざ波も、光も同じ定数で表現出来る現象となるのです。この理解が重ね合わせの原理の土台として役立ち、振動解析や音階解析へと話が進んでいくのです。

ホイヘンスに繋がる人脈

更に今世紀初頭にエーレンフェストアインシュタインがホイヘンスの母校であるライデン大学で議論していた事を鑑みると、人々の繋がりに小さな感動さえ覚えます。加えてライデン大学ではローレンツカメリー・オネスも研究を進めていくのです。

科学での一番最初の障壁は一般化を含めた理解だ

と感じます。一般の人々にも説明出来る

「言葉」を出来るだけ沢山、科学者が

作り出すことが大事です。その点で

ホイヘンスは初めの難しさを超えたのです。

 

ホイヘンスの他の業績

別途、ホイヘンスは土星の衛星タイタンの発見したり、振り子の原理を理解して時計を制作したり、オリオン大星雲を発見してスケッチしたり、その進取の精神には驚かされます。特に1675年に世界で初めて火薬を使った往復型の内燃機関を形にしているそうです。ニュートンのプリンキピア刊行が1687年ですので、「瞬時に伝番していく撃力」に関する考察を、ホイヘンスが独自に形にしていると想定されます。特筆すべき一面かと思えます。

なお、いわゆるエーテルの存在をホイヘンスは想定して

後の物理学に議論の土壌を残しました。

この功績も非常に重要だと思います。

〆最後に〆

 

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/18_初版投稿
2022/04/11_改定投稿

旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
オランダ関係の紹介へ       
ライデン大学のご紹介へ
電磁気学の纏め
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(以下は2021年8月時点での対応英訳です)

Base of Huygens’s LIFE

Huygens was born into a well-known Dutch family and studied mathematics and law at Leiden University. It can be said that physics was a field where he could make use of his knowledge. He is especially said to have showed his excellence in mathematics. An optical model is easy to understand if you make a solid geometric image, and it is easy to organize the story. His physics-related work is particularly remarkable in “Optics”. The so-called “Huygens principle” should have been very useful for later physicists to think about waves.

Huygens’s work

The nature of the wave is scrutinized, and it becomes a phenomenon that the longitudinal wave, the transverse wave, the frequency, the period, and finally the wavefront, the ripples, and the light can be expressed by the same constant. This understanding serves as the basis for the principle of superposition, and the discussion progresses to vibration analysis and scale analysis.

Huygens’s reration

Also, given that Ehrenfest and Einstein were discussing at Leiden University, Huygens’ alma mater, at the beginning of this century, I am even impressed by the connections between people. In addition, Leiden University will also pursue research by Lorenz and Kamerlingh Ones.

I feel that the very first barrier in science is understanding, including generalization. It is important for scientists to create as many “words” as possible that can be explained to the general public. In that respect, Huygens surpassed his initial difficulties.

Huygens’s other works

You will also be amazed at the enterprising spirit of discovering Saturn’s moon Titan, understanding the principles of the pendulum to make watches, and discovering and sketching the Orion Nebula. Especially in 1675, it is said that the world’s first reciprocating internal combustion engine using gunpowder was formed. Since Newton’s Principia was published in 1687, it is assumed that Huygens has uniquely shaped his thoughts on “instantaneous transmission power.” I think this is a noteworthy aspect.

Huygens also left the ground for debate in later physics, assuming the existence of so-called ether. I think this achievement is also very important.

に投稿 コメントを残す

G・R・キルヒホフ
【1824年3月12日 ~ 1887年10月17日】‐4/11改訂

deutuland

こんにちは、コウジです。キルヒホッフの原稿を改訂します。主な改定点はこの投稿へのリンクの挿入、および文章内容の最高です。ご覧ください。【以下原稿です】


【スポンサーリンク】

 

その名は正しくはグスタフ・ロベルト・キルヒホフでGustav Robert Kirchhoff,とつづります。1824年に現在のロシア領カリーニングラードであるケーニヒスベルクで生まれました。生まれ故郷にあるケーニヒスベルク大学で学び、26歳でブレスラウ大学員外教授に就任しています。
キルヒホッフについて伝えられている内容は主に業績となりますので、本稿は時代背景をもとにして研究内容を中心とした記述を纏めたいと思います。私自身がドイツ系の人になったつもりで出来るだけ正確に記載したいと考えています。ロシアをドイツ語圏と見てるのは強引だと思いますが、そこの考察は後程。;)

実際にキルヒホッフの業績の中で有名なものは①電気回路におけるキルヒホッフの法則、②放射エネルギーについてのキルヒホッフの法則、③反応熱についてのキルヒホッフの法則です。それぞれにとても大事な考察だったといえるでしょう。

まず第一に、回路におけるキルヒホッフの法則が最重要です。別言すれば一番知られています。当然と言えば当然の事実を明言化しているだけだ、とも言えるのですが「回路網中の任意の接続点に流入する電流の和は 0(零)である」というのが第一の法則です。正確にはキルヒホッフの第一法則というべきでしょうが、本稿では単純に「第一の法則」または「第一法則」と省略します。この時代には自由電子運動論を裏付ける理論はありません。電子を直接観測にかけるどころか原子や電子のサイズも想像がつかないで、あくまで電子は一つのモデルでした。こうして考えた時に、正直でドイツで学んだ人は出来る事実で話を組み立てます。つまり出来るだけ正確に観測を続けて観測結果を蓄積して、観測事実の相互関係を定量化するのです。当時は電源と抵抗の単純な回路を考えた時に夫々を要素と考えて回路に落とす作業自体にも議論があったでしょう。つまり、我々が当たり前に書いている回路図も国際度量衡といった枠組みが無くて、ヨーロッパの一部の人々が使うだけの不可思議な記号だったのです。知る人ぞ知る知見だったとも言えます。そんな回路上での一点を考えたら入り込む電流と出ていく電流の総和が等しい。実験事実によるとゼロとなるという事実が第一法則なのです。この法則は今、電気工学(ひいては現代産業)で幅広く応用されています。

そして次に、キルヒホッフの電圧則はキルヒホッフの第2法則とも呼ばれます。回路を考えたときに回路網中の任意の閉ループを考えてみて構成する部分的な電圧を計測したとき、任意の分け方で考えた起電力の総和と電圧降下の総和は等しいのです。抵抗、電球、電線電池からなる回路で何が電気を起こしていて、何が消費するか考えてみてください。そして再強調しますがこの時代には電子の存在は今より不確かです。今の学生が教科書を読んだときに漫画的な丸い物体(模式的な電子の姿)を見て想像するような作業ができないのです。力学と比べて電磁気学や熱学はまとめ難い側面があります。実際には電圧を生じる電池のような物質があり、電気を流し抵抗を持つ同線等の要素を細かく考えていくことで、回路間の色々な場所での電圧降下をかんがえていき、キルヒホッフは第二法則を確立することが出来たのです。

そして1859年にキルヒホッフは黒体放射におけるキルヒホフの放射法則を発見しました。電子の運動でオームの法則に従い議論されるのに対して、熱放射は空間での現象に対しての考察です。また、別の空間的な考察としてキルヒホッフには分光学での考察も行っています。フラウンホーファーが発見したいわゆるフラウンホーファー線(太陽の光線を分解した時に現れる特徴的な吸収)がナトリウムのスペクトルと同じ周波数帯に見受けられると示し、(今で言う分光学的方法で)太陽の内部にあると思われる元素を同定できることを示しました。他に音響学、弾性論に関しても先進的な研究を行っています。

〆最後に〆

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2022/04/04_初回投稿
2022/04/11_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係のご紹介

【このサイトはAmazonアソシエイトに参加しています】


 

 

(対応英訳)

His name is correctly Gustav Robert Kirchhoff, spelled Gustav Robert Kirchhoff. He was born in 1824 in what is now Russian Kaliningrad, Königsberg. He studied at the University of Königsberg in his hometown and became a non-professor at the University of Breslau at the age of 26.
Since the content reported about Kirchhoff is mainly his achievements, this article will summarize his research content based on his historical background. I would like to describe it as accurately as possible as if I were a German person. 😉

In fact, the most famous achievements of Kirchhoff are (1) Kirchhoff’s law in electric circuits, (2) Kirchhoff’s law on radiant energy, and (3) Kirchhoff’s law on heat of reaction. It can be said that each was a very important consideration.

First of all, Kirchhoff’s law in the circuit is of utmost importance. In other words, it is the best known. Of course, it can be said that it only clarifies the facts of course, but the first rule is that the sum of the currents flowing into any connection point in the network is 0 (zero). am. To be precise, it should be called Kirchhoff’s first law, but in this article, it is simply abbreviated as “first law” or “first law”. There is no theory to support the theory of free electron motion in this era. Far from directly observing the electrons, I couldn’t imagine the size of the atoms and electrons, and the electrons were just one model. When thinking this way, honest and learned in Germany build up the story with the facts that can be done. In other words, we continue to observe as accurately as possible, accumulate observation results, and quantify the interrelationship of observation facts. At that time, when considering a simple circuit of power supply and resistance, there would have been discussion about the work itself of considering each as an element and dropping it into the circuit. In other words, the circuit diagram we take for granted was a mysterious symbol that was only used by some people in Europe, without a framework such as the General Conference on Weights and Measures. It can be said that it was a knowledge known to those in the know. Considering one point on such a circuit, the sum of the incoming current and the outgoing current is equal. The first law is the fact that it is zero according to the experimental facts. This law is now widely applied in electrical engineering (and thus modern industry).

And then, Kirchhoff’s voltage law is also called Kirchhoff’s second law. When considering a circuit, when considering an arbitrary closed loop in the circuit network and measuring the partial voltage, the sum of the electromotive force and the sum of the voltage drops considered by any division are equal. Think about what is producing and consuming electricity in a circuit consisting of resistors, light bulbs, and electric wire batteries. And again, the existence of electrons in this era is more uncertain than it is now. When a current student reads a textbook, he cannot do the work that he imagines by seeing a cartoon-like round object (a schematic electronic figure). Compared to mechanics, electromagnetism and thermal physics are difficult to summarize. In reality, there is a substance such as a battery that generates voltage, and by carefully considering factors such as the same line that conducts electricity and has resistance, Kirchhoff considers the voltage drop in various places between circuits. I was able to establish the second law.

And in 1859 Kirchhoff discovered Kirchhoff’s law of radiation in blackbody radiation. Whereas the motion of electrons is discussed according to Ohm’s law, thermal radiation is a consideration of phenomena in space. In addition, as another spatial consideration, Kirchhoff is also considering spectroscopy. The so-called Fraunhofer line discovered by Fraunhofer (the characteristic absorption that appears when the sun’s rays are decomposed) is shown to be found in the same frequency band as the spectrum of sodium, inside the sun (in what is now called a spectroscopic method). It was shown that the element that seems to be in can be identified. He also conducts advanced research on acoustics and elasticity.

に投稿 コメントを残す

ポール・ディラック
【1902年8月8日生まれ‐4/10改訂】

こんにちはコウジです。「ディラック」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と2/20時点で‗
①SyvEgTqxNDfLBX‗3385⇒3395‗②ev2Fz71Tr4x7b1k‗2717⇒2736
‗③BLLpQ8kta98RLO9‗2543⇒2593‗④KazenoKouji‗3422⇒3477
なので合計‗6102+5965=【12057@2/9】⇒6131+6170=【12301@2/20】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1902年8月8日生まれ ~ 1984年10月20日】


【スポンサーリンク】

無口なディラック

イギリスのディラックは

とても謙虚で無口な人でした。

ノーベル賞が決まった際には、

有名になる事を恐れて受賞の辞退を

考えていた様です。そんな人なのですが、

20世紀初頭の天才達がひしめく中で

ファインマンハイゼンベルクシュレディンガーなど

と量子力学を確立します。特にシュレディンガーとは

同じタイミングでノーベル賞を受賞します。

ディラックの人柄を考えるにあたり少し、

その家族について言及します。

ディラックが10代後半の時期にスイスから

家族は国籍を移しています。そしてディラックの

性格形成を語っていく上で家庭環境は大きな要素

だったようです。まず1924年にディラックの

兄が自ら命を断っています。

色々考えた末だったのでしょうか。

ディラック自身も、その父と会話し辛い

場面が多々あったようです。そして、

極端に無口な人になっていったようです。

ディラックと数学

しかしディラックは、闇に沈まずに数学を駆使して輝かしい成果を残しています。特にデルタ関数やブラケット記法は素晴らしいのです。そんな足跡を沢山残しました。

デルタ関数は超関数の仲間で
積分を使って定義されます。
多分野で有用である関数ですが、
物理の分野では観測に伴い、
波束が収束する様子が表現出来るのです。
数学上ではヘビサイド関数を表現出来ます。
現象は捉え方次第で色々な観測が出来て
周波数軸の観点で物事を考える時と
実座標軸(長さの観点)で考える時と
数式上の表現が異なります。
工学的にこの視点を応用した解析も
実用上で非常に便利に利用されていて
市販品のアナライザーで簡単に
業務解析をする事が出来ます。

ブラケット記法とは日本語で「括弧」
の記号を使った表記です。その定式化では
カギカッコ<>の形の 「<」 の部分
だけを「ブラベクトル」と呼び
カギカッコ<>の形の 「>」 の部分
だけを「ケットベクトル」と呼びます。
非常に分り易い表現でブラの部分がベクトル量
に相当してケットの部分が、それと作用するベクトル量に相当する定式化です。作用する前のケットが固有値を持つ場合に固有状態を持つと表現されます。ここでのベクトルがヒルベルトベクトル(無限次元に対応)であることが学部時代の私にとって感動的でした。一瞬にして物理量に対応する状態が記述された気がしました。一次元が線で、二次元が平面で、三次元が立体空間だというくらいしか想像がつかなかった高校時代から想像は大きく膨らみ、いきなり無限次元に話が拡張したのです。一つのベクトルが多くの情報を担います。他方でデルタ関数は観測が一瞬にして波束の収縮を引き起こす様子を表現していると思います。

こうした定式化をディラックは進め、理論から提唱される物質を考え出しています。具体的に反物質と呼ぶ存在がいくつも提唱され、見つかっています。反物質は寿命が通常の物質より若干短かったりしますので日常的ではありませんが、粒子の生成消滅を論じたりする際に大事な要素です。陽子には反陽子があり中性子には反中性子があります。

ディラック来日

そして、何よりディラックは無口な人です。多くの成果を出していく中で各国の物理学会で招待する動きがあって日本にも来ていたようです。ただ性格が性格でですので余り逸話が残っていません。「仁科さんとお茶飲んだ時に・・・」みたいな話が残っていないのです。無論、歳下の朝永さんとか湯川さんは尚更の事、話しづらかったと思えます。話しかけても無言だったのでしょう。多分オランダでも日常会話はほとんどなかったと思われます。ケンブリッジでは「1Dirac」という単位を使われていました。仲間内での意味としては
「1Word/1Hours」が「1Dirac」に相当して
一時間あたりに単語二つを使ったら「2Dirac」消費されたとして換算されました。ディラックは一時間に数Dirac程度しか言葉を残さなかったそうです。

しかし、そんなディラックは真面目な性格、人を騙さない性格もあって周囲から大事にされていた様子が伺われます。このブログのTOP画面で使っている集合写真でも真ん中の列の中央に居ます。若き天才ディラックにアインシュタインやキューリ夫人が気を遣って「君の研究は素晴らしい。これからも頑張って下さいよ!」といった気持で尊重しているような
気がするのです。そして、

ディラックはイギリスの伝統を受け継いだ人でもあります。
ケンブリッジではルーカス教授職を務めました。この名誉は初代・アイザック・バローから始まり二代目・アイザック・ニュートンと続き、最近では宇宙論で名を成したS・W・ホーキング博士が受け継いでいます。


【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
問題点に対しては
適時、返信・改定をします。

nowkouji226@gmail.com

2020/08/17_初稿投稿
2022/04/10_改定投稿

舞台別のご紹介へ
時代別(順)のご紹

イギリスのご紹介へ
ケンブリッジのご紹介へ
オランダ関係の紹介へ
ライデン大学のご紹介へ

アメリカ関連のご紹介へ
熱統計関連のご紹介
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021年10月時点での対応英訳)

Quiet Dirac

Dirac in England was a very humble and reticent person. When the Nobel Prize was decided, he seemed to be thinking about declining the award for fear of becoming famous. Although he is such a person, he establishes quantum mechanics with Feynman, Heisenberg, Schrodinger, etc. in the midst of the geniuses of the early 20th century. In particular, he won the Nobel Prize at the same time as Schrodinger. In considering Dirac’s personality, I would like to mention his family for a moment.

His family transferred nationality from Switzerland when Dirac was in his late teens. And it seems that the family environment was a big factor in talking about Dirac’s personality formation. First, in 1924, Dirac’s brother died himself. Was he the end of many thoughts? It seems that Dirac himself had many difficult conversations with his father. And he seems to have become an extremely reticent person.

Dirac and math

However, Dirac has achieved brilliant results by making full use of mathematics without sinking into the darkness. Especially the delta function and bracket notation are great. I left a lot of such footprints.

The delta function is a family of generalized functions defined using integrals. It is a useful function in many fields, but in the field of physics, it is possible to express how the wave packet converges with observation. Heaviside functions can be expressed mathematically. Various observations can be made depending on how the phenomenon is perceived, and the mathematical expression differs between when thinking about things from the perspective of the frequency axis and when thinking from the perspective of the actual coordinate axis (from the perspective of length). Analysis that applies this viewpoint engineeringly is also very convenient in practical use, and business analysis can be easily performed with a commercially available analyzer.

Bra-ket notation is a notation that uses the “parentheses” symbol in Japanese. In that formulation
Only the “<” part in the shape of the key bracket <> is called the “bra vector”.
Only the “>” part in the shape of the key bracket <> is called the “ket vector”.
The bra part is a vector amount in a very easy-to-understand expression
The part of the ket corresponding to is the formulation corresponding to the amount of vector acting on it.

Eigenstate and dirac

It is expressed as having an eigenstate when the pre-acting ket has an eigenvalue. It was impressive to me when I was an undergraduate that the vector here is a Hilbert vector (corresponding to infinite dimensions). I felt that the state corresponding to the physical quantity was described in an instant. From high school, when I could only imagine that one dimension was a line, two dimensions were a plane, and three dimensions were a three-dimensional space, my imagination expanded greatly, and the story suddenly expanded to infinite dimensions. One vector carries a lot of information. On the other hand, I think that the delta function expresses how the observation causes the wave function collapse in an instant.

Dirac is proceeding with this formulation and has come up with substances proposed by theory. A number of specific antimatter entities have been proposed and found. Antimatter is not routine because it has a slightly shorter lifespan than normal matter, but it is an important factor when discussing the formation and annihilation of particles. Protons have antiprotons and neutrons have antineutrons.

Dirac visits Japan

And above all, Dirac is a reticent person. While he has produced many achievements, he seems to have come to Japan as he was invited to the Physical Society of Japan. He just doesn’t have much anecdotes because he has a personality. There is no such thing as “when I drank tea with Nishina-san …”. Of course, it seems that Mr. Tomonaga and Mr. Yukawa, who are younger, were even more difficult to talk to.

He would have been silent when he spoke. Perhaps there was little daily conversation in the Netherlands. In Cambridge, the unit “1 Dirac” was used. As for the meaning within the group, “1 Word / 1 Hours” is equivalent to “1 Dirac”, and if two words are used per hour, it is converted as “2 Dirac” consumed. Dirac left only a few words per hour.

However, it seems that such Dirac was taken care of by the people around him because of his serious personality and personality that does not deceive people. The group photo used on the TOP screen of this blog is also in the center of the middle row. I feel that Einstein and Mrs. Curie care about the young genius Dirac and respect him with the feeling that “Your research is wonderful. Please continue to do your best!”

And Dirac is also a man who inherited the British tradition.
He was a Lucas professor in Cambridge. This honor begins with the first Isaac Barrow, continues with the second Isaac Newton, and has recently been inherited by Dr. SW Hawking, who has made a name for himself in cosmology.

に投稿 コメントを残す

ロバート・ボイル
【1627年1月25日生まれ‐4/10改訂】

オックスフォード大学(OXFORD)

こんにちはコウジです。「ボイル」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と2/20時点で‗
①SyvEgTqxNDfLBX‗3385⇒3395‗②ev2Fz71Tr4x7b1k‗2717⇒2736
‗③BLLpQ8kta98RLO9‗2543⇒2593‗④KazenoKouji‗3422⇒3477
なので合計‗6102+5965=【12057@2/9】⇒6131+6170=【12301@2/20】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1627年1月25日生まれ ~ 1691年12月31日没】


【スポンサーリンク】

アイルランドの貴公子ボイル

その名は正確には

サー・ロバート・ボイル: Sir Robert Boyle_

英国アイルランド生まれの物理学者です。

初代コーク伯爵リチャード・ボイルと

キャサリンの間に7番目の男子として生まれ

アイルランド現地の家庭に里子に出されます。

その結果、ボイルはアイルランド語を

理解し、通訳レベルまで習得しました。

ボイルはフランス人の家庭教師と

海外旅行をしていて、1641年冬には

イタリアのフィレンツェで過ごし、

ガリレオ・ガリレイの教えを受けます。

ガリレオは1642年に亡くなりますが、

まさに晩年のガリレオと接したのですね。

今の日本人ならボイルは中学生の年齢でしょうか。

多感な時期に良い刺激を受けた事でしょう。

帰国後のボイル

1644年に大陸の長旅を終えるとボイルは

多くの時間を科学に使い、後の王立協会

に繋がる集まりである「ロンドン理学協会」、

別名、「不可視の学院」とも呼ばれた集まりに

参加するようになります。

ボイル家の先代が亡くなって

いましたので、ボイルはアイルランドでの

立場もあったのですが、ロンドンで頻繁に

会合が開かれた事情もあり、ボイルは最終的には

オックスフォードに移り住みます。

実験器具が入手し辛いといった切実な

側面もあったようです。

ボイルとその法則

その後、フックを助手としてボイルは空気

ポンプを制作して圧力の研究を始めます。

フランスのパスカルが同じ時代に研究をしていること

を考えると当時の物理学会での関心が

圧力にあった事が分かりますね。ニュートン力学

が成立していない時代には「力を加える」こと

よりも「圧力を加える」方が定量的に現象を把握出来る

作業だったとも言えるでしょうか。フック

ボイルの助手なので、ばねに関わる力の定式化が

出来ていないと思われます。そんな時代に力は

重力と関連して評価するしかなかったのでしょうか。

個人的に関心を持ってしまいました。

やがてはボイルの研究は圧力と体積との関係を

示す、ボイルの法則に繋がります。

ただ1660年迄にボイルは

「体積は圧力に反比例する」と明言していて、

書物での記録はあるようですが、

温度や分子量との関連を含め、

現象の定式化には至らなかったようです。

『実際の定式化はヘンリー・パワー

Henry Power FRS (1623–1668))によって

1661年になされているようです。』

【以上、3行は英語版Wikipedia情報】

このボイルの考案した「ボイルの法則」が一つの基礎となり

熱・統計力学の土台が構築されていきます。

更にこの後、

J・C・シャルルが考案した「シャルルの法則」が

温度との関係を与えますので高校レベルの知識として

「ボイル・シャルルの法則」が確立される訳です。

低圧力・高温度の条件下で、異なる気体間で法則が成

り立つことは自明ではないのですが

経験的法則として成り立ち、

後に様々な方式で発展していきます。

最後に、ボイルは錬金術の伝統を受継いで

いましたが、近代的な視点を持ち「元素」を想定して、

混合物と化合物を明確に区別した点で秀でています。

ボイルが明確にしたパラダイムシフト

は非常に大きな業績だと言えるのではないでしょうか。

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/11/04_初稿投稿
2022/04/10_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
イギリス関係のご紹介
イタリア関係のご紹介

オックスフォード関連
熱統計関連のご紹介

【このサイトはAmazonアソシエイトに参加しています】

【対応英訳】

His name is Sir Robert Boyle.

He is a physicist born in Ireland, England. He was born as the seventh boy between the first Earl of Cork Richard Boyle and Catherine and is fostered in a local Irish family. As a result, Boyle understood Irish and mastered it to the level of an interpreter.

In his younger days, Boyle travels abroad with a French tutor and spends the winter of 1641 in Florence, Italy, where he is taught by Galileo Galilei.

Galileo died in 1642, and Boyle had in contact with Galileo in his later years. Is Boyle the age of junior high school for Japanese people today, isn’t it? He would have been well inspired during a sensitive period.

After completing his long journey on the continent in 1644, Boyle spent a lot of his time in science, attending a gathering that later led to the Royal Society, also known as the “London Science Society,” also known as the “Invisible College.” 

Boyle had a position in Ireland because the predecessor of the Boyle family had died, but due to frequent meetings in London, Boyle eventually moved to Oxford.

He seems to have had an urgent aspect that it was difficult to obtain laboratory equipment. After that, with Hook as his assistant, Boyle created an air pump and began researching pressure.

Considering that Pascal in France was doing research at the same time, you can see that the interest at the Physical Society  at that time was about” pressure “. In an era when Newtonian mechanics was not established, it can be said that “applying pressure” was a task that could quantitatively grasp the phenomenon rather than “applying force”. Since the hook is a boil assistant, it seems that the force related to the Spring has not been formulated. Was force only evaluated in relation to gravity in such an era?

I’m personally interested. Boyle’s research eventually led to Boyle’s law, which shows the relationship between pressure and volume.

However, by 1660, Boyle had stated that “volume is inversely proportional to pressure,” and although there seems to be a record in his book, the phenomenon was not formulated, including the relationship with temperature and molecular weight. It seems.

“The actual formulation seems to have been done in 1661 by

Henry Power FRS (1623–1668)).”

[The above 2 lines are English translation version of Wikipedia information]

The “Boyle’s Law” devised by Boyle will be the basis for building the foundation of statistical mechanics. Furthermore, after this, “Charles’s law” devised by JC Charles gives a relationship with temperature, so “Boyle-Charles’s law” as high school level knowledge is established. It is not obvious that the law holds between different gases under low pressure and high temperature conditions, but it holds as an empirical law and later develops in various ways.

Finally, Boyle has inherited the tradition of alchemy, but excels in having a modern perspective and assuming “elements” to make a clear distinction between mixtures and compounds. It can be said that the paradigm shift that Boyle clarified is a very big achievement.

に投稿 コメントを残す

トマス・メンデンホール
【1841年10月4日~1924年3月23日】‐4/10改訂

東大

こんにちはコウジです。「メンデンホール」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と4/5時点で‗
①SyvEgTqxNDfLBX‗3385⇒3452‗②ev2Fz71Tr4x7b1k‗2717⇒2876
‗③BLLpQ8kta98RLO9‗2543⇒3212‗④KazenoKouji‗3422⇒4088
なので合計‗6102+5965=【12067@2/9】⇒6328+7300【13628@4/5】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】


【スポンサーリンク】

メンデンホールはいわゆる「お雇い外国人」さんで、名前の綴りはThomas Corwin Mendenhallです。アメリカのオハイオ州生まれです。アメリカから先だって来日していた動物学者であるE・S・モースの推薦でメンデンホールは1878年に東京帝大の物理教師となります。黎明期の日本教育に先鞭をつけたのです。

メンデンホールは設立されたばかり東大理学部観象台の観測主任となり気候を観測しました。実際に1879年1月から2年間にわたり東京本郷で気象観測に従事したのです。メンデンホールは直接気象に関わるのみではなく日本で地震が頻発する環境に着目し、そうした事情を考慮して、観象台に地震計を設置を導入していきました。当時の日本では一般にそうした観測環境に対しての知見が乏しかったかったのです。結果として地震観測に関する業績を残し、日本地震学会の設立につながっていきます。メンデンホールはこの側面でも日本の教育に貢献をしています。

こうしてメンデンホールは日本物理学の黎明期において 気象学。地震学を確立していきました。一方で単位系の確立をしていった人です。 また富士山頂で重力測定や天文気象の観測を行い、日本に地球物理学を広げていきました。

日本の物理学者では特に、田中館愛橘がメンデンホールから力学、熱力学を学んでいます。師ともいえるメンデンホールとの出会いは愛橘に多大な影響を与えたと言われています。例えば、1879年(明治時代)にメンデンホールを通じてエジソンのフォノグラフの情報を得て、実際に田中舘は試作をしています。音響や振動の解析を試みてい定量的な解析が日本で始まったのです。また、田中舘はメンデンホールによる重力測定に参加し、東京と富士山で作業しました。

メイデンホールは2年の赴任の後にアメリカへ帰国をしましたが、海岸陸地測量局長時代にアメリカの州境と国境のを測定して定めました。緯度、経度で州境が引かれている現在のアメリカの州の形を作ったのです。メイデンホールの業績は評価されていて、アラスカの氷河のひとつに今でもメンデンホール氷河という名前が残っています。メイデンホールの局長時代の仕事に関連して命名されています。

〆最後に〆

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2022/04/03_初回投稿
2022/04/10_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係のご紹介

【このサイトはAmazonアソシエイトに参加しています】


(対応英訳)

Mendenhall is a so-called “hired foreigner” and the spelling of the name is Thomas Corwin Mendenhall. He was born in Ohio, USA. At the recommendation of E.S. Morse, a zoologist who had come to Japan earlier than the United States, Menden Hall became a physics teacher at the University of Tokyo in 1878. He pioneered Japanese education in the early days.

Menden Hall was just established and he became the chief observer of the Observatory of the Faculty of Science at the University of Tokyo, observing the climate. He actually engaged in meteorological observations in Hongo, Tokyo for two years from January 1879. Menden Hall focused not only on the weather directly but also on the environment where earthquakes occur frequently in Japan, and in consideration of such circumstances, we introduced seismographs on the observatory. In Japan at that time, I generally wanted to have little knowledge about such an observation environment. As a result, he left behind his achievements in seismic observation and led to the establishment of the Seismological Society of Japan. Menden Hall also contributes to Japanese education in this aspect.

Thus Mendenhall was a meteorologist in the early days of Japanese physics. We have established seismology. He, on the other hand, is the one who established the system of units. He also expanded geophysics to Japan by measuring gravity and astronomical meteorology at the summit of Mt. Fuji.

Among Japanese physicists, Tanakadate Aikitsu is learning mechanics and thermodynamics from Mendenhall. It is said that the encounter with Mendenhall, who can be said to be a teacher, had a great influence on Aitachi. For example, in 1879 (Meiji era), Tanakadate actually made a prototype after obtaining information on Edison’s phonograph through the Mendenhall. He tried to analyze acoustics and vibrations, and quantitative analysis began in Japan. In addition, Tanakadate participated in the gravity measurement by Mendenhall and worked in Tokyo and Mt. Fuji.

Maiden Hall returned to the United States after two years in office, but he measured and determined the borders and borders of the United States when he was Director of the Coastal Land Survey. He created the shape of the current American state, which is bordered by latitude and longitude. Maidenhall’s achievements have been well received, and one of Alaska’s glaciers still retains the name Mendenhall Glacier. Named in connection with his work as director of his Maiden Hall.

に投稿 コメントを残す

ハイゼンベルク
【1901年12月5日生まれ‐4/9改訂】

deutuland

こんにちはコウジです。「ハイゼンベルグ」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と2/20時点で‗
①SyvEgTqxNDfLBX‗3385⇒3395‗②ev2Fz71Tr4x7b1k‗2717⇒2736
‗③BLLpQ8kta98RLO9‗2543⇒2593‗④KazenoKouji‗3422⇒3477
なので合計‗6102+5965=【12057@2/9】⇒6131+6170=【12301@2/20】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1901年12月5日生まれ ~ 1976年2月1日没】


【スポンサーリンク】

 ハイゼンベルグの不確定性関係

ハイゼンベルクは行列形式

の導入や、不確定性関係等

の適用で、量子論を形作った

一人です。バイエルン王国

に生まれミュンヘン大学

ゾンマーフェルトに学び

マックス・ボルンの下で

助手を務め、コペンハーゲン

ニールス・ボーアの下で

修業します。そうした一線級の

議論の中で理論の形式を整えます。

量子論の本質的な概念である

不確定性原理はボルンやヨルダン、

ハイゼンベルクによって確立されました。

可視化で想像できる世界がどこまで細かく

考えていけるかという命題に対しての一つの

回答が不確定性関係を含む量子力学の体系です。

 ハイゼンベルグと同時代の偉人達

そして加えて、ハイゼンベルクはシュレディンガーポール・ディラックと同じ時代に生き、積極的に行動すればアインシュタインボースとも議論が出来ました。。そうした天才達がミクロの原理を一つ一つ解きほぐしたのです。

まだ見えない原子レベルの大きさの事象を推察する手法が色々と試みられて、その結果を説明する理論が発展したのです。不確定性関係の発表が1927年なのですが、同時期には数多くの革新的な発表がされて量子力学の対象の理論と応用技術が飛躍的に発展した時代でした。

同時に大変な時代背景、第二次世界大戦があり
ハイゼンベルクはアインシュタインが作った
相対論を駆使したりユダヤ人物理学者を養護
していたので、ナチス党員の物理学者から
「白いユダヤ人」と呼ばれ苦労しています。
プランクからの指摘もあり
戦後の体制を見据えてハイゼンベルクはドイツ
に残りました。

 サイクロトロンとハイゼンベルグ

しかし戦時下ですので物理の知識を
ナチスの為に使う事になり、色々考えたようです。
実際にハイゼンベルクのシンクロトロンが火災を起こし
世界でニュースとなったと聞き、アメリカに亡命していた
アインシュタインは大変驚きます。
実際にその事件が彼に原爆開発を決意させたとも言われています。そして、大戦が深まる中でナチス側も原子力爆弾の実用化を模索していた中で当時のドイツ内でのハイゼンベルグの立場は極めて苦しくなります。実際にハイゼンベルグが積極的な態度をとったとしたら恐ろしい事です。歴史には「たら・れば」はよく語られていて、、仮にナチスが原爆を持っていたら、
連合国との原爆の応酬で
とても恐ろしい状況になっていた筈です。

量子力学の計算を進めていて感じたのですが、オブザーバブルに対する状態の時間発展を表す表式は数学的な厳密さを持つ半面で、状態を表している物理表現として洗練されてます。ハイゼンベルク等の提唱した行列形式はそこにつながっていきます。又、いくつかの思考実験で裏打ちされた不確定性関係は量子力学の現象理解の中では本質的です。

またハイゼンベルクはピアノの名手
だったと言われていています。
聞いてみたかったですね。

 

英語が話せるようになる「アクエス」
【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近は全て返信出来てませんが
必要箇所は適時、改定をします。

nowkouji226@gmail.com

2020/08/19_初回投稿
2022/04/09_改訂投稿

旧舞台別まとめ
舞台別の纏め
時代別(順)のご紹介
オランダ関係
ライデン大学

ドイツ関係のご紹介
デンマーク関係
量子力学関係

【このサイトはAmazonアソシエイトに参加しています】

(2021/10月時点での対応英訳)

Heisenberg’s Uncertainty Principle

Heisenberg is one of the people who shaped quantum theory by introducing the matrix form and applying the uncertainty relation. Born in the Kingdom of Bavaria, he studied under Sommerfeld at the University of Munich, worked as an assistant under Max Born, and trained under Niels Bohr in Copenhagen. He formalizes his theory in such first-class discussions. The uncertainty principle, which is an essential concept of quantum theory, was established by Born, Jordan, and Heisenberg. One answer to the proposition of how finely the world that can be imagined by visualization can be considered is the system of quantum mechanics including the uncertainty relation.

Heisenberg and his contemporaries

In addition, Heisenberg lived in the same era as Schrodinger and Paul Dirac, and if he acted positively, he could argue with Einstein and Bose. .. These geniuses unraveled the micro-principles one by one. Various methods have been tried to infer events of atomic level that are not yet visible, and the theory that explains the results has been developed. The Uncertainty Principle was announced in 1927, and at the same time, many innovative announcements were made and the theory and applied technology of the object of quantum mechanics developed dramatically.

At the same time, due to the difficult historical background and World War II, Heisenberg used the relativity created by Einstein and cared for Jewish physicists, so he was called “white Jew” by Nazi physicists. I’m having a hard time. Heisenberg remained in Germany in anticipation of the postwar regime, as pointed out by Planck.

Cyclotron and Heisenberg

However, since it is during the war, knowledge of physics
It was decided to use it for the Nazis, and it seems that he thought about various things.
The Heisenberg synchrotron actually ignited
Einstein, who was in exile in the United States, is very surprised to hear that he has become news in the world.
It is said that the incident actually made him decide to develop the atomic bomb.

And as the war deepened, the Nazi side was also searching for the practical application of nuclear bombs, and Heisenberg’s position in Germany at that time became extremely difficult. It would be scary if Heisenberg actually took a positive attitude. “Tara, if” is often spoken in history, and if the Nazis had an atomic bomb, it would have been a very scary situation due to the exchange of the atomic bomb with the Allies.

He felt that he was proceeding with the calculation of quantum mechanics, but the expression that expresses the time evolution of the state with respect to the observable is mathematically rigorous, but it is refined as a physical expression that expresses the state. .. The matrix format proposed by Heisenberg and others will lead to that. Also, the uncertainty relation backed by some thought experiments is essential in understanding the phenomenon of quantum mechanics.

Heisenberg is a master of the piano
It is said that it was.
I wanted to listen.

に投稿 コメントを残す

ブレーズ・パスカル
【1623年6月19日生まれ-4/9改定】

パリの夕暮れ

こんにちはコウジです。「パスカル」の原稿を改定します。投稿作業としては関連リンク、内部リンクの改定、個別の人物の追加をしましています。今後もご覧下さい。また、ブログ宣伝でツイッター使います。
7/11(日)朝の時点でフォロワーは合計【11691】でした。半年後の2/9と2/20時点で‗
①SyvEgTqxNDfLBX‗3385⇒3395‗②ev2Fz71Tr4x7b1k‗2717⇒2736
‗③BLLpQ8kta98RLO9‗2543⇒2593‗④KazenoKouji‗3422⇒3477
なので合計‗6102+5965=【12057@2/9】⇒6131+6170=【12301@2/20】

作業としてフォロワー増は暢気に続けます。
それよりも紹介の内容を吟味します。【以下原稿です】

【1623年6月19日生まれ ~ 1662年8月19日没 】


【スポンサーリンク】

数学者にして哲学者のパスカル

フランスに生まれたブレーズ・パスカルは

物理学者にして数学者にして哲学者です。

17世紀頃までの自然科学に関わる学者達は

細分化が出来ていない傾向があり、

時代を感じさせる部分ではあります。

そして何よりパスカルといえば、その残した言葉、

「人間は考える葦である」がまず思い浮かびます。

思考法を確立していった人であって、

その点では古代ギリシャの哲学者に近い印象です。

中世に至るまでの人間の歴史には「科学的な側面」を

あまり感じません。経験の蓄積、文化の蓄積から生じた

機能美があるのですが、素材も含めて経験からの

アプローチが大きかったのではないでしょうか。

無論、思想の停滞は今迄に沢山の場で

論じられてきた話題だと思えます。話戻って、

パスカルは考え続けた人でした。

パスカルの業績 

パスカルの遺稿集であるパンセは有名です。

総合的に物事を考えています。

死後、遺品整理で改めて分かったのは

「神」をも思考の対象として考えて、

様々な思考を繰り返し

確率論、優先順位を考え、様々な証明方法

を使っていたということです。

実際に分かり易い例として、

数学の上では三角形の内角の和を考えた時に

合計180度であると子供時代に証明していたようです。

平行になる工夫をして補助線を一本引く

だけなのですが、それを思い付いたときは

どれだけ嬉しかったことでしょう。

きっと感動があったはずです。

 

物理学の面では圧力に関する

パスカルの原理が有名で

その後、今に至るまで油圧機器に多用されてます。

またパスカルは実業家としての側面も持っていて、

今日で言うバスのシステムを乗り合いタクシー

という形で実現しています。またパスカルは

子供時代から機械式計算機の制作をしています。

徴税吏員である

父親の仕事軽減が目的だったようです。

少し、ほのぼのする逸話ですね。また、

昔フランスでの500フランにパスカルの顔

が描かれていたようです。そしてパスカル

は39歳で亡くなっています。

何よりも圧力の概念を面積との関係で確立していき、

後の定量的議論の土台として確立した

功績は大きいのではないでしょうか。

現在では圧力の単位としてパスカルは名を残してます。

フランスの誇る偉人ですね。

【スポンサーリンク】
以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2020/10/05_初稿投稿
2022/04/09_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
フランス関連のご紹介
熱統計関連のご紹介

【このサイトはAmazonアソシエイトに参加しています】

(対応英訳)

 Blaise Pascal ,Born in France, is a physicist, mathematician and philosopher. Until around the 17th century, scholars involved in the natural sciences tended to be undivided, which is a part that makes us feel the times.

And above all, when it comes to Pascal, the remaining word, “human beings are reeds to think about,” comes to mind first. He was the one who established the way of thinking, which gives an impression close to that of an ancient Greek Philosopher. I don’t really feel the “scientific side” of human history up to the Middle Ages. There is a functional beauty that arises from the accumulation of experience and culture, but I think the approach from experience, including the materials, was the main part of Way Of Tinking. Of course, the stagnation of thought seems to be a topic that has been discussed in many places. Returning to the story, Pascal was the one who kept thinking. His collection of Pascal’s manuscripts, Pensées, is famous. He thinks about things comprehensively.

After his death,

what he learned from his relics was that he also considered “God” as an Object  Of Thought, repeated various thoughts, considered probability theory and priorities, and used various proof methods. ..

As a practically straightforward example, he seems to have proved in his childhood that mathematically, when considering the sum of the angles of a triangle, the total is 180 degrees. He only draws one auxiliary line, but how happy he was when he came up with it. He must have been impressed.

In terms of physics, Pascal’s principle regarding pressure is famous, and since then, it has been widely used in hydraulic equipment. Pascal also has an aspect as a businessman, and realizes the Bus System that we call today in the form of a shared taxi.

Pascal has also been making mechanical calculators since his childhood. It seems that his purpose was to reduce the work of his father, his tax collector. It’s a little heartwarming anecdote. Also, it seems that Pascal’s face was drawn on 500 francs in France long ago. And Pascal died at the age of 39.

Above all, he established the concept of pressure in relation to area, and I think he has made great achievements in establishing it as the basis for later quantitative discussions. Today, Pascal has left its name as a unit of pressure.
He is a great man in France.

に投稿 コメントを残す

中村清二
【1869年10月28日〜1960年7月18日】‐4/9改訂

東大

こんにちはコウジです。「中村清二」の原稿を改訂します。主な改定点は関連人物へのリンクや時代別、舞台別へのリンク挿入などで、以後は記事内容の推敲を進めていく所存です。また、記事内の見出しもつけてみました。今後もご覧ください。【以下は原稿です】


【スポンサーリンク】

中村清二は福井県に生まれ東京帝国大学に進みます。そこで田中館愛橘の指導を受けるのですが、そこから先のキャリアに時代を感じました。1903年に30代で助教授の地位にあったのですが、その時代にドイツへ留学します。時代を感じた部分とはその後なのですが、中村は帰国後に博士号をとるのです。その時代の修士課程の扱いは詳しく存じませんが、博士課程を終える前に助教授として学生を指導して、留学をして、更にその後に博士号をとっていたのです。時代が違うと感じました。

何より先ず、中村は光学の研究で知られています。量子力学が成立してゆく時代に関連の仕事をしていき、光弾性実験やプリズムの最小偏角を研究したりしています。

また中村は地球物理学の分野でも研究を進めています。特に三原山が大正時代に噴火したときは地球内部の物理学に関心を持ちました。火山学を確立していき、三原山や浅間山の研究体制の整備に貢献しています。。

また、熱心に物理の教科書をまとめ上げる作業を繰り返しました。また、東大での講義科目の一つであった実験物理学は、後の我が国の人材を育て上げて物理学発展の礎を固めました。1925年に理科年表が世に出されるのですが、その際には、物理の部門でのの監修者として仕事を残しています。
また中村は定年後は八代海の不知火や魔鏡の研究を行なっています。

中村清二の人柄など

中村は妻との間に二男二女を設け得ました。
作家の中村正常は兄の子で、三原山の調査に同行したこともあしました。
正常の長女が女優の中村メイコです。
そうした多くの仕事と繋がりを残し、中村は召されました。
享年91歳の大往生です。

〆最後に〆

【スポンサーリンク】

以上、間違い・ご意見は
以下アドレスまでお願いします。
最近全て返事が出来ていませんが
全て読んでいます。
適時、改定をします。

nowkouji226@gmail.com

2022/04/02_初回投稿
2022/04/09_改定投稿

(旧)舞台別のご紹介
纏めサイトTOP
舞台別のご紹介
時代別(順)のご紹介
力学関係のご紹介

【このサイトはAmazonアソシエイトに参加しています】


 

(対応英訳)

Seiji Nakamura was born in Fukui prefecture and enterd into the University of Tokyo. There, he was taught by Tanakadate Aikitsu, and from there I felt the times in his future career. He was an assistant professor in his thirties in 1903, when he went to Germany to study abroad. The part where I felt the times was when I thought about it, but Nakamura got his PhD after returning to Japan. I don’t know how to treated a master’s degree at that time, but before finishing his doctoral course, he taught students as an assistant professor, studied abroad, and then got a PhD. He felt that the times were different.

Nakamura is known for his research in optics. He has been doing related work in the era when quantum mechanics was established, and he is studying photoelastic experiments and the minimum declination of prisms.

Nakamura is also conducting research in the field of geophysics. Especially when Mt. Mihara erupted in the Taisho era, he was interested in the physics inside the earth. He has established volcanology and is contributing to the development of research systems for Mt. Mihara and Mt. Asama. ..

He also repeated the work he enthusiastically put together a physics textbook. In addition, experimental physics, one of the lecture subjects at the University of Tokyo, cultivated human resources in Japan laters and laid the foundation for the development of physics. His science chronology was released in 1925, when he left his job as a supervisor in the physics department.
After retirement, Nakamura is conducting research on Shiranui and magic mirrors in the Yashiro Sea.

Personality of Seiji Nakamura, etc.
Nakamura could have a second son and a second daughter with his wife.
The writer, Masatsune Nakamura, was the son of his older brother and also accompanied him to the investigation of Mt. Mihara.
The normal eldest daughter is Meiko Nakamura, an actress.
Nakamura was called, leaving behind many of them. He is 91 years old.